The measurement of angle PCD in equilateral triangle is 67.38°.
Let $s$ be the side length of the square $abcd$, and let $O$ be the center of the square. Then $OP = s/\sqrt{2}$.
Since triangle $ABP$ is equilateral, we have $\angle ABP = 60^\circ$ and $AP=BP=s$. Let $E$ be the foot of the perpendicular from $P$ to $AB$. Then $AE=BE=s/2$ and $EP=s\sqrt{3}/2$.
Since $EP$ is perpendicular to $AB$ and $AB$ is parallel to $CD$, we have $\angle PCD = \angle ACE$.
Since $OP$ is perpendicular to $AB$, we have $\angle OEP = \angle AEP = 30^\circ$. Also, $OE=OP/\sqrt{2}=s/2$.
Using the Pythagorean theorem in triangle $OCE$, we have
CE= [tex]\sqrt{(OE)^{2} + (OC)^{2}} = \sqrt{(s/2)^{2} + s^{2}} = s\sqrt{5}/2[/tex]
Therefore, $\sin \angle ACE = CE/CP = \sqrt{5}/2$. Thus,
∠PCD = ∠ACE = arcsin(√5/2) ≈ 67.38°
To know more about equilateral triangle:
https://brainly.com/question/3461022
#SPJ4
The windows to a Tudor-style home create many types of quadrilaterals. Use the picture of the window below to answer the following questions.
Please help me I will give literally anything
a. Determine which type of quadrilaterals you see. Name these quadrilaterals using the labeled vertices.
b. What properties of quadrilaterals would you have to know to identify the parallelograms in the picture? Be specific as to each type of parallelogram by using the properties between sides, angles, or diagonals for each.
Answer:
I'd be happy to help!
a. From the picture of the window, we can identify the following quadrilaterals:
Rectangle: ABCD (all angles are right angles and opposite sides are parallel and congruent)
Parallelogram: EFGH (opposite sides are parallel and congruent)
Trapezoid: BCGH (at least one pair of opposite sides are parallel)
b. To identify the parallelograms in the picture, we would need to know the following properties of parallelograms:
Opposite sides are parallel and congruent
Opposite angles are congruent
Diagonals bisect each other
Using these properties, we can identify the following parallelograms in the picture:
Parallelogram EFGH: Opposite sides EF and GH are parallel and congruent, and opposite sides EG and FH are also parallel and congruent. Additionally, angles E and G are congruent, and angles F and H are congruent.
Rectangle ABCD: Opposite sides AB and CD are parallel and congruent, and opposite sides AD and BC are also parallel and congruent. Additionally, angles A and C are congruent, and angles B and D are congruent. The diagonals AC and BD bisect each other, meaning that they intersect at their midpoints.
Step-by-step explanation:
PLS HELP I WILL MARK BRAINILEST
Answer:
Let's assume the original price of the stock was x.
When the company announced it overestimated demand, the stock price fell by 40%.
So, the new price of the stock after the first decline was:
x - 0.4x = 0.6x
A few weeks later, when the seats were recalled, the stock price fell again by 60% from the new lower price of 0.6x.
So, the new price of the stock after the second decline was:
0.6x - 0.6(0.6x) = 0.24x
Given that the current stock price is $2.40, we can set up the equation:
0.24x = 2.40
Solving for x, we get:
x = 10
Therefore, the stock was originally selling for $10.
the position vector r describes the path of an object moving in the xy-plane. position vector point r(t)
a) Velocity vector v(t) = i - 2tj, Speed s(t) = sqrt(1 + 4t²), Acceleration vector a(t) = -2j. b) Velocity vector v(1) = i - 2j, Acceleration vector a(1) = -2j
This problem is about finding the velocity, speed, and acceleration vectors of an object moving in the xy-plane, described by a position vector r(t). We can find the velocity vector by taking the derivative of the position vector, and the speed by taking the magnitude of the velocity vector. The acceleration vector can be found by taking the derivative of the velocity vector. We can then evaluate the velocity and acceleration vectors at a given point by plugging in the coordinates of the point. This problem requires basic vector calculus and understanding of the relationship between position, velocity, speed, and acceleration vectors.
