The activation energy of the reaction is the difference between the highest point on the reaction profile and the energy of the reactants.
What is a potential energy diagram?A potential energy diagram or a reaction profile shows us the energ change between the reactants and the products.
As we look at the reaction profile, we observe that the products have a greater energy than the reactants hence the reaction is endothermic. The enthalpy chamgeis obtained by subtracting the energy of the products from the energy of the reactants.
The activation energy of the reaction is the difference between the highest point on the reaction profile and the energy of the reactants.
Learn more about energy profile: https://brainly.com/question/11256472
Which of the following is an alkaline earth metal?
A Carbon
B aluminum
C magnesium
D silicon
Answer:
Magnesium.
Explanation:
Because it is in group II
Indicate type of chemical reactions for 2Mgl2+MN(SO3)2=2MgSO3+Mnl4
Answer:
double decomposition reaction
You used a variety of media with a NaCl concentration ranging from 0.5% to 15%. Which of these media would have the lowest water activity?
a. 0.5% NaCl
b. 15% NaCl
c. 10% NaCl
d. 5% NaCl
Answer:
Explanation:
B
What is the name of this molecule?
Explanation:
here is your answer
hope this will help you
The number of mol of oxygen in 2.5 mol of caffeine
Answer:
5.0molO
Explanation:
To find the moles of oxygen in 2.5 moles of caffeine, we will first research caffeine's molecular formula: C8H10N4O2. From the molecular formula, we can see there are 2 oxygen atoms in every 1 molecule of C8H10N4O2.We can therefore multiply by the following mole ratio to get the moles of oxygen.
2.5molC8H10N4O2×2molO/1molC8H10N4O2 = 5.0molO.
What occurs in endothermic reactions?
a) Heat energy is absorbed.
b) Water is produced.
c) Oxygen is produced.
d) Heat energy is released.
Answer:
a) Heat energy is absorbed.
Explanation:
What occurs in endothermic reactions?
a) Heat energy is absorbed. YES. This is the definition of an endothermic reaction.
b) Water is produced. NO. Endothermic refers to the heat absorbed and not to the products formed.
c) Oxygen is produced. NO. Endothermic refers to the heat absorbed and not to the products formed.
d) Heat energy is released. NO. This is known as an exothermic reaction.
A 3.0-liter sample of an ideal gas is at a pressure of 2.5 atm at 15oC. (i) How many moles of gas are in the sample? (ii) If the volume does not change, what is the pressure of the gas when the temperature is 50oC?
Explanation:
here are the answers. Note that because the pressure is constant, you can use Gay Lussac's formula
When sodium chloride, NaCl , dissolves in water, the solution contains ___________________ in addition to the water solvent. The partial charges in water help dissolve the compound as the hydrogen end of water is attracted to the ____________ and the oxygen end is attracted to the _______________
Answer:
sodium ions and chloride ions
chloride ion
sodium ion
Explanation:
Ionic substances are composed of ions. When you dissolve an Ionic substance in water, the ions that compose the substance together with water molecules are present in solution.
Hence, when sodium chloride is dissolved in water, sodium ions and chloride ions are released in solution.
Water has a dipole moment. Hence, the chloride ions are attracted to hydrogen (the positive end of the dipole) while sodium ions are attracted to oxygen (the negative end of the dipole).
This is how the solid is dissolved in water.
When sodium chloride, NaCl , dissolves in water, the solution contains sodium and chloride ions in addition to the water solvent. The partial charges in water help dissolve the compound as the hydrogen end of water is attracted to the chloride ions and the oxygen end is attracted to the sodium ions.
What molecules are soluble in water?Those molecules in which positive ion as well as negative ion is present, will show solubility in water.
Sodium chloride (NaCl) is an ionic compound, which dissociates into sodium ion and chloride ion in the water. As in the water H⁺ ions are present which get attracted towards the chloride ions (Cl⁻) and hydroxide ion (OH⁻ ion) get attracted towards the sodium ions (Na⁺) and show complete dissolution.
Hence correct answers are sodium and chloride ions, chloride ion and sodium ion.
To know more about solubility in water, visit the below link:
https://brainly.com/question/16903071
According to the following pKa values listed for a set of acids, which would lead to the strongest conjugate base?
a. -2.
b. 1.
c. 7.
d. 25.
e. 50.
The density of aluminum is 2.7 g/cm3.
Part A
What is its density in kilograms per cubic meter?
Express your answer in kilograms per cubic meter to two significant figures.
