Predict the reactants of this chemical reaction. That is, fill in the left side of the chemical equation. Be sure the equation you submit is balanced. (You can edit both sides of the equation to balance it, if you need to.)

______________ → BaBr2 + H2O

Answers

Answer 1

Answer:

Ba(OH)₂ + 2 HBr ⇒ BaBr₂ + 2 H₂O

Explanation:

We have the products of a reaction and we have to predict the reactants. Since the products are binary salt and water, this must be a neutralization reaction. In neutralizations, acids react with bases. The acid that gives place to Br⁻ is HBr, while the base the gives place to Ba²⁺ is Ba(OH)₂. The balanced chemical equation is:

Ba(OH)₂ + 2 HBr ⇒ BaBr₂ + 2 H₂O


Related Questions

Calculate the number of iron atoms contained in 434.52 g of iron: Question 7 options: 2.620 x 10 26 Fe atoms 5.769 x 10 24 Fe atoms 4.685 x 10 24 Fe atoms 3.223 x 10 25 Fe atoms 1.169 x 10 23 Fe atoms

Answers

Answer:

[tex]\boxed {\boxed {\sf 4.685 \times 10^{24} \ Fe \ atoms}}[/tex]

Explanation:

We are asked to convert grams of iron to atoms of iron.

1. Convert Grams to Moles

First, we convert grams to moles. We use the molar mass or the mass in 1 mole of a substance. This is found on the Periodic Table because the molar mass is equal to the atomic mass, but the units are grams per mole instead of atomic mass units. Look up iron's molar mass.

Fe:  55.84 g/mol

We convert using dimensional analysis, so we must set up a ratio using the molar mass.

[tex]\frac {55.84 \ g \ Fe}{ 1 \ mol \ Fe}[/tex]

We are converting 434.52 grams to moles, so we multiply by this value.

[tex]434.52 \ g \ Fe *\frac {55.84 \ g \ Fe}{ 1 \ mol \ Fe}[/tex]

Flip the ratio so the units of grams of iron cancel.

[tex]434.52 \ g \ Fe *\frac { 1 \ mol \ Fe}{55.84 \ g \ Fe}[/tex]

[tex]434.52 *\frac { 1 \ mol \ Fe}{55.84}[/tex]

[tex]\frac { 434.52}{55.84} \ mol \ Fe[/tex]

[tex]7.781518625 \ mol \ Fe[/tex]

2. Convert Moles to Atoms

Next, we convert moles to atoms. We use Avogadro's Number or 6.02 ×10²³. It is the number of particles (atoms, molecules, formula units, etc) in 1 mole of a substance. For this problem, the particles are atoms of iron. We set up another ratio using this number.

[tex]\frac {6.02 \times 10^{23} \ atoms \ Fe }{ 1 \ mol \ Fe}[/tex]

Multiply by the number of moles we calculated.

[tex]7.781518625 \ mol \ Fe *\frac {6.02 \times 10^{23} \ atoms \ Fe }{ 1 \ mol \ Fe}[/tex]

The units of moles of iron cancel.

[tex]7.781518625 *\frac {6.02 \times 10^{23} \ atoms \ Fe }{ 1 }[/tex]

[tex]4.68447421 \times 10^{24} \ atoms \ Fe[/tex]

The correct answer choice is Choice 3: 4.685 × 10²⁴ atoms of iron.

a) Define typical polyfunctional acid ?

b) Show the equations of dissociation mechanism of phosphoric acid as an example.

c) Write the equation for calculating the [H3O*].​

Answers

a) A polyfunctional acid is an acid that has more than one functional group.

b) The equations of dissociation of phosphoric acid are:    

H₃PO₄ + H₂O ⇄ H₂PO₄⁻ + H₃O⁺   H₂PO₄⁻ + H₂O ⇄ HPO₄²⁻ + H₃O⁺  HPO₄²⁻ + H₂O ⇄ PO₄³⁻ + H₃O⁺  

c) The equation for calculating the concentration of H₃O⁺ is [tex] [H_{3}O^{+}] = (\frac{K_{1}K_{2}K_{3}[H_{3}PO_{4}]}{[PO_{4}^{-3}]})^{1/3} [/tex]

