Simon will pay £18 in VAT for using 3000 units of electricity in one year.
The VAT rate for gas and electric is 5%.
Therefore, Simon will pay VAT on his electricity usage.
Let's calculate Simon's annual electricity cost without VAT:
Cost per unit of electricity = 12p
= £0.12
Number of units used in one year = 3000
Electricity cost without VAT = Cost per unit × Number of units
= £0.12 × 3000
= £360
Now, let's calculate the VAT amount:
VAT rate = 5% = 0.05
VAT amount = Electricity cost without VAT × VAT rate
= £360 × 0.05
= £18
Therefore, Simon will pay £18 in VAT for using 3000 units of electricity in one year.
To learn more on VAT amount click:
https://brainly.com/question/31403944
#SPJ4
Craig and Cindy working together can mow the lawn in four hours working alone Cindy takes twice as long as Craig how long does it take Craig to mow the lawn alone
Answer:
12 hours
Step-by-step explanation:
1 : (1/4 : (2 + 1)) = 12
plot the points (0, -2) (4, 1)
I will give brainly.
How do you determine if a slope is positive or negative?
You have to find the slope .
How?
Take 2points
(x1,y1)(x2,y2)Slope formula[tex]\\ \rm\Rrightarrow \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Step-by-step explanation:
What the Slope Means A positive slope means that two variables are positively related—that is, when x increases, so does y, and when x decreases, y also decreases. Graphically, a positive slope means that as a line on the line graph moves from left to right, the line rises.
A store is having a sale on chocolate chips and walnuts. For 8 pounds of chocolate chips and 3 pounds of walnuts, the total cost is $34. For 2 pounds of chocolate chips and 5 pounds of walnuts, the total cost is $17. Find the cost for each pound of chocolate chips and each pound of walnuts.
Answer:
chocolate chips are $2.00 per pound.
nd walnuts must be $3.50 per pound.
Step-by-step explanation:
Let x be the price of walnuts and y the price of chocolate chips.
2x + 5y = 17 (i)
8x + 3y = 34 (ii)
Multiply (i) by 4 to get
8x + 20y = 68
Subtract (ii) to get
17y = 34
Dividing by 17, we see that chocolate chips are $2.00 per pound.
Substituting y=2 in (i) or (ii), walnuts must be $3.50 per pound.
What is the diameter of a hemisphere with a volume of
62617
cm
3
,
62617 cm
Answer:
Step-by-step explanation:
Hemisphere Volume = (2/3) * PI * radius^3
sphere radius^3 = Hemisphere Volume / ((2/3) PI)
sphere radius^3 = 62,617 / 2.0943951024
sphere radius^3 = 29,897.4152147556
sphere radius = 31.0368674154
sphere diameter = 62.1 cm (rounded to nearest tenth of a centimeters)
Answer:
62.1
Step-by-step explanation:
→ Set up an equation
[tex]\frac{2}{3}[/tex] × π × r³ = 62617
→ Divide both sides by π
[tex]\frac{2}{3}[/tex] × r³ = 19931.61014
→ Divide both sides by [tex]\frac{2}{3}[/tex]
r³ = 29897.41521
→ Cube root both sides
r = 31.03686742
→ Double the answer to find the diameter
31.03686742 × 2 = 62.1
Convert 653 in base 7 to base 10
A right cylinder has a radius of 3 and a height of 12. What is its surface area?
O A. 9077 units2
B. 72 units2
O C. 10877 units
D. 457 units2
Answer:
Option A, [tex]90\pi[/tex] [tex]units^{2}[/tex], is correct.
Step-by-step explanation:
The formula for the surface area of a cylinder is as follows:
A= [tex]2\pi rh+2\pi r^{2}[/tex]
We know that the radius, r, is 3, and the height, h, is 12.
r=3
h=12
Pi will be rounded to 3.14.
Thus, applying the known values to the formula:
A=[tex]2(3.14)(3)(12)+2(3.14)(3)^{2}[/tex]
A=226.08+56.52
A=282.6 [tex]units^{2}[/tex]
In accord with the given options, we must determine which one has a product of around 282.6:
A. [tex]90\pi =282.7433388[/tex]
B.[tex]72\pi =226.1946711[/tex]
C.[tex]108\pi =339.2920066[/tex]
D.[tex]45\pi =141.3716694[/tex]
Therefore, option A, [tex]90\pi units^{2}[/tex], is correct.
