Answer:
2x + 3y -3=0
Step-by-step explanation:
The given equation of the line is ,
[tex]\implies 2x - 3y = 13 [/tex]
Now convert it into slope intercept form to get the slope , we get ,
[tex]\implies 3y = 2x - 13 \\\\\implies y =\dfrac{2}{3}x -\dfrac{13}{2}[/tex]
Therefore the slope is ,
[tex]\implies m = \dfrac{2}{3} [/tex]
We know that the product of slope of perpendicular lines is -1 . Therefore the slope of the perpendicular line will be ,
[tex]\implies m_{perpendicular}= -\dfrac{2}{3} [/tex]
Now one of the point is (-6,5) .On Using point slope form , we have ,
[tex]\implies y-y_1 = m( x - x_1) \\\\\implies y - 5 = -\dfrac{2}{3}( x + 6 ) \\\\\implies 3y - 15 = -2x -12
\\\\\implies 2x + 3y -15+12=0 \\\\\implies \underline{\underline{ 2x + 3y -3=0 }}[/tex]
Answer:
y = - [tex]\frac{3}{2}[/tex]x - 4
Step-by-step explanation:
2x – 3y = 13
3y = 2x + 13
y = [tex]\frac{2}{3}[/tex]x + [tex]\frac{13}{3}[/tex]
slope = 2/3
negative reciprocal = -3/2
y = -3/2x + b
(-6, 5)
5 = (-3/2)(-6) + b
5 = 9 + b
b = -4
y = -3/2x - 4
Lightbulbs. A company produces lightbulbs. We know that the lifetimes (in hours) of lightbulbs follow a bell-shaped (symmetric and unimodal) distribution with a mean of 7,161 hours and a standard deviation of 564 hours. Use the Empirical Rule (68-95-99.7 rule) to answer the following question: The shortest lived 2.5% of the lightbulbs burn out before how many hours
Answer:
Please find the complete question and its solution in the attached file.
Step-by-step explanation:
Shortest had survived after 6741 hours [tex]2.5\%[/tex] of the lights burnt.
[tex]\to 0.15\% + 2.35\% = 2.50\%[/tex]
Which value of n makes the equation true?
-1/2n=-8
Answer:
16?
Step-by-step explanation:
I'm not sure. I hope so.
Measurement error that is normally distributed with a mean of 0 and a standard deviation of 0.5 gram is added to the true weight of a sample. Then the measurement is rounded to the nearest gram. Suppose that the true weight of a sample is 166.0 grams.
(a) What is the probability that the rounded result is 167 grams?
(b) What is the probability that the rounded result is 167 grams or more?
Answer:
(a)[tex]0.15731[/tex]
(b)0.02275
Step-by-step explanation:
We are given that
Mean=0
Standard deviation=0.5 g
True weight of a sample=166 g
Let X denote the normal random variable with mean =166+0=166
(a)
P(166.5<X<167.5)
=[tex]P(\frac{166.5-166}{0.5}<\frac{X-\mu}{\sigma}<\frac{167.5-166}{0.5})[/tex]
=[tex]P(1<Z<3)[/tex]
=[tex]P(Z<3)-P(Z<1)[/tex]
[tex]=0.99865-0.84134[/tex]
[tex]=0.15731[/tex]
(b)
[tex]P(X>167)=P(Z>\frac{167-166}{0.5})[/tex]
[tex]=P(Z>2)[/tex]
[tex]=1-P(Z<2)[/tex]
[tex]=1-0.97725[/tex]
[tex]=0.02275[/tex]
Write an equation for staying in Paris, France.
Answer:
[tex]y = 125.00x + 591.00[/tex]
Step-by-step explanation:
Given
See attachment for table
Required
Equation for Paris
From the table, we have:
[tex]flight = 591.00[/tex]
[tex]hotel = 125.00[/tex]
Let the number of nights be x.
