Answer:
I choose D option because may be it's correct
I believe it is c
Explanation:
because if u think about it and also do some research you would see that the circulatory system is a strong part of your body which can help u through natural defences if this sounds weird it's all in research but if it ain't c dont blame me for ruining your life- lol but yeah I think its c
Hydrogen bonds within liquid water are attractions between protons and hydroxide ions. are dipole-dipole attractions. are ion-induced dipole attractions. are attractions between protons and oxygen nuclei. are attractions between two hydrogen atoms.
Answer:
true because the bonds cannot be broken down
A particle that travels around the nuceleus of an atom in orbitals is called?
Write the molecular formula for the compound that exhibits a molecular ion at M+ = 112.0499. Assume that C, H, N, and O might be present, and use the exact masses below: Exact mass of carbon = 12.000 Exact mass of hydrogen = 1.0078 Exact mass of nitrogen = 14.003 Exact mass of oxygen = 15.995 (The order of atoms should be carbon, then hydrogen, then the others in alphabetical order. If there is more than one answer, just give one. ) Molecular formula:
Answer:
C₅H₈N₂O
Explanation:
The molecular formula denotes the various forms of atoms contained in a molecule at a particular fixed proportion.
The molecular ion M⁺ = 112.0499
and the exact mass values are given as follows:
C = 12.000
H = 1.0078
N = 14.003
O = 15.995
By assumption:
C = 12.000 × 5 = 60.0000
H = 1.0078 × 8 = 1.0078
N = 14.003 × 2 = 28.0060
O = 15.995 × 1 = 15.9950
= 112.0634
This is approximtely equal to 112.0499.
As such the Molecular formula for the compound = C₅H₈N₂O
For each of the salts on the left, match the salts on the right that can be compared directly, using Ksp values, to estimate solubilities. (If more than one salt on the right can be directly compared, include all the relevant salts by writing your answer as a string of characters without punctuation, e.g, ABC.) fill in the blank 1 1. manganese(II) sulfide A. CuS fill in the blank 2 2. calcium fluoride B. FeS C. PbCl2 D. CaCrO4 Write the expression for K in terms of the solubility, s, for each salt, when dissolved in water. manganese(II) sulfide calcium fluoride Ksp
Answer:
For each of the salts on the left, match the salts on the right that can be compared directly, using Ksp values, to estimate solubilities. (If more than one salt on the right can be directly compared, include all the relevant salts by writing your answer as a string of characters without punctuation, e.g, ABC.) fill in the blank 1 1. manganese(II) sulfide A. CuS fill in the blank 2 2. calcium fluoride B. FeS C. PbCl2 D. CaCrO4 Write the expression for K in terms of the solubility, s, for each salt, when dissolved in water. manganese(II) sulfide calcium fluoride Ksp
Molecule contains carbon, hydrogen and sulfur atoms. When a sample of 0.535g of this compound is burnt in oxygen, 1.119 g of CO2and 0.229 gof H2O and 0.407g of SO2are obtained.
Calculate its empirical formula.
Answer:
The empirical formula is, C4H4S
Explanation:
Number of moles of carbon = 1.119 g/ 44g/mol = 0.025 moles
Mass of Carbon= 0.025 moles × 12 g/ mole = 0.3 g
Number of moles of hydrogen = 0.229/18g/mol × 2 = 0.025 moles
Mass of hydrogen = 0.025 moles × 1 = 0.025 g
Number of moles of sulphur = 0.407g/ 64 g/mol = 0.0064 moles
Mass of sulphur= 0.0064 moles ×32 = 0.2 g
Now we obtain the mole ratios by dividing through by the lowest ratio.
C- 0.025 moles/ 0.0064 moles, H- 0.025 moles/ 0.0064 moles, S- 0.0064 moles/0.0064 moles
C4H4S
Given the balanced reaction: Zn + 2HCl → H2 + ZnCl2
If 5 grams of each reactant are available for the reaction and HCl is known
to be the limiting reactant, which of the following is correct?
O Both reactants will be completely used up.
O There will be excess of both reactants remaining.
O HCl will be completely used up while Zn will remain in excess.
O Zn will be completely used up while HCl will remain in excess.
Answer:
O HCl will be completely used up while Zn will remain in excess.
Explanation:
Zn + 2HCl → H₂ + ZnCl₂In reactions involving two reactants, if one of them is the limiting reactant then the other one has to be the reactant in excess.
Meaning that in this case, the reaction will proceed until HCl is completely used up, and a certain amount of Zn will remain (thus being the reactant in excess).
How much energy does an X-ray with an 8 nm (8 x 10-9m) wavelength have?