I operate a small convenience store. Typically, I get about 10 customers per hour. If the mean time before I get my 25th customer is 2.5 hours, what is the standard deviation associated with the time until I see my 25th customer
Answer:
The standard deviation associated with the time until I see my 25th customer is of 2.5 hours.
Step-by-step explanation:
In this problem, we have the mean time between x successes, which characterizes the exponential distribution.
As in this question context, the important thing to note is that for the exponential distribution, the mean and the standard deviation are the same.
Mean time before I get my 25th customer is 2.5 hours, what is the standard deviation associated with the time until I see my 25th customer?
They are the same in the exponential distribution, so 2.5 hours.
PLZZZ HELP
This is due in 15 mins
I need 5
But I already have 4
So one more
Answer:
The hottest month for the northern hemisphere is August.
The hottest month for the southern hemisphere is January and February (these top two might be the opposite)
It's globally warmer during the months of June July and August
During april and november, the southern hemisphere and northern hemisphere are the same, or very close.
During July and August the southern and northern hemispheres have the largest difference in temperature
Lavania is studying the growth of a population of fruit flies in her laboratory. After 6 days she had nine more than five times as many fruit flies as when she began the study. If she observes 20 fruit flies on the first day of the study, write and evaluate an expression to find the population of fruit flies Lavania observed after 6 days
a. write an expression for the population of fruit flies Lavania observed after 6 days
b. find the population of fruit flies Lavania observed after 6 days
Answer:
A. 20•5+9
B.109 flies
Help me please I don’t know what to do
A solution to a system
Is the point two lines cross each other.
3. The lines cross at y = 0 and x = 2, so the solution is x = 2
4. The lines do not cross so there are no solutions.
5. It looks like there is one line which means the two lines are identical so there are infinite solutions
Answer:
Step-by-step explanation:
3) y = x - 2
y = -x +2
Both lines are intersecting at (2 , 0).So, (2, 0) is the solution of the equations.
(2,0)
4) Both lines are parallel to each other and they will never intersect. So, it has no solution.
5) Both lines are coincide. So all points in the line are solutions of the equations.
Infinity solutions
A sailor on a trans-Pacific solo voyage notices one day that if he puts 625.mL of fresh water into a plastic cup weighing 25.0g, the cup floats in the seawater around his boat with the fresh water inside the cup at exactly the same level as the seawater outside the cup (see sketch at right).
Calculate the amount of salt dissolved in each liter of seawater. Be sure your answer has a unit symbol, if needed, and round it to 2 significant digits.
You'll need to know that the density of fresh water at the temperature of the sea around the sailor is 0.999/gcm3. You'll also want to remember Archimedes' Principle, that objects float when they displace a mass of water equal to their own mass.
Answer:
can you say again please
For the rhombus below, find the measures of ∠1, ∠2, ∠3, and ∠4.
Answer:
∠1 = 116 ° , ∠2 = 32° , ∠3 = 116 ° and ∠4 = 32°
Step-by-step explanation:
∠2 = 32° (The diagonals of a rhombus bisect pairs of opposite angles)
Opposite sides of a rhombus are parallel ,so
∠2 = ∠4 (Alternate interior angles )
∠4 = 32°
32° + ∠4 + ∠3 = 180° (angle sum property of a triangle)
64° + ∠3 = 180°
∠3 = 180 - 64
∠3 = 116°
∠3 =∠1 (in a rhombus opposite angles are equal )
∠1 = 116°
consider the differential equation x3y ''' + 8x2y '' + 9xy ' − 9y = 0; x, x−3, x−3 ln(x), (0, [infinity]). Verify that the given functions form a fundamental set of solutions of the differential equation on the indicated interval. The functions satisfy the differential equation and are linearly independent since W(x, x−3, x−3 ln(x)) = ≠ 0 for 0 < x < [infinity].
Verifying that a given expression is a solution to the equation is just a matter of plugging in the expression and its derivatives, and making sure that the given expressions are indeed linearly independent.
For example, if y = x, then y' = 1 and the other derivatives vanish. So the DE after substitution reduces to
9x - 9x = 0
which is true for all 0 < x < ∞.
To check for linear independence, you compute the Wronskian, which, judging by what you wrote, you've already done...