       

a) A polyfunctional acid can be defined as an acid that has more than one functional group. Phosphoric acid (H₃PO₄) is an example of polyfunctional acid since it is composed of three hydroxyl groups joined to a phosphorus atom, which is also joined to an oxygen atom by a double bound. In that structure, the three hydrogen atoms of the hydroxyl groups give the acidic behavior to this compound.                  

b) Phosphoric acid has three equations of dissociation:  

H₃PO₄ + H₂O ⇄ H₂PO₄⁻ + H₃O⁺    (1)H₂PO₄⁻ + H₂O ⇄ HPO₄²⁻ + H₃O⁺   (2)HPO₄²⁻ + H₂O ⇄ PO₄³⁻ + H₃O⁺   (3)  

The dissociation constants for the three above equations are:

[tex] K_{1} = \frac{[H_{2}PO_{4}^{-}][H_{3}O^{+}]}{[H_{3}PO_{4}]} [/tex]   (4)

[tex] K_{2} = \frac{[HPO_{4}^{2-}][H_{3}O^{+}]}{[H_{2}PO_{4}^{-}]} [/tex]    (5)

[tex] K_{3} = \frac{[PO_{4}^{3-}][H_{3}O^{+}]}{[HPO_{4}^{2-}]} [/tex]    (6)

c) We can calculate the concentration of H₃O⁺ for each equilibrium with the equations (4), (5), and (6).    

The general reaction of dissociation of phosphoric acid is given by the sum of equations (1), (2), and (3):

H₃PO₄ + 3H₂O ⇄ PO₄³⁻ + 3H₃O⁺   (7)  

The concentration of H₃O⁺ for the total dissociation reaction (eq 7) can be found as follows:  

[tex] K_{t} = \frac{[PO_{4}^{-3}][H_{3}O^{+}]^{3}}{[H_{3}PO_{4}]} [/tex]   (8)

Where:

[tex] K_{t} = K_{1}*K_{2}*K_{3} [/tex]

Hence, by knowing the dissociation constants K₁, K₂ and K₃, and the concentrations of PO₄³⁻ and H₃PO₄, the [H₃O⁺] is:

[tex][H_{3}O^{+}] = (\frac{K_{1}K_{2}K_{3}[H_{3}PO_{4}]}{[PO_{4}^{-3}]})^{1/3}[/tex]

         

You can find more about acid dissociation constant in the link: https://brainly.com/question/1372520?referrer=searchResults                                                                  

I hope it helps you!                        

Suppose that you add 24.3 g of an unknown molecular compound to 0.250 kg of benzene, which has a K f of 5.12 oC/m. With the added solute, you find that there is a freezing point depression of 3.14 oC compared to pure benzene. What is the molar mass (in g/mol) of the unknown compound

Answers

Solution :

We know that :

[tex]$\Delta T_f = k_f.m$[/tex]  and   [tex]$m=\frac{w_2}{m_2 \times w_1}$[/tex]

Then, [tex]$\Delta T_f = k_f.\frac{w_2}{m_2.w_1}$[/tex]   ..................(1)

Where,

[tex]w_1[/tex] = amount of solvent (in kg)

[tex]w_2[/tex] = amount of solute (in kg)

[tex]m_2[/tex] = molar mass of solute (g/mole)

[tex]m[/tex] = molality of solution (mole/kg)

Given :

[tex]\Delta T_f[/tex] = [tex]3.14\ ^\circ C[/tex],   [tex]k_f= 5.12\ ^\circ C/m[/tex]

                              [tex]=5.12 \ ^\circ C/mole/kg[/tex]

                              [tex]=5.12 \ ^\circ C \ kg/mole[/tex]

[tex]w_1[/tex] = 0.250 kg,  [tex]w_2[/tex] = 24.3 g

Then putting this values in the equation is (1),

[tex]$3.14 = \frac{5.12 \times 24.3}{m_2 \times 0.250}$[/tex]

[tex]$m_2 = \frac{5.12 \times 24.3}{3.14 \times 0.250}$[/tex]

[tex]m_2= 158.49[/tex]  g/mole

So, the molar mass of the unknown compound is 158.49 g/mole.