So, the equation for the total amount (y) is:
[tex]y = flight + hotel * x[/tex]
[tex]y = 591.00 + 125.00 * x[/tex]
[tex]y = 125.00x + 591.00[/tex]
John’s grocery bill totaled $200. After he used his coupons, the cash register showed the total bill as $20. Which statement is true?
The grocery bill before the coupons were used was 10 times as much as the bill after the coupons were used.
The grocery bill after the coupons were used was 10 times as much as the bill before the coupons were used.
The grocery bill before the coupons were used was 100 times as much as the bill after the coupons were used.
The grocery bill after the coupons were used was 100 times as much as the bill before the coupons were used.
Answer:
The grocery bill before the coupons were used was 10 times as much as the bill after the coupons were used.
Step-by-step explanation:
The price after coupons were used is 20, and the price before was 200. 20x10 =200
24
4
3+
2+
2
1
-3
-
-1
1
1
2
3
4
-1+
-2 +
-3+
4
What is the slope of the line?
Answer:
1.5/2
Step-by-step explanation:
slope formula = y2-y1/ x2 - x1
point one (2,0)
point 2 (0, 1.5)
you dont really need to subtract anything because the intercepts, so the slope is 1.5/2
(slope or m = 1.5 - 0 / 2 - 0 )
x intercept = value of x when y is 0
y intercept = value of y when x is 0
Help is needed for this area answer
Answer:
So im pretty sure it is just adding each side
Step-by-step explanation:
Add 10 + 5 + 3 + 5 + 7
A librarian needs to package up all of the children’s books and move them to a different location in the library there are 625 books and she can fit 25 books in one box how many boxes does she need in order to move all the books
9514 1404 393
Answer:
25
Step-by-step explanation:
total books = (books per box) × (number of boxes)
number of boxes = (total books)/(books per box) = 625 /25 = 25
She needs 25 boxes to move all the books.
In preparing for the upcoming holiday season, Fresh Toy Company (FTC) designed a new doll called The Dougie that teaches children how to dance. The fixed cost to produce the doll is $100,000. The variable cost, which includes material, labor, and shipping costs, is $34 per doll. During the holiday selling season, FTC will sell the dolls for $42 each. If FTC overproduces the dolls, the excess dolls will be sold in January through a distributor who has agreed to pay FTC $10 per doll. Demand for new toys during the holiday selling season is extremely uncertain. Forecasts are for expected sales of 60,000 dolls with a standard deviation of 15,000. The normal probability distribution is assumed to be a good description of the demand. FTC has tentatively decided to produce 60,000 units (the same as average demand), but it wants to conduct an analysis regarding this production quantity before finalizing the decision.
(a) Create a what-if spreadsheet model using formulas that relate the values of production quantity, demand, sales, revenue from sales, amount of surplus, revenue from sales of surplus, total cost, and net profit. What is the profit corresponding to average demand (60,000 units)? $
(b) Modeling demand as a normal random variable with a mean of 60,000 and a standard deviation of 15,000, simulate the sales of The Dougie doll using a production quantity of 60,000 units. What is the estimate of the average profit associated with the production quantity of 60,000 dolls? $ How does this compare to the profit corresponding to the average demand (as computed in part a)? The input in the box below will not be graded, but may be reviewed and considered by your instructor
(c) Before making a final decision on the production quantity, management wants an analysis of a more aggressive 70,000-unit production quantity and a more conservative 50,000-unit production quantity. Run your simulation with these two production quantities. What is the mean profit associated with each? When ordering 50,000 units, the average profit is approximately $. When ordering 70,000 units, the average profit is approximately $.
(d) Besides mean profit, what other factors should FTC consider in determining a production quantity? Compare the four production quantities (40,000; 50,000; 60,000; and 70,000) using all these factors. What trade-offs occur? If required, round Probability of a Loss to three decimal places and Probability of a Shortage to two decimal places. What is your recommendation? The input in the box below will not be graded, but may be reviewed and considered by your instructor.
The sum of 7/3 and four times a number is equal to 2/3 subtracted from five times the number?