The degree of the polynomial function f(x) is 4. The roots of the equation f(x) =0 are -2,-1,1 and 3. Which graph could be the graph of f(x)?
Answer:
top right
Step-by-step explanation:
roots of an equation = x-intercepts
Answer:
top right is the answer from my calculatins
Find the gradient of the straight line joining the two points. (1,7) and (-1,-7)
Points: (-1,-7), (1,7)
Formula (y=mx+b):
y = 7x
Slope m: 7
Y-intercept b: 0
Parallel lines: 7x + any number
Must click thanks and mark brainliest
Drag each tile to the correct box.
Match each expression with its greatest common factor.
Answer:
Step-by-step explanation:
Write a situation that can be represented by 2x + 6 > 20.
Hm, interesting inequality.
If you know that it slightly simplifies to [tex]2x\gt14[/tex] then you could go about representing something in real life,
Buying shoes is always done in pairs, if u buy two pairs of shoes you bought 4 shoes. You can only ever buy an even number of shoes which is represented by [tex]2x[/tex].
So you are asking yourself how many pairs you had to buy in order to have more than 14 shoes. The answer is of course, 7 pairs means exactly 14 shoes but since you need more the answer is 8 pairs. Represented by,
[tex]x\gt7=\{8,9,10,\dots,\aleph_0\}[/tex]
assuming [tex]x\in\mathbb{N}[/tex], which is appropriate since you cannot buy negative shoe or [tex]0.43819[/tex] of a shoe pair.
However, if you cannot change the inequality at all, you can use the above paragraph but simply add, you have 3 pairs (6 shoes) of shoes that are indispensable and you want to know the minimum number of shoe pairs you need to buy so that you always have more than 20 shoes.
Notes
[tex]\aleph_0[/tex] is the number of natural numbers [tex]\mathbb{N}[/tex] there are.
[tex]\{\dots\}[/tex] is explicit set notation, ie. which values concretely satisfy the inequality.
Hope this helps :)
Answer:
= 2x > 20-6
= 2x > 14
= x > 7... then the answer includes the numbers greater than seven
Which graph is a function?
Answer:
B
Step-by-step explanation:
A function is a relation in which each input, x, has only one output, y.
There are two ways to determine if a relation is a function:
1. If each x-input has only one, unique y-output, then it's a function. If some x-inputs share the same y-outputs, it's not a function.
2. Vertical Line Test on Graphs:
To determine whether y is a function of x, when given a graph of relation, use the following criterion: if every vertical line you can draw goes though only 1 point, the relation can be a function. If you can draw a vertical line that goes though more than 1 point, the relation cannot be a function.
Since we're given a graph relation, let's test both of the answers out.
If I were to draw a vertical line in a specific place on the first graph, I'd be hitting more than one point in the coordinate plane.
If I were to draw a vertical line in a specific place on the second graph, I'd only be hitting one point in the coordinate plane.
Therefore, choice B is a function.
Will mark brainliest
Plz solve on a paper or draw on the picture thx in advance
9514 1404 393
Answer:
the red angle has no specific value
Step-by-step explanation:
There is sufficient information here to specify all of the angles except the two unknown angles in the 70° (dark blue) triangle. Those two angles must total 110°, but that measure cannot be allocated between them based on the information in the diagram.
The attachments show that all of the given angle constraints can be met while the red angle may vary considerably. It can range through the interval (0°, 110°), but cannot be either of those end values.
>
01
4
3
2
1
F
.
1
om
-3 -3 -2 -1
1
2
الم
T
X
w
Tu
TI
| חם
find the equation of Straight line which passes through the point A(-5,10) makes equal intercept on both axes.
Answer:
y = -x + 5
Step-by-step explanation:
The point is in quadrant 2, so the line must pass through points that look like (a, 0) and (0, a) where a is a positive number. The slope of such a line is -1.
If (x, y) is a point on the line, then the slope between points (x, y) and (-5, 10) is 1, and you can write
[tex]\frac{y-10}{x-(-5)}=-1\\y-10 = -1(x+5)\\y-10=-x-5\\y=-x+5[/tex]
there are 3 blouse and 2 pieces cloths for sale in the market. how many possible sets are there?
Answer:
Each item could be included in a set or not included. That gives 2^5 = 32 ways to choose sets, including 1 set with no items, 5 sets of 1 item, 10 sets of 2 items, 10 sets of 3 items, 5 sets of 4 items, and 1 set of 5 items.