9. Consider a magnesium atom with charge +2. How many overall electrons are on this particle?
Hint: Magnesium's atomic number is 12.
10
12
14

Answers

14 try that one bro and let me know
10 when it’s the + sign you subtract and when it’s the - sign you add

Oxygen is composed of three isotopes: oxygen-16, oxygen-17 and oxygen-18 and has an average atomic mass of 15.9982 amu. Oxygen-17 has a mass of 16.988 amu and makes up 0.032% of oxygen. Oxygen-16 has a mass of 15.972 amu and oxygen-18 has a mass of 17.970 amu. What is the percent abundance of oxygen-18?

Answers

Answer:

The percent abundance of oxygen-18 is 1.9066%.

Explanation:

The average atomic mass of oxygen is given by:

[tex] m_{O} = m_{^{16}O}*\%_{16} + m_{^{17}O}*\%_{17} + m_{^{18}O}*\%_{18} [/tex]

Where:

m: is the atomic mass

%: is the percent abundance

Since the sum of the percent abundance of oxygen isotopes must be equal to 1, we have:  

[tex] 1 = \%_{16} + \%_{17} + \%_{18} [/tex]

[tex] 1 = x + 3.2 \cdot 10^{-4} + \%_{18} [/tex]

[tex] \%_{18} = 1 - x - 3.2 \cdot 10^{-4} [/tex]

Hence, the percent abundance of O-18 is:  

[tex] m_{O} = m_{^{16}O}*\%_{16} + m_{^{17}O}*\%_{17} + m_{^{18}O}*\%_{18} [/tex]  

[tex]15.9982 = 15.972*x + 16.988*3.2 \cdot 10^{-4} + 17.970*(1 - 3.2 \cdot 10^{-4} - x)[/tex]

[tex] x = 0.980614 \times 100 = 98.0614 \% [/tex]                                                              

Hence, the percent abundance of oxygen-18 is:

[tex]\%_{18} = (1 - 3.2 \cdot 10^{-4} - 0.980614) \times 100 = 1.9066 \%[/tex]                      

Therefore, the percent abundance of oxygen-18 is 1.9066%.

I hope it helps you!                                                      

how can we convert plastic garbage energy into electric energy​

Answers

Answer:

Unfortunately, we don`t know how to convert plastic material into electricity yet. I suppose an idea is for someone to invent a machine similar to biomass, where dead plants created energy, but here it`s plastic. The only issue is that it could release deadly chemicals.

Sorry if this isn`t much help, but there isn`t really an answer.   :/

Answer:

Plastics are among the most valuable waste materials – although with the way people discard them, you probably wouldn’t know it. It’s possible to convert all plastics directly into useful forms of energy and chemicals for industry, using a process called “cold plasma pyrolysis”.

Hope this helps you ❤️

MaRk mE aS braiNliest ❤️

Different vinegars can be 5-20% acetic acid solutions and have been used for medicinal purposes for thousands of years. If a person takes 2.0 tablespoons of vinegar a day and the Molarity of the vinegar is .84 M, then how many grams of acetic acid (HC2H3O2) will be consumed? 1 Tablespoon is 15 mL.

.013 g
.026 g
.76 g
1.5 g

Answers

Answer:

1.5g

Explanation:

Remember that Molarity = (#moles of solute)/(#liters of solution)

This problem informs us that the Molarity of the vinegar is 0.84 and that the solution is 15mL.

First let's get your SI units to the correct ones.

15mL (1L/1000mL) = 0.015L

Molarity = (#moles of solute)/(#liters of solution) ~

(Molarity)(#liters of solution) = #moles of solute

(0.84M)(.015L) = 0.0126moles of acetic acid per tablespoon

2 tablespoons a day = 0.0126moles*2 =  0.0252 moles of acetic acid.

Now that we have the # of moles of acetic acid we need to get our answer into grams. The molecular weight of HC2H3O2 is 60g/mole.

0.0252mole HC2H3O2 (60g HC2H3O2/1mole HC2H3O2) = 1.512g ~ 1.5g HC2H3O2.