Learn more about graphs here: brainly.com/question/17267403
#SPJ4
Complete question is attached below
19. Hockey Game Two families go to a hockey game. One family purchases two adult tickets and four youth tickets for $28. Another family purchases four adult tickets and five youth tickets for $45.50. Let x represent the cost in dollars of one adult ticket and let y represent the cost in dollars of one youth ticket. a. Write a linear system that represents this situation. b. Solve the linear system to find the cost of one adult and one youth ticket. c. How much would it cost two adults and five youths to attend the game?
determine, without actually computing the z transform, the rocs for the z transform of the following signals:
The ROC of a given signal's Z-transform can be determined without actually computing the Z-transform by identifying the maximum and minimum magnitude of the signal and checking for any poles of the Z-transform within the resulting annular region.
Let's take a signal as an example, suppose x[n] = {1, -2, 3, -4, 5}. In order to determine the ROC of its Z-transform, we are firstly required to first look for any regions in the complex plane where the sum of the absolute values of the Z-transform is found finite. It can be done by looking for the maximum and minimum magnitude of x[n] and denote them as R1 and R2 respectively. Then, the ROC of the Z-transform will be the annular region between R1 and R2, excluding any poles of the Z-transform that lie within this annular region.
In this case, the maximum absolute value of x[n] is 5 and the minimum is found being 1. So, the ROC of the Z-transform will be the annular region between |z| = 1 and |z| = 5. We can denote this as 1 < |z| < 5. We also need to check if there are any poles of the Z-transform within this annular region. Since we haven't actually computed the Z-transform, we cannot determine the exact location of any poles.
However, we can check for any values of z that would make the Z-transform infinite. For example, if x[n] is a causal signal (i.e., x[n] = 0 for n < 0), then the ROC cannot include any values of z for which |z| < 1, since this would make the Z-transform infinite.
So, the ROC of the Z-transform for the given signal x[n] can be written as 1 < |z| < 5, assuming that x[n] is a causal signal.
Learn more about Z-Transform :
https://brainly.com/question/14979001
#SPJ4
The complete question is :
Can you explain how to determine the ROCs (regions of convergence) for the Z-transform of a given signal without actually computing the Z-transform? Please provide an example signal with random data and demonstrate how to find its ROCs using this method.
Could you please solve this one.
The proof that the lines CD and XY are parallel is shown below in paragraghs
How to prove the lines CD and XY are parallelGiven that
∠CAY ≅ ∠XBD
This means that the angles CAY and XBD are congruent angles
The above means that
The angles ∠AYX & ∠ACD correspond to the angle ∠CAYThe angle ∠BXY & ∠BDC corresponds to the angle ∠XBDBy the corresponding angles, we have
∠BXY = ∠AYX
∠ACD = ∠BDC
By the congruent angles above, the following lines are parallel
Line AC and BX
Line AY and BD
Line CD and XY
Hence, the lines CD and XY are parallel
Read more about proofs at
https://brainly.com/question/18286984
#SPJ1
5/9=
1/14=
12/13=
2/13=
9/11=
9/17=
To round each fraction
Answer:
Step-by-step explanation:
1. Rounded to 0.56
2. Rounded
main Street tea company blends black tea that sells for $3.45 a pound with Earl Gray tea that sells for $2.15 a pound to produce 80 lb of mixture that they sell for $2.75 a pound how much of each kind of tea does the mixture contain rounding to the nearest pound
36.92 lbs. of the $3.45 tea and 43.08 lbs. of the $2.15 tea are needed.
Let x and y be the amount of tea that sells fo 3.45 and 2.15 a pound respectively:
x+y=80....................eq 1
3.45x+2.15y=2.75(80)......eq 2
:
rewrite eq 1 to x=80-y and plug that value into eq 2
:
3.45(80-y) +2.15y=2.75(80)
:
276-3.45y+2.15y=220
:
-1.3y=56
:
y=43.07 pounds of $2.15 tea
:
28x=80-43.07=36.93 pounds of $3.45 tea
Let a= the pounds of the more expensive tea needed
Let b= the pounds of the less expensive tea needed
(1) a+%2B+b+=+80
(2) 345a+%2B+215b+=+80%2A275 (in cents)
--------------------------
In words, (2) says.
(lbs of 'a' tea x price/lb) + (lbs of 'b' tea x price/lb) =
(lbs of mixture x price/lb of mixture)
-------
Multiply both sides of (1) by 215 and then.
subtract from (2)
345a+%2B+215b+=+80%2A275
-215a+-+215b+=+-80%2A215
130a+=+80%2A60
130a+=+4800
a+=+36.92
and, from (1)
(1) a+%2B+b+=+80
36.92+%2B+b+=+80
b+=+80+-+36.92
b+=+43.08
36.92 lbs. of the $3.45 tea and 43.08 lbs. of the $2.15 tea are needed.