Answer:
2700 kg/m³
Explanation:
First let's convert 2.7 g/cm³ to kg/cm³, keeping in mind that 1 kilogram equals 1000 grams:
2.7 g/cm³ * [tex]\frac{1kg}{1000g}[/tex] = 0.0027 kg/cm³Finally we need to convert 0.0027 kg/cm³ to kg/m³, keeping in mind that 1 meter equals 100 centimeters, as follows:
0.0027 kg/cm³ * [tex](\frac{100cm}{1m} )^3[/tex] = 2700 kg/m³The answer is 2700 kg/m³.
An aqueous solution contains 0.29 M of benzoic acid (HA) and 0.16 M of sodium benzoate (A-). If the pH of this solution was measured to be 4.63, calculate the pKa of benzoic acid g
Answer:
pKa = 4.89.
Explanation:
We can solve this problem by using the Henderson-Hasselbach equation, which states:
pH = pKa + log [tex]\frac{[A^-]}{[HA]}[/tex]
In this case [A⁻] is the concentration of sodium benzoate and [HA] is the concentration of benzoic acid.
We input the given data:
4.63 = pKa + log [tex]\frac{0.16}{0.29}[/tex]
And solve for pKa:
pKa = 4.89
A student observes a chemical
reaction where two liquids are mixed together. After the liquids are mixed the beaker feels cold to touch. This reactions is an
example of a
reaction.
Synthesis
Combustion
Exothermic
Endothermic
Answer:
Endothermic
Explanation:
Endothermic reaction is one in which the enthalpy increases. What this implies is that, it is a closed system which absorbs heat from its surroundings and thus after reaction become cooler than prior to the reaction.
In this case, the mixture of the two liquids feel colder to touch. Thus, it is an endothermic reaction from the definition earlier given.
Determine the molarity of the sodium ions when 78.0 g Na2S is dissolved in water for a final volume of 1.0 L.
Answer:
[Na⁺] = 1.99 M
Explanation:
Na₂S is a ionic salt that can be dissociated.
Dissociation equation is:
Na₂S → 2Na⁺ + S⁻²
1 mol of sodium sulfide can give 2 moles of sodium cation.
We convert moles of salt: 78 g . 1mol / 78.06 g = 0.999 moles
As ratio is 1:2, after dissociation we have (0.999 . 2) = 1.998 moles of Na⁺
Molarity is a type of concentration.
It indicates moles of solute in 1 L of solution and in this case, we have 1 L as final voulme.
Moles of Na⁺ are 1.998 moles. Then molarity (mol/L) is:
M =1.99 mol/L
Increasing the temperature of a chemical reaction usually increases greatly the rate of the reaction. The most iportant reason for this is that increasing the temperature increases: _______.
A) the collision frequency
B) the probability factor
C) the fraction of collisions with energy greater than Bact
D) the energy of activation.
E) the amount of heat released in the reaction
Answer:
the fraction of collisions with energy greater than Eact
Explanation:
The activation energy of a reaction stands as a sort of energy barrier between reactants and products. It is only reactants that possesses energy greater than the activation energy that can be converted from reactants to products.
When the temperature of the system is increased, more particles acquire energy greater than the activation energy. Hence, the fraction of collisions with energy greater than the activation energy increases so the rate of reaction increases likewise.
Using the following reaction:
H2SO4 (aq) + 2NaOH (aq) → Na2SO4 (aq) + 2H2O (l)
Calculate the molarity of the H2SO4 solution if 14.92 mL of NaOH was necessary to reach the endpoint of a titration. The molarity of the NaOH solution was 0.83 M and 25.18 mL of H2SO4 was added to the Erlenmeyer flask.
Answer:
The molar concentration of the H₂SO₄ solution is 0.28 M
Explanation:
Molar concentration = number of moles / volume in litres
Number of moles = molar concentration × volume
From the equation of reaction, molar ratio of acid to base = 1 : 2
Using the formula; Na/Nb = CaVa/CbVb
Where Na is the number of moles of acid; Nb = number of moles of base; Ca = concentration of acid; Va = volume of acid; Cb = concentration of base; Vb = volume of base; Na/Nb = mole ratio of acid to base
Substituting the given values in the equation:
1/2 = Ca × 25.18 / 0.93 × 14.92
Ca = 0.93 × 14.92/ 25.18 × 2
Ca = 0.28M
Therefore, the molar concentration of the H₂SO₄ solution is 0.28 M
Question 2: Functional Groups (6 points)
A. Methanoic acid is the simplest carboxylic acid molecule. It has one carbon atom. Draw the structural model for methanoic acid (using C and H). (3 points)
B. Methanal is the simplest aldehyde, with one carbon atom. Draw the structural model for methanal (using C and H). (3 points)
The following physical constants are for water, H2O.