A solution is made by dissolving 5.84 grams of NaCl in enough distilled water to give a final volume of 1.00 L. What is the molarity of the solution
Group of answer choices

0.0250 M

0.400 M

0.100 M

1.00 M

Answers

Answer:

Explanation:

1. A solution is made by dissolving 5.84g of NaCl is enough distilled water to a give a final volume of 1.00L. What is the molarity of the solution? a. 0.100 M b. 1.00 M c. 0.0250 M d. 0.400 M 2. A 0.9% NaCl (w/w) solution in water is a. is made by mixing 0.9 moles of NaCl in a 100 moles of water b. made and has the same final volume as 0.9% solution in ethyl alcohol c. a solution that boils at or above 100°C d. All the above (don't choose this one) 3. In an exergonic process, the system a. gains energy b. loses energy c. either gains or loses energy d. no energy change at all

Answer:

[tex]\boxed {\boxed {\sf 0.100 \ M }}[/tex]

Explanation:

Molarity is a measure of concentration in moles per liter.

[tex]molarity = \frac{moles \ of \ solute}{liters \ of \ solution}}[/tex]

The solution has 5.84 grams of sodium chloride or NaCl and a volume of 1.00 liters.

1. Moles of Solute

We are given the mass of solute in grams, so we must convert to moles. This requires the molar mass, or the mass of 1 mole of a substance. These values are found on the Periodic Table as the atomic masses, but the units are grams per mole, not atomic mass units.

We have the compound sodium chloride, so look up the molar masses of the individual elements: sodium and chlorine.

Na: 22.9897693 g/mol Cl: 35.45 g/mol

The chemical formula (NaCl) contains no subscripts, so there is 1 mole of each element in 1 mole of the compound. Add the 2 molar masses to find the compound's molar mass.

NaCl: 22.9897693 + 35.45 = 58.4397693 g/mol

There are 58.4397693 grams of sodium chloride in 1 mole. We will use dimensional analysis and create a ratio using this information.

[tex]\frac {58.4397693 \ g\ \ NaCl} {1 \ mol \ NaCl}[/tex]

We are converting 5.84 grams to moles, so we multiply by that value.

[tex]5.84 \ g \ NaCl *\frac {58.4397693 \ g\ NaCl} {1 \ mol \ NaCl}[/tex]

Flip the ratio. It remains equivalent and the units of grams of sodium chloride cancel.

[tex]5.84 \ g \ NaCl *\frac {1 \ mol \ NaCl}{58.4397693 \ g\ NaCl}[/tex]

[tex]5.84 *\frac {1 \ mol \ NaCl}{58.4397693 }[/tex]

[tex]0.09993194823 \ mol \ NaCl[/tex]

2. Molarity

We can use the number of moles we just calculated to find the molarity. Remember there is 1 liter of solution.

[tex]molarity= \frac{moles \ of \ solute}{liters \ of \ solution}[/tex]

[tex]molarity= \frac{ 0.09993194823 \ mol \ NaCl}{1 \ L}[/tex]

[tex]molarity= 0.09993194823 \ mol \ NaCl/L[/tex]

3. Units and Significant Figures

The original measurements of mass and volume have 3 significant figures, so our answer must have the same. For the number we calculated, that is the thousandths place. The 9 in the ten-thousandths place tells us to round the 9 to a 0, but then we must also the next 9 to a 0, and the 0 to a 1.

[tex]molarity \approx 0.100 \ mol \ NaCl/L[/tex]

1 mole per liter is 1 molar or M. We can convert the units.

[tex]molarity \approx 0.100 \ M \ NaCl[/tex]

The molarity of the solution is 0.100 M.

How many moles of (CH3)3NH+ are in 6.0 g of (CH3)3NH+?

Answers

Answer:

0.1 mol

Explanation:

6/(15*3+15)

0.1 mol moles of (CH3)3NH+ are in 6.0 g of (CH3)3NH+

What is mole?

The mole, symbol mol, exists as the SI base unit of the amount of substance. The quantity amount of substance exists as a measure of how many elementary entities of a provided substance exist in an object or sample.A mole corresponds to the mass of a substance that includes 6.023 x 1023 particles of the substance. The mole exists the SI unit for the amount of a substance. Its symbol stands mol.