Learn more about value
https://brainly.com/question/30145972
#SPJ1
The mixture contains 34 pounds of black tea and 46 pounds of Earl Gray tea.
What is an algebraic expression?
An algebraic expression is a mathematical phrase that contains variables, constants, and mathematical operations.
Let's denote the amount of black tea in pounds by "x" and the amount of Earl Gray tea in pounds by "y".
Since the total amount of mixture is 80 lb, we have:
x + y = 80 ----(1)
We also know that the mixture sells for $2.75 a pound, so the total revenue from selling 80 lb of mixture is:
80 x $2.75 = $220
On the other hand, the cost of the mixture is the sum of the costs of the black tea and the Earl Gray tea, which is:
3.45x + 2.15y
Since the company wants to make a profit, the revenue must be greater than the cost, so we have:
3.45x + 2.15y < $220
We can simplify this inequality by dividing both sides by 0.1:
34.5x + 21.5y < 2200 ----(2)
Now we have two equations with two unknowns (equations (1) and (2)), which we can solve using substitution or elimination.
Substitution method:
From equation (1), we have:
y = 80 - x
Substituting this into equation (2), we get:
34.5x + 21.5(80 - x) < 2200
Simplifying and solving for x, we get:
x < 34.5
Rounding x to the nearest pound, we get x = 34.
Substituting this value into y = 80 - x, we get y = 46.
Therefore, the mixture contains 34 pounds of black tea and 46 pounds of Earl Gray tea.
To learn more about algebraic expression from given link
https://brainly.com/question/19245500
#SPJ1
I will mark you brainiest!
Determine the MOST PRECISE name for the quadrilateral below.
A) rhombus
B) parallelogram
C) square
D) trapezoid
E) kite
The answer is A, rhombus.
Consider the line that passes through the point and is parallel to the given vector. (4, -1, 9) ‹-1, 4, -2› symmetric equations for the line. -(x - 4) = y+1/ 4 = − z−9 /2 . (b) Find the points in which the line intersects the coordinate planes.
The symmetric equations of the line passing through a point and parallel to a vector are -(x - 4) = y + 1/4 = -(z - 9)/2. The line intersects the xy-, xz-, and yz-planes at (5, -9/4, 0), (15/4, 0, 23/2), and (0, -17/4, 11/2), respectively.
To find the symmetric equations of the line, we first need to find the direction vector of the line. Since the line is parallel to the vector <4, -1, 9>, any scalar multiple of this vector will be a direction vector of the line. So, let's choose the parameter t and write the vector equation of the line:
r = <4, -1, 9> + t<-1, 4, -2>
Expanding this vector equation component-wise, we get:
x = 4 - t
y = -1 + 4t
z = 9 - 2t
These equations can be rearranged to get the symmetric equations of the line:
-(x - 4) = y + 1/4 = -(z - 9)/2
To find the points in which the line intersects the coordinate planes, we substitute the corresponding variables with 0 in the equations for the line.
For the xy-plane, we set z = 0 and solve for x and y:
-(x - 4) = y + 1/4 = -(-9)/2
x = 5, y = -9/4
So, the line intersects the xy-plane at the point (5, -9/4, 0).
For the xz-plane, we set y = 0 and solve for x and z:
-(x - 4) = 0 + 1/4 = -(z - 9)/2
x = 15/4, z = 23/2
So, the line intersects the xz-plane at the point (15/4, 0, 23/2).
For the yz-plane, we set x = 0 and solve for y and z:
-(-4) = y + 1/4 = -(z - 9)/2
y = -17/4, z = 11/2
So, the line intersects the yz-plane at the point (0, -17/4, 11/2).
To know more about line intersection:
https://brainly.com/question/21445233
#SPJ4
In the diagram below, MN is parallel to JK. If MN=10,LK=7.2, JL=13.2, and LN=6.find the length of JK. Figures are not necessarily drawn to scale.
The length of JK is 18.333.
Since MN is parallel to JK, the angles formed by JLN and MLK are equal. Therefore, we can use the Triangle Proportionality Theorem, which states that if a line parallel to one side of a triangle divides the other two sides proportionally, then the triangles are similar.