The specific heat capacity of the solid = 2.09 J/g oC
The specific heat capacity of the liquid = 4.18 J/g oC
The specific heat capacity of the vapor = 2.09 J/g oC
∆Hfus = 6.02 kJ/mol; ∆Hvap = 40.7 kJ/mol Freezing point = 0.0oC; Boiling point = 100.0oC
How much heat(in kJ) is required to warm 10.0 grams of ice at -5.0oC to a temperature of 70.0oC?
Answer:
[tex]Q\approx6.4~kJ[/tex]
Explanation:
Quantity of heat required by 10 gram of ice initially warm it from -5°C to 0°C:
[tex]Q_1=m.C_s.\Delta T[/tex]
here;
mass, m = 10 g
specific heat capacity of ice, [tex]C_s=2.09~J.g^{-1}.^{\circ}C^{-1}[/tex]
change in temperature, [tex]\Delta T=(5-0)=5^{o}C[/tex]
[tex]Q_1=10\times2.09\times 5[/tex]
[tex]Q_1=104.5~J[/tex]
Amount of heat required to melt the ice at 0°C:
[tex]Q_2=m.\Delta H_{fus}[/tex]
where, [tex]\Delta H_{fus}=6020~J/mol[/tex]
we know that no. of moles is = (wt. in gram) [tex]\div[/tex] (molecular mass)
[tex]Q_2=\frac{10}{18} \times 6020[/tex]
[tex]Q_2=3344.44~J[/tex]
Now, the heat required to bring the water to 70°C from 0°C:
[tex]Q_3=m.C_L.\Delta T[/tex]
specific heat of water, [tex]C_L=4.18~J/g/^oC[/tex]
change in temperature, [tex]\Delta T=(70-0)=70^oC[/tex]
[tex]Q_3=10\times 4.18\times 70[/tex]
[tex]Q_3=2926~J[/tex]
Therefore the total heat required to warm 10.0 grams of ice at -5.0°C to a temperature of 70.0°C:
[tex]Q=Q_1+Q_2+Q_3[/tex]
[tex]Q=104.5+3344.44+2926[/tex]
[tex]Q=6374.94~J[/tex]
[tex]Q\approx6.4~kJ[/tex]
explain why the melting point of a solid is equal to the freezing point of it's liquid.
Explanation:
Because melting point and freezing point describe the same transition of matter, in this case from liquid to solid (freezing) or equivalently, from solid to liquid (melting). It is stuck on 0 ∘C during the entire melting or freezing process. None except melting is when you heat up and freezing when you cool down.hope it helps.stay safe healthy and happy.3. The electrolyais of water produces oxygen gas at the rate of 32.5 mL/min in a certain experiment.
What volume of oxygen gas can be produced in 7.50 min?
Answer:
243.75 mL
Explanation:
In 1min 32.5 mL of oxygen
In 7.5 min electrolysis of water produces
(32.5mL × 7.5 min)/ 1min
= 243.75mL
The following statements either define or are closely related to the terms periodic law, period, or group. Match the terms to the appropriate statements.1. This is a vertical arrangement of elements in the periodic table. 2. This is a horizontal arrangement of elements in the periodic table. 3. The properties of the elements repeat in a regular way as the atomic numbers increase. 4. Element 19 begins this arrangement in the periodic table 5. The chemical properties of elements 12, 20, and 38 demonstrate this principle.
Answer:
Please find the complete solution in attached file.
Explanation:
Periodic law is the the properties of the elements that repeat in a regular way as the atomic numbers increase.
What is periodic table?Periodic chart organized collection of all chemical elements arranged roughly according to increasing atomic weight. The periodic recurrence of several features in the elements was originally identified by Dmitry I. Mendeleyev in 1869.
1. This is a vertical arrangement of elements in the periodic table group
2. This is a horizontal arrangement of elements in the periodic table period
3. The properties of the elements repeat in a regular way as the atomic numbers increase periodic law
4. Element 19 begins this arrangement in the periodic table period
5. The chemical properties of elements 12, 20, and 38 demonstrate this principle. periodic law
Therefore, periodic law is the the properties of the elements that repeat in a regular way as the atomic numbers increase.
To learn more about periodic table, here:
https://brainly.com/question/29766008
#SPJ6
What is the largest number
(of a single species) a specific area can support?
A. Population
B. Unlimited factor
C. Carrying capacity
D. Niche
Answer:
carrying capacity
Explanation:
Thus, the carrying capacity is the maximum number of individuals of a species that an environment can support. Population size decreases above carrying capacity due to a range of factors depending on the species concerned, but can include insufficient space, food supply, or sunlight.
why do the Philippines have generally warm temperature throughout the year?a. it is near the sun b.it has many volcanoes c. it lies near the equator d. it has many islands.what is the correct answer?