Answer:
-3
Step-by-step explanation:
At the bright-as-day light bulb factory, 5 out of each 136 bulbs produced are defective. If the daily production is 2720 bulbs, how many are defective?
Answer:
100 lightbulbs
Step-by-step explanation:
Basically find the percentage of lightbulbs that are bad. 5/136. So about 3. 6 percent. I'm going to use a more exact form of this percent for my calculations though. Now use the decimal for of this (0.036....) and multiply it by 2720. Using my exact decimal, the answer just so happened to be exactly 100. So there will be 100 defective lightbulbs per day. (Teachers are a stickler for units, so don't forget them if it's for a teacher)
Hope this helps!
Let f(x) = -2x + 7 and g(x) = -6x + 3. Find f.g and state its domain.
-14x^2 + 36x - 18; all real numbers
12x^2 - 48x + 21; all real numbers
-14x^2 + 36x - 18; all real numbers except x = 7
12x^2 - 48x + 21; all real numbers except x = 1
Answer:
Not sure if this is right, but I hope it helps. Please see attached pic
Step-by-step explanation:
29. Family income in the middle class: Bauer et al. (2011) identified the median income of a middle-class family in their sample to be $84,200 annually; the mean family income was $85,300 annually. In their data, the lowest family income reported in this group was $65,100 annually, and the highest family income reported was $103,400 annually. Based on the data given, was the mean an appropriate value to summarize these data
Answer:
No it is not
Step-by-step explanation:
The median is 84200
The mean is 85300
Low income is 65100
High income is 103400
From this information, we can see a skewed data. The mean would not be a good estimate value. Rather the center (median) would be more appropriate.
When we calculate the middle value for this data
65100+103400 = 168500/2 = 84250
84250 is closer to the median score of 84200. The median is best in the presence of outliers.
What are the values of x and y?
Answer:
x =5, y = 22
Step-by-step explanation:
5y + 79 + 5y + 61 = 360
10y = 220
y = 22
2x + 7 = 4x - 3
-2x = -10
x = 5
log4(x^2+1)=log4(-2x)
Answer:
x = − 1
Step-by-step explanation:
2(5 – 9x) = -3(x - 2)
Answer:
[tex]x=\frac{4}{15}[/tex]
Step-by-step explanation:
1. Distributive Property[tex]10-18x=-3x+6[/tex]
2. Solving for x[tex]10-6=-3x+18x\\4=15x\\\frac{4}{15} =x[/tex]
Hope this helped! Please mark brainliest :)
The graph below has the same shape as the graph of G(x) = x, but it is
shifted three units to the left. Complete its equation. Enter exponents using
the caret (-); for example, enter x as x^4. Do not include "G(x) =" in your
answer.
G(x) =
Answer:
G(x) = x+3
Step-by-step explanation:
The equation of the graph is G (x) = (x - 3)⁴
What is Graph?Graph is a mathematical representation of a network and it describes the relationship between lines and points.
A relation between a set of inputs having one output each is called a function.
An expression, rule, or law that defines a relationship between one variable (the independent variable) and another variable (the dependent variable).
Given that;
The graph of function G (x) is shown in image.
Here, the graph is 3 units left to function F (x) = x⁴.