Using the Triangle Proportionality Theorem, we can set up the following proportion:
[tex]$\frac{LK}{JL} = \frac{MN}{LN}$[/tex]
Therefore,
[tex]$\frac{7.2}{13.2} = \frac{10}{6}$[/tex]
We can cross-multiply to solve for JK:
[tex]$7.2 \cdot 6 = 13.2 \cdot 10$\\$43.2 = 132$\\$JK = \frac{132}{7.2} = 18.333$[/tex]
Therefore, the length of JK is 18.333.
Learn more about Triangle Proportionality Theorem here:
https://brainly.com/question/11807262
#SPJ1
Let X1, X2, ..., Xn denote n independent and identically distributed Bernoulli random vari- ables s.t. P(X; = 1) = p and P(Xi = 0) = 1 – p. for each i = 1, 2, ..., n. Show that __, Xi is sufficient for p by using the factorization criterion given in Theorem 9.4. THEOREM 9.4 Let U be a statistic based on the random sample Yı, Y2, ..., Yn. Then U is a sufficient statistic for the estimation of a parameter 0 if and only if the likelihood L(0) = L(y1, y2, ..., yn 10) can be factored into two nonnegative functions, L(y1, y2, ..., yn (0) = g(u,0) x h(yı, y2, ..., yn) where g(u,0) is a function only of u and 0 and h(y1, y2, ..., yn) is not a function of o.
The likelihood function can be factored using Theorem 9.4 as L(p) = L(X₁, X₂, ..., Xn | p) = g(Σⁿᵢ=1Xᵢ, p) * h(X₁, X₂, ..., Xn), where g(Σⁿᵢ=1Xᵢ, p) = p^Σⁿᵢ=1Xᵢ (1-p)^(n-Σⁿᵢ=1Xᵢ) and h(X₁, X₂, ..., Xn) = 1. This satisfies the factorization criterion, and thus, Σⁿᵢ=1Xᵢ is a sufficient statistic for p.
To show that Σⁿᵢ=1Xᵢ is sufficient for p, we need to show that the likelihood function can be factored using Theorem 9.4 as:
L(p) = L(X₁, X₂, ..., Xn | p) = g(Σⁿᵢ=1Xᵢ, p) * h(X₁, X₂, ..., Xn)
where g(Σⁿᵢ=1Xᵢ, p) is a function only of Σⁿᵢ=1Xᵢ and p, and h(X₁, X₂, ..., Xn) is not a function of p.
First, we can write the joint probability mass function of X₁, X₂, ..., Xn as:
P(X₁ = x₁, X₂ = x₂, ..., Xn = x_n) = p^Σⁿᵢ=1xᵢ (1-p)^Σⁿᵢ=1(1-xᵢ)
Taking the product of these probabilities for all i, we get:
L(p) = L(X₁, X₂, ..., Xn | p) = Πⁿᵢ=1P(Xᵢ = xᵢ) = p^Σⁿᵢ=1Xᵢ (1-p)^Σⁿᵢ=1(1-Xᵢ)
Using the factorization criterion given in Theorem 9.4, we need to find functions g(u, p) and h(X₁, X₂, ..., Xn) such that:
L(p) = L(X₁, X₂, ..., Xn | p) = g(Σⁿᵢ=1Xᵢ, p) * h(X₁, X₂, ..., Xn)
Let's take g(u, p) = pᵘ(1-p)⁽ⁿ⁻ᵘ⁾, which only depends on u and p. Then:
L(p) = L(X₁, X₂, ..., Xn | p) = g(Σⁿᵢ=1Xᵢ, p) * h(X₁, X₂, ..., Xn)
= p^Σⁿᵢ=1Xᵢ (1-p)^Σⁿᵢ=1(1-Xᵢ) * h(X₁, X₂, ..., Xn)
We can see that the term Σⁿᵢ=1Xᵢ appears in the exponent of p, and Σⁿᵢ=1(1-Xᵢ) appears in the exponent of (1-p). Therefore, we can write:
L(p) = L(X₁, X₂, ..., Xn | p) = [p^Σⁿᵢ=1Xᵢ (1-p)^Σⁿᵢ=1(1-Xᵢ)] * [1]
where the second factor is a constant function of p. This satisfies the factorization criterion, with g(u, p) = pᵘ(1-p⁽ⁿ⁻ᵘ⁾ and h(X₁, X₂, ..., Xn) = 1.
Therefore, we have shown that Σⁿᵢ=1Xᵢ is a sufficient statistic for p.