A. 1.99 x 10-25 J
B. 3.33 x 1016 J
C. 2.48 x 10-17 j
D. 8.28 x 10-26 J
Answer:
it would be option C
Explanation:
Speed of light = 3×10^8m/s
Planck's constant = 6.626×10^-34 Js
Wavelength = 8 x 10^-9 m
Energy = [(3×10^8) * (6.626×10^-34)] / 8 x 10^-9
Energy = [19.878×10^(8-34)] / 8 x 10^-9
Energy = 2.48475 × 10^(-26+9)
Energy = 2.48×10^-17 J
This week's imide synthesis involves two reactions. In the first reaction (24A), a(n) ________ bond is formed between the two reactants. Hint: What type of functional group is formed
Answer:
C - N Bond formation.
Explanation:
Imide synthesis is a chemical reaction in organic chemistry which consists of two acyl groups which bond to nitrogen atom. The compound structure is related to acid anhydrides. Imides are monoacyl which are used as valuable intermediates in organic synthesis.
2KClO3 (s)⇄2KCl (s)+ 3O2 (aq) equilibrium constant
Answer: The equilibrium constant for the given chemical reaction is [tex][O_2]^3[/tex]
Explanation:
The equilibrium constant is defined as the ratio of the concentration of the products to the concentration of reactants each raised to the power of their stoichiometric coefficients.
The concentration of all the solids and liquids are considered to be 1 in the expression of equilibrium constant
For the given chemical equation:
[tex]2KClO_3(s)\rightleftharpoons 2KCl(s)+3O_2(aq)[/tex]
The expression of equilibrium constant follows:
[tex]K_{eq}=[O_2]^3[/tex]
Hence, the equilibrium constant for the given chemical reaction is [tex][O_2]^3[/tex]
I need help and don’t understand, where does each chemical reaction go?
Answer:For the 1st box it starts with 250 and for the 2nd box it starts with CO(2).
Explanation:
How many grams of potassium chloride will be needed to produce
829 grams of zinc chloride?
Answer:
[tex]2KCl + Zn {}^{2 + } → 2K {}^{ + } + ZnCl _{2} \\ molecular \: mass \: of \: zinc \: chloride = 65 + (35.5 \times 2) = 136 \: g \\ molecular \: mass \: of \: potassium \: chloride = 39 + 35.5 = 74.5 \: g
An elementary step is defined as a chemical collision in a reaction mechanism. A collection of different types of collisions makes up the reaction mechanism, so elementary steps provide a molecular view of the overall reaction.
a. True
b. False
Why is iodine always Used in a solution containing excess I2
Answer:
If a standard iodine solution is used as a titrant for an oxidizable analyte, the technique is iodimetry. If an excess of iodide is used to reduce a chemical species while simultaneously forming iodine.
Iodine always used in a solution excess KI is given to aid in the solubilization of free iodine, which would be insoluble in clean water during normal circumstances.
What is Iodine?
Iodine is a kind of element which are mainly used in iodometry titration. It can be represented by I.
What is solution?A solution would be a homogenous mixture of two components, usually a solute as well as a solvent.
Iodimetry would be a technique that uses a standard iodine solution as a titrant for such an oxidizable analyte. When an excessive amount of iodide is used to decrease a chemical while somehow producing iodine.
To know more about iodine and solution
https://brainly.com/question/16867213
#SPJ2
Air bags are activated when a severe impact causes a steel ball to compress a spring and electrically ignite a detonator cap. This causes sodium azide (NaN3) to decompose explosively according to the following reaction. 2 NaN3(s) --> 2 Na(s) 3 N2(g) What mass in grams of NaN3(s) must be reacted in order to inflate an air bag to 79.5 L at STP
Answer:
154 g
Explanation:
Step 1: Write the balanced decomposition equation
2 NaN₃(s) ⇒ 2 Na(s) + 3 N₂(g)
Step 2: Calculate the moles corresponding to 79.5 L of N₂ at STP
At STP, 1 mole of N₂ occupies 22.4 L.
79.5 L × 1 mol/22.4 L = 3.55 mol
Step 3: Calculate the number of moles of NaN₃ needed to form 3.55 moles of N₂
The molar ratio of NaN₃ to N₂ is 2:3. The moles of NaN₃ needed are 2/3 × 3.55 mol = 2.37 mol.
Step 4: Calculate the mass corresponding to 2.37 moles of NaN₃
The molar mass of NaN₃ is 65.01 g/mol.
2.37 mol × 65.01 g/mol = 154 g
A 15.0 mL urine from a dehydrated patient has a density of 1.019g/mL. What is the mass of the sample, reported in mg?