Convert degrees to radians
Answer:
it's answer is
[tex] \frac{25}{18} [/tex]
a store sells pencils pens and markers that sells two times as many markers as pencils and three times as many pens as pencils is the store sells a total of 1950 pencils and pens and markers in a week how many of each were sold
Answer:
Pencils = 325 ; Pens = 975 ; Markers = 650
Step-by-step explanation:
Let :
Number of Pencils = x
Number of pens = y
Number of markers = z
2 times as many markers as pencils
z = 2x
3 times as many pens as pencils
y = 3x
x + y + z = 1950
Write z and y in terms of x in the equation :
x + 3x + 2x = 1950
6x = 1950
Divide both sides by 6
6x / 6 = 1950 / 6
x = 325
Number of pencils = 325
Pens = 3 * 325 = 975
Markers = 2 * 325 = 650
Pencils = 325 ; Pens = 975 ; Markers = 650
If a over 2 equals b over 3 then b over a equals what?
Let f(x) = e ^3x/5x − 2. Find f'(0).
Answer:
Step-by-step explanation:
Our friend asking what the actual function is has a point. I completed this under the assumption that what we have is:
[tex]f(x)=\frac{e^{3x}}{5x-2}[/tex] and used the quotient rule to find the derivative, as follows:
[tex]f'(x)=\frac{e^{3x}(5)-[(5x-2)(3e^{3x})]}{(5x-2)^2}[/tex] and simplifying a bit:
[tex]f'(x)=\frac{5e^{3x}-[15xe^{3x}-6e^{3x}]}{(5x-2)^2}[/tex]and a bit more to:
[tex]f'(x)=\frac{5e^{3x}-15xe^{3x}+6e^{3x}}{(5x-2)^2}[/tex] and combining like terms:
[tex]f'(x)=\frac{11e^{3x}-15xe^{3x}}{(5x-2)^2}[/tex] and factor out the GFC in the numerator to get:
[tex]f'(x)=\frac{e^{3x}(11-15x)}{(5x-2)^2}[/tex] That's the derivative simplified. If we want f'(0), we sub in 0's for the x's in there and get the value of the derivative at x = 0:
[tex]f'(0)=\frac{e^0(11-15(0))}{(5(0)-2)^2}[/tex] which simplifies to
[tex]f'(0)=\frac{11}{4}[/tex] which translates to
The slope of the function is 11/4 at the point (0, -1/2)
find the side of a cube whose surface area is 150² m
Answer:
6 m
Step-by-step explanation:
[tex]surface \: \: area = 4 {s}^{2} [/tex]
s is side
[tex]150 = 4 {s}^{2} \\ {s}^{2} = 37.5 \\ s = 6.1 \: m[/tex]
If ABCD is a rectangle, and m_ADB = 55°, what is the value of x? A. 80 O B. 90 O C. 40 O D. 70 O E. 110
===========================================================
Explanation:
Label a new point E at the intersection of the diagonals. The goal is to find angle CEB. Notice how angle AED and angle CEB are vertical angles, so angle AED is also x.
Recall that any rectangle has each diagonal that is the same length, and each diagonal cuts each other in half (aka bisect). This must mean segments DE and AE are the same length, and furthermore, triangle AED is isosceles.
Triangle AED being isosceles then tells us that the base angles ADE and DAE are the same measure (both being 55 in this case).
---------------------
To briefly summarize so far, we have these interior angles of triangle ADE
A = 55D = 55E = xFor any triangle, the three angles always add to 180, so,
A+D+E = 180
55+55+x = 180
110+x = 180
x = 180-110
x = 70
Find x
Please help ASAP!!!!
Answer:
The answer for x = 30
Step-by-step explanation:
because as you see we got a 60 and you see that lil squares in the corners that squares represent 90 degrees now subtract 60-90 is 30 or you can do it other way just get a paper and graph it
9514 1404 393
Answer:
x = (3/2)√2
Step-by-step explanation:
The ratio of side lengths of the isosceles right triangle is ...
1 : 1 : √2
That means the short side of that triangle will be 6/√2 = 3√2.
__
The lengths of the sides of a 30°-60°-90° triangle have the ratios ...
1 : √3 : 2
The long side is the short side of the isosceles right triangle, 3√2, and the short side of the 60° triangle is half that.
x = (3/2)√2