Learn more about probability here: brainly.com/question/30034780
#SPJ4
Complete question is in the image attached below
A teacher has a large yellow bulletin board in her classroom. She decides to use purple paper to frame a smaller rectangle inside the original board. The paper will create a border that is x inches wide. The teacher's bulletin board plan and dimensions are shown below.
Look at the picture then choose the answer from the options below:
Select the true statement about the expression.
A.
The factor (96 − 2x) represents the length, in inches, of the uncovered portion of the bulletin board.
B.
The term 4x2 represents the area, in square inches, of the entire bulletin board.
C.
The factor (48 − 2x) represents the height, in inches, of the bulletin board including the decorative border.
D.
The term -288x represents the area, in square inches, of the decorative border.
Option A: The factor (96 − 2x) represents the length, in inches, of the uncovered portion of the bulletin board.
How to obtain the area of a rectangle?To obtain the area of a rectangle, you need to multiply the dimensions of the rectangle, which are the length and the width.
Hence the formula for the area of the rectangle is given as follows:
Area = Length x Width.
The area of the uncovered region is given by the total area subtracted by the area of the covered region.
Then the dimensions for the uncovered region are given as follows:
96 - 2x.48 - 2x.The area of the covered region is given as follows:
4x².
The area of the entire region is given as follows:
4x² - 288x + 4608.
Hence the correct statement is given by option A.
More can be learned about the area of a rectangle at brainly.com/question/25292087
#SPJ1
Expand and simplify completely
[tex]x(x+(1+x)+2x)-3(x^2-x+2)[/tex]
Answer:
x² + 4x - 6
Step-by-step explanation:
x(x + (1 + x) + 2x) - 3(x² - x + 2) ← simplify parenthesis on left
= x(x + 1 + x + 2x) - 3(x² - x + 2)
= x(4x + 1) - 3(x² - x + 2) ← distribute parenthesis
= 4x² + x - 3x² + 3x- 6 ← collect like terms
= x² + 4x - 6
The pens in a box are repackaged equally into 9 packs. Each pack has more than 15 pens.
1. Find an inequality to represent n, the possible number of pens in the box.
2. Explain why you chose this inequality.
Therefore, the possible number of pens in the box is p, where p is greater than 135.
What is inequality?Inequality refers to a situation in which there is a difference or disparity between two or more things, usually in terms of value, opportunity, or outcome. Inequality can take many forms, including social, economic, and political inequality.
Inequalities are mathematical expressions that compare two values using the symbols < (less than), > (greater than), ≤ (less than or equal to), or ≥ (greater than or equal to). To solve an inequality, you need to isolate the variable (the unknown quantity) on one side of the inequality symbol and determine the range of values for which the inequality holds true.
Here are some general steps to solve an inequality:
Simplify both sides of the inequality as much as possible. This may involve combining like terms, distributing terms, or factoring.Get all the variable terms on one side of the inequality symbol and all the constant terms on the other side. Remember that when you multiply or divide both sides of an inequality by a negative number, you must reverse the direction of the inequality symbol.Solve for the variable by isolating it on one side of the inequality symbol. If the variable has a coefficient, divide both sides of the inequality by that coefficient.Write down the solution as an inequality. If you have solved for x, the solution will be in the form of x < a or x > b, where a and b are numbers.Check your solution by testing a value in the original inequality that is within the range of the solution. If the inequality holds true for that value, then the solution is correct. If not, then you may need to recheck your work or adjust your solutionby the question.
Let's say there are 'p' pens in the box. Each pack has more than 15 pens, so we can write the inequality:
p/9 > 15
Multiplying both sides by 9, we get:
p > 135
To learn more about inequality:
https://brainly.com/question/30231190
#SPJ1
given the following limit lim(x;y)!(0;0) infinty y infinity y , show that the function f (x; y) does not have a limit as (x; y) ! (0; 0).
The limit of f(x, y) as (x, y) approaches (0, 0) depends on the path taken, the limit does not exist, and we can conclude that the function f(x, y) do not have a limit as (x, y) → (0, 0).
To show that the function f(x, y) does not have a limit as (x, y) → (0, 0), we need to show that the limit does not exist, either because the limit is infinite or because the limit does not exist.
We are given that the limit of f(x, y) as (x, y) → (0, 0) when y → infinity is infinity. This means that as y approaches infinity, the function f(x, y) becomes arbitrarily large, regardless of the value of x. However, this does not imply that the limit of f(x, y) exists as (x, y) → (0, 0).