The equation of the graph is G (x) = (x - 3)⁴
Hence, the equation of the graph is G (x) = (x - 3)⁴
To learn more on Graph click:
https://brainly.com/question/17267403
#SPJ7
rationalize the denominator of √3+√2\ 5+√2
Answer:
[tex]\frac{ 5 \sqrt3 \ + \ 5 \sqrt2 \ - \ \sqrt6 \ - \ 2}{23}[/tex]
Step-by-step explanation:
[tex]\frac{\sqrt3 \ + \ \sqrt2 }{5 \ + \ \sqrt2 } \\\\=\frac{\sqrt3 \ + \ \sqrt2 }{5 \ + \ \sqrt2 } \times \frac{5 \ - \ \sqrt2 }{5 \ - \ \sqrt2 } \\\\=\frac{( \sqrt3 \ + \ \sqrt2)(5 \ - \ \sqrt2)}{(5 \ + \ \sqrt2)( 5 \ - \ \sqrt 2 )}\\\\=\frac{( \sqrt3 \ + \ \sqrt2)(5 \ - \ \sqrt2)}{(5 \ + \ \sqrt2)( 5 \ - \ \sqrt 2 )}\\\\=\frac{5 \sqrt3 \ + \ 5\sqrt 2 \ - \ \sqrt{ 3\times 2 } \ - \ \sqrt{2 \times 2}}{(5)^2 \ - \ (\sqrt2)^2}\\\\= \frac{ 5 \sqrt3 \ + \ 5 \sqrt2 \ - \ \sqrt6 \ - \ 2}{25 - 2}\\\\[/tex]
[tex]= \frac{ 5 \sqrt3 \ + \ 5 \sqrt2 \ - \ \sqrt6 \ - \ 2}{23}[/tex]
(-3).(+9)-(-24)-(+6).(+2)
Solve. SHOW ALL YOUR WORK
2.51 * .2
77/ 1.2
Answer:
0.502
64.1666
Step-by-step explanation:
Detained explanation of the product operation and division operation is attached below.
2.51 * 0.2 = 0.502
(after multiplying) the number of decimal places of the town values is added and counted from the right in the product to place the data Comal point appropriately.
77/1.2 ; values were multiplied by 10 in other to obtain inter values for the denominator.
Enunciate demerits of classical probability.
Answer:
Some demerits of classical probability are provided throughout the following portion.
Step-by-step explanation:
This could only be utilized if somehow the occurrences are fairly probable as well as predictable. Such supposition is established far in advance of the investigation or testing.This only applies whereas if an overall number of occurrences seems to be limited, one such term has quite a restricted scope, such as coins tossing, picking card numbers, etc.What is 75% as a fraction
Answer:
[tex]\frac{75}{100}[/tex]
Step-by-step explanation:
use the discriminant to determine the number of solutions to the quadratic equation −6z2−10z−3=0. What are the real solutions and complex solutions?
Answer:
Step-by-step explanation:
-6z²-10z-3=0
multiply by -1
6z²+10z+3=0
disc .=b²-4ac=10²-4×6×3=100-72=28≥0
also it is not a perfect square.
so roots are real,irrational and different.
[tex]z=\frac{-6 \pm\sqrt{28} }{2 \times 6} \\=\frac{-6 \pm 2 \sqrt{7}}{12} \\=\frac{-3 \pm\sqrt{7} }{6}[/tex]
The parametric equations for the paths of two projectiles are given. At what rate is the distance between the two objects changing at the given value of t? (Round your answer to two decimal places.) x1 = 10 cos(2t), y1 = 6 sin(2t) First object x2 = 4 cos(t), y2 = 4 sin(t) Second object t = π/2
Answer:
- [tex]\frac{4}{\sqrt{29} }[/tex]
Step-by-step explanation:
The equations for the 1st object :
x₁ = 10 cos(2t), and y₁ = 6 sin(2t)
2nd object :
x₂ = 4 cos(t), y₂ = 4 sin(t)
Determine rate at which distance between objects will continue to change
solution Attached below
Distance( D ) = [tex]\sqrt{(10cos2(t) - 4cos(t))^2 + (6sin2(t) -4sin(t))^2}[/tex]
hence; dD/dt = - [tex]\frac{4}{\sqrt{29} }[/tex]
70. If set A consists of (3, 5, 7, 9) and set B consists of (1, 2, 3, 5, 8, 13), what is the average of the union of set A and set B?
A) 6
B) 3
C) 48
D) 56
⚠️will give brainliest to the best answer
Step-by-step explanation:
the answer would be 6. brrr
A) 6
{1,2,3,5,7,8,9,13}
The average is going to be 6.
How many additional teachers will have to be hired to reduce the ratio to 1:20
Answer:
30 additional teachers will have to be hired to reduce the ratio to 1:20.