Answer:
Mass of sample in mg = 15,285 mg
Explanation:
Given:
Volume of urine sample = 15 ml
Density of sample = 1.019 g/ml
FInd:
Mass of sample in mg
Computation:
Mass = density x volume
Mass of sample in mg = Volume of urine sample x Density of sample
Mass of sample in mg = 1.019 x 15
Mass of sample in mg = 15.285 gram
Mass of sample in mg = 15.285 x 1,000
Mass of sample in mg = 15,285 mg
Which area has atmospheric conditions that produce the lowest boiling point for water? OA. an ocean beach ОВ. an underground mine OC. a mountain peak OD. the middle of the ocean
Answer:
C. a mountain peak
Explanation:
Boiling occurs when vapour pressure equals atmospheric pressure. The vapour pressure is the pressure used by the gas leaving the pot and those returning. For boiling to occur, the vapour pressure must pass the atmospheric pressure around. At sea level, the atmospheric pressure is very high. With altitude, the air becomes thinner and atmospheric pressure becomes lower. With increasing altitude, the low atmospheric pressure makes the boiling point lower as a result of the decreasing pressure on the vapour. The boiling point can then easily be reached at higher altitudes. Therefore, a mountain peak has atmospheric conditions that produce the lowest boiling point for water as it has a higher altitude.
The information code that an organism inherits can best be referred to as its -
O A genotype
B. territory
C. species
D. kingdom
Answer:
it will be no.A genotype
How many grams of Al2O3 is extracted from 250. g of FeO?
Answer:
[tex]m_{Al_2O_3}=118.27gAl_2O_3[/tex]
Explanation:
Hello there!
In this case, if we consider the following chemical reaction, whereby Al2O3 is produced from Al and FeO:
[tex]3FeO+2Al\rightarrow 3Fe+Al_2O_3[/tex]
Thus, since there is 3:1 mole ratio of FeO to Al2O3, it turns out feasible for us to use their molar masses, 71.844 g/mol and 101.96 g/mol respectively, to obtain the grams of the latter as follows:
[tex]m_{Al_2O_3}=250.gFeO*\frac{1molFeO}{71.844gFeO}*\frac{1molAl_2O_3}{3molFeO} *\frac{101.96gAl_2O_3}{1molAl_2O_3}\\\\m_{Al_2O_3}=118.27gAl_2O_3[/tex]
Regards!
What is the molar mass of Na2SO4?
O A. 142.04 g/mol
O B. 71.05 g/mol
O c. 238.22 g/mol
O D. 94.04 g/mol
Answer: A. 142.04 g/mol
Explanation:
Calculate the mass of hydrogen formed when 26.98 g of aluminum reacts with excess hydrochloric acid according to the following balanced chemical equation: 2 Al + 6 HCl → 2 AlCl3 + 3 H2
Answer: The mass of hydrogen formed when 26.98 g of aluminum reacts with excess hydrochloric acid according to the given balanced equation is 3.03 g.
Explanation:
The given balanced reaction equation is as follows.
[tex]2Al + 6HCl \rightarrow 2AlCl_{3} + 3H_{2}[/tex]
Here, the mole ration of Al and hydrogen produced is 2 : 3
As mass of aluminum is given as 26.98 g. So, moles of aluminum (molar mass = 26.98 g/mol) is as follows.
[tex]Moles = \frac{mass}{molar mass}\\= \frac{26.98 g}{26.98 g/mol}\\= 1 mol[/tex]
So, when 1 mole of Al reacted then 1.5 moles of hydrogen is produced as per the given mole ratio.
Therefore, mass of hydrogen formed is calculated as follows.
[tex]mass = moles \times molar mass\\= 1.5 mol \times 2.02 g/mol\\= 3.03 g[/tex]
Thus, we can conclude that the mass of hydrogen formed when 26.98 g of aluminum reacts with excess hydrochloric acid according to the given balanced equation is 3.03 g.
Calculate the amount of energy produced by the conversion of 50.0 kg of mass into energy. Use 3.00 x 108 m/s for the speed of light. Round to 3 significant digits.
Which setup will solve this problem?
Answer:
tanong mo sa teacher mo ok
Answer:
E = (50.0 kg)(3.00 x 108 m/s)2
Explanation:
write the formula two atom of iron and three atoms of oxygen
Answer:
Fe2O3 is the formula this is your correct answer
Which commercial technology commonly uses plasmas?