To see why, consider the sequence of points (x_n, y_n) = (1/n, n) as n approaches infinity. As y_n → infinity, we have
lim (x_n, y_n) → (0, 0) f(x_n, y_n) = infinity.
However, if we consider the sequence of points (x_n, y_n') = (1/n, n^2) instead, as n approaches infinity, we have
lim (x_n, y_n') → (0, 0) f(x_n, y_n') = 0.
To know more about arbitrarily here
https://brainly.com/question/19091235
#SPJ4
in one of his experiments conducted with animals, thorndike found that cats learned to escape from a puzzle box:
In one of his experiments conducted with animals, Thorndike found that cats learned to escape from a puzzle box is increased gradually
To quantify the learning process, Thorndike used a mathematical formula known as the Law of Effect equation. The equation is:
B = f(log S1/S2)
where B represents the strength of the behavior, S1 represents the satisfaction of the positive consequence, and S2 represents the degree of frustration or negative consequence.
In the context of Thorndike's puzzle box experiment, the Law of Effect equation can be used to describe how the cat's behavior changed over time as it learned to escape the puzzle box more quickly and efficiently. Initially, the cat's behavior was weak because it did not know which actions would lead to a positive outcome.
To know more about puzzle box here
https://brainly.com/question/30470834
#SPJ4
Match the definition:HistogramBinDescriptive StaticsMeanMedianModeStandard deviationA. The scatter around a central pointB. is a measure of a data’s variabilityC. is a graph of the frequency distribution of a set of dataD. values calculated from a data set and used to describe some basic characteristics of the data setE. a group in a histogramF. the middle value of a sorted set of dataG. is the most commonly occurring value in a data set
The matches of Histogram, Bin, Descriptive Statistics, Mean, Median and Standard Deviation are C, E, D, A, F, G and B respectively.
The Match the definition are given.
Histogram - C). is a graph of the frequency distribution of a set of data
Bin - E). a group in a histogram
Descriptive Statistics - D). values calculated from a data set and used to describe some basic characteristics of the data set
Mean - A). The scatter around a central point
Median - F). the middle value of a sorted set of data
Mode - G). is the most commonly occurring value in a data set
Standard Deviation - B). is a measure of a data’s variability
To know more about Histogram:
https://brainly.com/question/30354484
#SPJ4
Let the Universal Set, S, have 158 elements. A and B are subsets of S. Set A contains 67 elements and Set B contains 65 elements. If Sets A and B have 9 elements in common, how many elements are in neither A nor B?
There are 92 elements in A but not in B.
What are sets?In mathematics, a set is a well-defined collection of objects or elements. Sets are denoted by uppercase symbols, and the number of elements in a finite set is denoted as the cardinality of the set enclosed in curly braces {…}.
Empty or zero quantity:
Items not included. example:
A = {} is a null set.
Finite sets:
The number is limited. example:
A = {1,2,3,4}
Infinite set:
There are myriad elements. example:
A = {x:
x is the set of all integers}
Same sentence:
Two sets with the same members. example:
A = {1,2,5} and B = {2,5,1}:
Set A = Set B
Subset:
A set 'A' is said to be a subset of B if every element of A is also an element of B. example:
If A={1,2} and B={1,2,3,4} then A ⊆ B
Universal set:
A set that consists of all the elements of other sets that exist in the Venn diagram. example:
A={1,2}, B={2,3}, where the universal set is U = {1,2,3}
n(A ∪ B) = n(A – B) + n(A ∩ B) + n(B – A)
Hence, There are 92 elements in A but not in B.
learn more about sets click here:
https://brainly.com/question/13458417
#SPJ1
Mia has a collection of vintage action figures that is worth $190. If the collection appreciates at a rate of 6% per year, which equation represents the value of the collection after 5 years?
The equation that represents the value of the collection after 5 years is:
Value of collection after 5 years = 190 x (1 + 0.06)^5
Explanation:
To calculate the value of the collection after 5 years, we need to use the compound interest formula. This formula is represented as A = P x (1 + r)^n, where P is the principal amount (initial value of the collection), r is the rate of interest (in this case, 6%), and n is the number of years (in this case, 5).
Therefore, the equation for the value of the collection after 5 years is:
Value of collection after 5 years = 190 x (1 + 0.06)^5
This can also be written as:
Value of collection after 5 years = 190 x 1.31 (1.31 is the result of (1 + 0.06)^5)
Therefore, the value of the collection after 5 years is $246.90.