Answer:
F. When everyone is together it gets hotter
Explanation:
Answer:
c. it lies near the equator
Energy Changes in Reactions
Independent Practice
In a synthesis reaction, one reactant contains 256 J of chemical energy, and one reactant contains 328 J of
chemical energy. The product contains 407 J of chemical energy.
Because energy is conserved, what energy change occurs during the reaction?
A. 177 J of energy is released.
B. 177 J of energy is absorbed.
C. 335 J of energy is released,
D. 335 J of energy is absorbed.
SAVE
SAVE AND CLOSE
How many moles are in the number of molecules below? I only need to know the 5th question.
Answer:
11
1. 6.02×10 23
this is the answer Hope it helps you
Suppose an enzyme and its substrate obey the lock and key model of enzyme catalysis. Which of the following would be true of the enzyme?
a. only one substrate could be converted to product by the enzyme
b. the active site of the enzyme must be rigid
c. the entire enzyme must be rigid
d. the active site of the enzyme must be flexible
e. the enzyme could bind different substrates if the substrates shared a common motif somewhere in their structures
Answer:
only one substrate could be converted to product by the enzyme
Explanation:
If an enzyme obeys the lock and key model, it then follows that the design of the enzyme is unique to a particular substrate.
Just as only the correct key can effectively fit into a lock, only the appropriate substrate whose design matches that of the enzyme can fit into the enzyme.
Owing to the lock and key model of enzyme activity, only one enzyme could interact with a substrate to yield particular product.
An atom has 6 protons and 9 neutrons in its nucleus. Calculate the mass number of the atom
Answer:
6+9=15
mass number =15
mass number = no. protons + no. of neutrons
300.0 mL of a 0.335 M solution of NaI is diluted to 700.0 mL. What is the new concentration of the solution?
Answer: The new concentration of the solution is 0.143 M.
Explanation:
Given: [tex]V_{1}[/tex] = 300.0 mL, [tex]M_{1}[/tex] = 0.335 M
[tex]V_{2}[/tex] = 700.0 mL, [tex]M_{2}[/tex] = ?
Formula used is as follows.
[tex]M_{1}V_{1} = M_{2}V_{2}[/tex]
Substitute values into the above formula as follows.
[tex]M_{1}V_{1} = M_{2}V_{2}\\0.335 M \times 300.0 mL = M_{2} \times 700.0 mL\\M_{2} = 0.143 M[/tex]
Thus, we can conclude that the new concentration of the solution is 0.143 M.
Q2.Which is true about potassium?
Extremely unreactive
Not very reactive
Slightly reactive
Very reactive
Suppose, in an experiment to determine the amount of sodium hypochlorite in bleach, you titrated a 23.92 mL sample of 0.0100 M K I O 3 with a solution of N a 2 S 2 O 3 of unknown concentration. The endpoint was observed to occur at 13.80 mL . How many moles of K I O 3 were titrated
Answer:
2.39x10⁻⁴ moles
Explanation:
As the problem asks us the number of moles of KIO₃ that were titrated, all that is required of us is to calculate how many moles of KIO₃ are there in 23.92 mL of a 0.0100 M solution (All moles in the samples are titrated).
We can do so by using the definition of molarity:
Molarity = moles / litersconverting 23.92 mL ⇒ 23.92 / 1000 = 0.02392 L
moles = 0.0100 M * 0.02392 Lmoles = 2.39x10⁻⁴ molesCalculate the moles of H3PO4 that reacted (8). Consult the coefficients in the balance chemical reaction to obtain the mole ratio. Show your calculation here.
Answer:
The number of moles of H₃PO₄ that reacted is 0.000343 moles
Note: Some data is missing. Data from the attachment is used for the calculationsinnthe explanation below.
Explanation:
The reaction is a neutralization reaction between NaOH and H₃PO₄. The equation of the reaction is given as follows:
3 NaOH + H₃PO₄ ---> Na₃PO₄ + 3 H₂O
The molarity of the NaOH solution is 0.238 mol/L.
Average volume of NaOH used during the titration to arrive to endpoint = (4.6 + 3.9 + 4.5) mL / 3 = 4.33 mL
Molarity is defined ratio of the number of moles of solute to the volume of solution. Mathematically, molarity = number of moles/volume in Litres
Number of moles of NaOH reacted = 0.238 mol/L × (4.33mL × 1 L/1000 mL)
Number of moles of NaOH = 0.00103 moles
From the equation of the reaction, 3 moles of NaOH reacts with 1 mole of H₃PO₄
0.00103 moles of NaOH will react with 0.00103 x 1/3 moles of H₃PO₄ = 0.000343 moles of H₃PO₄.
Therefore, number of moles of H₃PO₄ that reacted is 0.000343 moles