a radio
a race car
a television
a microwave oven
Answer:
A television is commercial technology commonly uses plasmas.A buffer solution contains 0.475 M nitrous acid and 0.302 M sodium nitrite . If 0.0224 moles of potassium hydroxide are added to 150 mL of this buffer, what is the pH of the resulting solution
Answer: The pH of the resulting solution will be 3.001
Explanation:
Molarity is calculated by using the equation:
[tex]\text{Molarity}=\frac{\text{Moles}}{\text{Volume}}[/tex] ......(1)
We are given:
Moles of NaOH = 0.0224 moles
Molarity of nitrous acid = 0.475 M
Molarity of sodium nitrite = 0.302 M
Volume of solution = 150 mL = 0.150 L (Conversion factor: 1 L = 1000 mL)
Putting values in equation 1, we get:
[tex]\text{Moles of nitrous acid}=(0.475mol/L\times 0.150L)=0.07125mol[/tex]
[tex]\text{Moles of sodium nitrite}=(0.302mol/L\times 0.150L)=0.0453mol[/tex]
The chemical equation for the reaction of nitrous acid and NaOH follows:
[tex]HNO_2+NaOH\rightleftharpoons NaNO_2+H_2O[/tex]
I: 0.07125 0.0224 0.0453
C: -0.0224 -0.0224 +0.0224
E: 0.04885 - 0.0677
The power of the acid dissociation constant is the negative logarithm of the acid dissociation constant. The equation used is:
[tex]pK_a=-\log K_a[/tex] ......(2)
We know:
[tex]K_a[/tex] for nitrous acid = [tex]7.2\times 10^{-4}[/tex]
Using equation 2:
[tex]pK_a=-\log (7.2\times 10^{-4})=3.143[/tex]
To calculate the pH of the acidic buffer, the equation for Henderson-Hasselbalch is used:
[tex]pH=pK_a+ \log \frac{\text{[conjugate base]}}{\text{[acid]}}[/tex] .......(3)
Given values:
[tex][NaNO_2]=\frac{0.0677}{0.150}[/tex]
[tex][HNO_2]=\frac{0.04885}{0.150}[/tex]
[tex]pK_a=3.143[/tex]
Putting values in equation 3. we get:
[tex]pH=3.143-\log \frac{(0.0677/0.150)}{(0.04885/0.150)}\\\\pH=3.143-0.142\\\\pH=3.001[/tex]
Hence, the pH of the resulting solution will be 3.001
A molecule of composition is replicated in a solution containing unlabeled (not radioactive) GTP, CTP, and TTP plus adenine nucleoside triphosphate with all its phosphorus atoms in the form of the radioactive isotope 32P. Will both daughter molecules be radioactive
Answer:
Please find the complete question in the attached file.
Explanation:
It would only be radioactive if the DNA molecule that employed the poly-T rand as templates. Its other molecule of the daughter would not have been radioactive as it did not need dATP for its replication. While each strand of the second molecule includes t, simultaneous reproduction dATP from both daughter molecules is needed so that each of those is radioactive.
How many moles of AICI3 are produced?
Answer:
please correct it, the question is incomplete
Which statement best describes the intermolecular forces between H2
molecules and NH3 molecules in the liquid phase?
A. Dipole-dipole forces are the strongest force between H2
molecules, and Van der Waals forces are the strongest force
between NH3 molecules.
B. Van der Waals forces are the strongest force between H2
molecules, and hydrogen bonding is the strongest force between
the NH3 molecules.
C. Hydrogen bonding is the strongest force between H, molecules
and between NH3 molecules.
D. Van der Waals forces are the strongest force between H2
molecules and between NH3 molecules.
Answer:
D. Van der Waals forces are the strongest force between H2
molecules and between NH3 molecules.
Explanation:
Van der Waal’s forces are the forces which arises due to disturbance in the electron density of the molecule.
These are usually found in non polar molecules. Hence N2 is said to exhibit this force.
Out of these Van der Waals is the weakest force.
A transition metal in the fourth period from the following list : Cu, O , Pr, Ag
Answer:
Cu
Explanation:
Groups 3 - 12 (or groups IIA - IIB) of the periodic table contain transition elements. Transaction elements start from period four (4) of the periodic table. The phrase alludes to the fact that the d sublevel is filling at a lower main energy level than the s sublevel that came before it.
The transition elements' arrangement is inverted from the fill order, with the 4 s filled prior to the actual 3 d begins. The transition elements are commonly referred to as transition metals since they are all metals. They are less reactive than the metals in Groups 1 and 2 and have normal metallic characteristics.
From the options given Cu is the only transition metal in the fourth period on the periodic table.
chemical properties of epoxide
Answer:
Epoxides, also called oxiranes, have a three-membered ring structure with one oxygen and two carbon atoms.
Epoxides can be formed from alkenes by reaction with peroxy acids (MCPBA for example).
Epoxides can be formed from halohydrin molecules by reaction with a base, which causes an intramolecular Williamson ether synthesis.
Explanation:
Epoxide, cyclic ether with a three-membered ring. The basic structure of an epoxide contains an oxygen atom attached to two adjacent carbon atoms of a hydrocarbon. The strain of the three-membered ring makes an epoxide much more reactive than a typical acyclic ether.
Answer:
sana makatulong stay safe po
The limiting reactant in a chemical reaction is the reactant __________ Select one: A. for which you have the lowest mass in grams. B. which has the lowest coefficient in the balanced equation. C. which has the lowest molar mass. D. which is left over after the reaction has gone to completion. E. None of the above.
Answer:
i think its A