Answer: 254.26
Step-by-step explanation:
Help me find the value of x
Answer:
x = 30
Step-by-step explanation:
We know
The three angles must add up to 180°. We know one is 20°, so the other two must add up to 160°.
2x + 3x + 10 = 160
5x + 10 = 160
5x = 150
x = 30
what is 8 x 1 ????????????
Answer:8
Step-by-step explanation:8x1=8
Marcos had $60 in his savings account in January. He continued to add money to his account and by June, the value of the savings account had increased by 50%. How much money is in Marcos's account in June?
Answer: 90$
Step-by-step explanation: 50% of 60 is 30 so 60+30=90
Use the power of a power property to simplify the numeric expression.
(91/4)^7/2
Using the power property to simplify the expression (9¹⁺⁴)⁷⁺², we have 9^7/8
Given the expression
(9¹⁺⁴)⁷⁺²
To simplify this expression using the power of a power property, we need to multiply the exponents:
(9¹⁺⁴)⁷⁺² = 9(¹⁺⁴ ˣ ⁷⁺²)
Simplifying the exponents in the parentheses:
(9¹⁺⁴)⁷⁺² = 9⁷⁺⁸ or 9^7/8
Therefore, (9¹⁺⁴)⁷⁺² simplifies to 9^(7/8).
Read more about expression at
https://brainly.com/question/4344214
#SPJ1
The circle graph below represents the favorite fruit of 300 people How many prefer oranges? b. How many prefer pineapples? c. How many prefer blueberries? d. How many prefer apples? e. How many prefer strawberries?
Hey!
A: 50% Of people = 150 people prefer oranges.
B: 10% Of people = 15 people prefer pineapple.
C: 15% Of people = 20 people prefer blueberries.
D: 5% Of people = 5 people prefer apples.
E: 20% Of people = 22 people prefer strawberries
What is the limit of (n!)^(1/n) as n approaches infinity?
Note: n! means n factorial, which is the product of all positive integers up to n.
Answer:
Step-by-step explanation:
To find the limit of (n!)^(1/n) as n approaches infinity, we can use the Stirling's approximation for n!, which is:
n! ≈ (n/e)^n √(2πn)
where e is the mathematical constant e ≈ 2.71828, and π is the mathematical constant pi ≈ 3.14159.
Using this approximation, we can rewrite (n!)^(1/n) as:
(n!)^(1/n) = [(n/e)^n √(2πn)]^(1/n) = (n/e)^(n/n) [√(2πn)]^(1/n)
Taking the limit as n approaches infinity, we have:
lim (n!)^(1/n) = lim (n/e)^(n/n) [√(2πn)]^(1/n)
Using the fact that lim a^(1/n) = 1 as n approaches infinity for any constant a > 0, we can simplify the second term as:
lim [√(2πn)]^(1/n) = 1
For the first term, we can rewrite (n/e)^(n/n) as [1/(e^(1/n))]^n and use the fact that lim a^n = 1 as n approaches infinity for any constant 0 < a < 1. Thus, we have:
lim (n/e)^(n/n) = lim [1/(e^(1/n))]^n = 1
Therefore, combining the two terms, we have:
lim (n!)^(1/n) = lim (n/e)^(n/n) [√(2πn)]^(1/n) = 1 x 1 = 1
Hence, the limit of (n!)^(1/n) as n approaches infinity is 1.
Answer:1
Step-by-step explanation:
Type the correct answer in each box. Assume π = 3.14. Round your answer(s) to the nearest tenth. 90° 30° In this circle, the area of sector COD is 50.24 square units. The radius of the circle is units, and m AB is units.
Therefore, the length of segment AB is approximately 7.4 units.
What is area?Area is a mathematical concept that describes the size of a two-dimensional surface. It is a measure of the amount of space inside a closed shape, such as a rectangle, circle, or triangle, and is typically expressed in square units, such as square feet or square meters. The area of a shape is calculated by multiplying the length of one side or dimension by the length of another side or dimension. For example, the area of a rectangle can be found by multiplying its length by its width.
Here,
To find the radius of the circle, we can use the formula for the area of a sector:
Area of sector = (θ/360) x π x r²
where θ is the central angle of the sector in degrees, r is the radius of the circle, and π is approximately 3.14.