Step-by-step explanation:
Given that Jefferson School has 1800 students, and the teacher-pupil ratio is 1:30, to determine how many additional teachers will have to be hired to reduce the ratio to 1:20, the following calculation must be performed:
30 = 1800
1 = X
1800/30 = X
60 = X
20 = 1800
1 = X
1800/20 = X
90 = X
90 - 60 = 30
Therefore, 30 additional teachers will have to be hired to reduce the ratio to 1:20.
Which answers describe the shape below? Check all that apply.
A. Quadrilateral
B. Trapezoid
C. Rhombus
D. Rectangle
E. Parallelogram
F. Square
9514 1404 393
Answer:
A, C, D, E, F
Step-by-step explanation:
The figure has 4 sides: 2 pairs of parallel sides, all of equal length. The angles are right angles.
The figure is a ...
quadrilateralrhombusrectangleparallelogramsquareAnswer:
A, and F.
Step-by-step explanation: I hope this helps.
Four sides are called a quadrilateral.
Three sides are called a triangle.
Five sides are called a pentagon.
Six sides are called hexagons.
A rectangle is a quadrilateral with four right angles.
A square is a quadrilateral with four right angles.
A rhombus is a quadrilateral with four equal sides.
A parallelogram is a quadrilateral with two pairs of parallel sides.
A trapezoid is a quadrilateral with one pair of parallel sides.
Acute angles are less than 90°
Right angles are exactly 90°
Obtuse angles are more than 90°
Acute triangle has three acute angles.
Right triangle has one right angle.
An obtuse triangle has one obtuse angle.
Isosceles triangle has the minimum of two sides that are equal length.
Equilateral triangle has three sides that are at an equal length.
Scalene triangles have three sides of different lengths,
Acute triangles with three equal sides are called an equiangular triangle.
Two statements are logically equivalent when:
A. The two statements are true in virtue of their logical structure alone, i.e. the two statement are always true.
B. The first statement implies the second, i.e. if the first statement is true, so is the second.
C. The two statements agree in point of truth or falsehood in virtue of their logical structure alone, i.e. the two statement are true or false in exactly the same conditions.
D. The two statements are false in virtue of their logical structure alone, i.e. the two statement are always false.
C. The two statements agree in point of truth or falsehood in virtue of their logical structure alone, i.e. the two statement are true or false in exactly the same conditions.
Step-by-step explanation:For two statements to be logically equivalent, their truth values (true or false) must be the same for every variation of their constituent variables. In other words, if the truth tables of both statements are the same for every possible value of their variables, then they are logically equivalent.
For example;
The two statements P ∩ (Q U R) and (P ∩ Q) ∪ (P ∩ R) are logically equivalent.
If P, Q and R are all true, then;
P ∩ (Q U R) = true
(P ∩ Q) ∪ (P ∩ R) = true
If P, Q and R are all true, then;
P ∩ (Q U R) = false
(P ∩ Q) ∪ (P ∩ R) = false
If P = false, Q = true and R = true, then;
P ∩ (Q U R) = false
(P ∩ Q) ∪ (P ∩ R) = false
Checking for all other possible combinations of truth values of P, Q and R will always give the same results for the two statements, therefore, they are logically equivalent.
What transformation to the linear parent function, f(x) = x, gives the function
g(x) = x + 7?
A. Shift 7 units left.
B. Shift 7 units right.
C. Vertically stretch by a factor of 7
D. Shift 7 units down
Answer:
I think A
Step-by-step explanation:
During a party, Eli loses a bet and is forced to drink a bottle of lemon juice. Not long thereafter, he begins complaining of having difficulty breathing, and his friends take him to the local emergency room. His blood pH is 7.28. What does this mean
Answer:
It means acidosis.
Step-by-step explanation:
When the pH level of the human blood is less than 7.35, the condition is known as acidosis.
When the pH level of the human blood is more than 7.45, the condition is known as alkalosis.
The organs which help to regulate the pH of human body is lungs.
Lungs remove the carbon di oxide through breathing or respiration.