We're given that the area of sector COD is 50.24 square units and the central angle of the sector is 90°. So we can plug in these values and solve for r:
50.24 = (90/360) x 3.14 x r²
50.24 = 0.25 x 3.14 x r²
r² = 50.24 / (0.25 x 3.14)
r² = 201.28
r = √201.28
r ≈ 14.2
Therefore, the radius of the circle is approximately 14.2 units.
Next, we need to find the length of segment AB. Since AB is a chord of the circle, we can use the formula:
AB = 2 x r x sin(θ/2)
where θ is the central angle of the sector in degrees, r is the radius of the circle, and sin() is the sine function.
We're given that the central angle of sector COD is 30°. So we can plug in this value and the radius we found earlier to solve for AB:
AB = 2 x 14.2 x sin(30/2)
AB = 2 x 14.2 x sin(15)
AB ≈ 7.4
To know more about area,
https://brainly.com/question/22469440
#SPJ1
exercise 2.4.3 in each case, solve the systems of equations by finding the inverse of the coefficient matrix.
The inverse of the coefficient matrix is A^-1 = [-2 2]. The solution to the system of equations is x = -1 and y = 1/5.
To solve the system of equations:
2x + 2y = 1
2x - 3y = 0
We can write this system in matrix form as:
[2 2] [x] [1]
[2 -3] [y] = [0]
The coefficient matrix is:
[2 2]
[2 -3]
To find the inverse of the coefficient matrix, we can use the following formula:
A^-1 = (1/|A|) adj(A)
where |A| is the determinant of A and adj(A) is the adjugate of A.
The determinant of the coefficient matrix is:
|A| = (2)(-3) - (2)(2) = -10
The adjugate of the coefficient matrix is:
adj(A) = [-3 2]
[-2 2]
Therefore, the inverse of the coefficient matrix is:
A^-1 = (1/-10) [-3 2]
[-2 2]
Multiplying both sides of the matrix equation by A^-1, we get:
[x] 1 [-3 2] [1]
[y] = -10 [-2 2] [0]
Simplifying the right-hand side, we get:
[x] [-1]
[y] = [1/5]
Therefore, the solution to the system of equations is:
x = -1
y = 1/5
To know more about inverse of matrix:
https://brainly.com/question/4017205
#SPJ4
_____The given question is incomplete, the complete question is given below:
solve the systems of equations by finding the inverse of the coefficient matrix. a. 2x+2y=1 2x-3y-0
An 8 foot long ladder is leaning against a wall. The top of the ladder is sliding down the wall at the rate of 2 feet per second. How fast is the bottom of the ladder moving along the ground at the point in time when the bottom of the ladder is 4 feet from the wall.
"The rate at which the bottom of the ladder moving along the ground at the point in time when the bottom of the ladder is 4 feet from the wall is calculated to be 3.464 ft/s."
At a pace of 2 feet per second, the lower end of the ladder is being pulled away from the wall.
At a specific moment, when the lower end of the ladder is 4 feet from the wall, we should determine the rate at which the bottom of the ladder is lowering.
From the point t, the bottom of the ladder is x m, the top of the ladder is y m from the wall.
x² + y² = 64
Differentiating the given relationship with regard to t,
2x dx/dt + 2y dy/dt = 0
x dx/dt + y dy/dt = 0
We need to find out dx/dt at x = 4.
dy/dt = -2
At x = 4, we have,
x² + y² = 64
16 + y² = 64
y² = 48
y = 4√3
Put in the known values to find out dx/dt,
x dx/dt + y dy/dt = 0
4 dx/dt + 4√3 (-2) = 0
4 dx/dt = 8√3
dx/dt = 2√3 = 3.464
Thus, the bottom of the ladder is calculated to be moving at the rate 3.464 ft/s.
The figure can be drawn as shown in the attachment.
To know more about speed:
https://brainly.com/question/13548149
#SPJ4
Subtract 1/9 - 1/14 and give answer as improper fraction if necessary.
Answer:
To subtract 1/9 - 1/14, we need to find a common denominator. The smallest number that both 9 and 14 divide into is 126.
So, we will convert both fractions to have a denominator of 126:
1/9 = 14/126
1/14 = 9/126
Now we can subtract them:
1/9 - 1/14 = 14/126 - 9/126
Simplifying the right-hand side by subtracting the numerators, we get:
5/126
Therefore, 1/9 - 1/14 = 5/126 as an improper fraction.
Answer:
1/9-1/14
=14-9/9*14
=5/126
= 25 1/5