The compound trimethylamine, (CH3 )3N, exists as a  weak base when dissolved in water.

A mole exist expressed as 6.02214076 × 1023 of some chemical unit, be it atoms, molecules, ions, or others. The mole exists as a convenient unit to utilize because of the great number of atoms, molecules, or others in any substance.

To find the amount of the substance (CH3)3NH+ to calculate its molar mass:

M((CH3)3NH+) = (12+3)*3 + 14+1 = 60 g/mol

n((CH3)3NH+) = m/M

m((CH3)3NH+) = 6g

Thus,

n((CH3)3NH+) = 6g/60 g/mol = 0.1 mol

Hence,

n((CH3)3NH+) = 0.1 mol

To learn more about mole refer to:

https://brainly.com/question/27952946

#SPJ2

Is a 4p S 4s transition allowed in sodium? If so, what is its wavelength? If not, why not? b. Is a 3d S 4s transition allowed in sodium? If so, what is its wavelength? If not, why not? g

Answers

Answer:

a) 4p ⇒ 4s  transition is Allowed

b) 3d ⇒ 4s transition not allowed

Explanation:

a) 4p ⇒ 4s  transition

This transition is allowed because for a 4p state; l = 1 and for a 4s state I = 0

hence Δl = 1 - 0 = 1

Energy of 4p ( Ei ) = 3.75eV

Energy of 4s ( E2 ) = 3.19 eV

where : λ = 1240 eV nm / ( E₂ - E₁ )

                = 2214 nm ≈ 2.214 μm

b) 3d ⇒ 4s transition

This transition is not allowed  

a 3d state , l = 2 while for 4s state l = 0

hence Δl = 2 - 0 = 2

therefore the transition is not allowed

Determine the kinds of intermolecular forces that are present in each of the following. Part A Xe Check all that apply. dispersion forces dipole-dipole forces hydrogen bonding Request Answer Part B N2 Check all that apply. dispersion forces dipole-dipole forces hydrogen bonding Request Answer Part C CO Check all that apply. dispersion forces dipole-dipole forces hydrogen bonding Request Answer Part D HF Check all that apply. dispersion forces dipole-dipole forces hydrogen bonding

Answers

Answer:

Part A

dispersion forces

Part B

dispersion forces

Part C

dispersion forces

dipole-dipole forces

Part D

dispersion forces

dipole-dipole forces

hydrogen bonding

Explanation:

Dispersion forces occur in all molecules. They result from momentary shifts in the electron cloud of molecules which induces a dipole in another molecule. This induced dipole eventually spreads throughout the molecule.

For Xe which is a noble gas and N2 which is a diatomic molecule, dispersion forces is the only kind of intermolecular force present in the molecule.

CO is a polar molecule hence in addition to dispersion forces, dipole-dipole forces also exist in the molecule.

HF is a polar molecule hence it possesses dipole-dipole forces in addition to dispersion forces. In this molecule, hydrogen is bonded to a highly electronegative atom (fluorine). Hence, hydrogen bonding is a dominant intermolecular interaction in the molecule.

How is magma formed?

Answers

Answer:

“Magma” is exclusively found and formed beneath the earth’s surface. Once magma is on or above the surface of the earth it is referred to as “lava.” Magma is typically formed by extreme temperature melting solid rock within the earth. Pressure and rock composition can also affect magma formation. High pressure can help magma be “squeezed” from partially molten rock. Likewise, as rocks are usually composed of different minerals with different melting points, magma formation from rocks is usually only partial and uneven.

Explanation:

Magma can also be created when hot, liquid rock intrudes into Earth's cold crust. As the liquid rock solidifies, it loses its heat to the surrounding crust. Much like hot fudge being poured over cold ice cream, this transfer of heat is able to melt the surrounding rock (the “ice cream”) into magma. Hope this helps

A solution is made by dissolving 0.565 g of potassium nitrate in enough water to make up 250. mL of solution. What is the molarity of this solution?

Please explain and show work.

Answers

Molar mass of Potassium Nitrate:-

[tex]\\ \large\sf\longmapsto KNO_3[/tex]

[tex]\\ \large\sf\longmapsto 39u+14u+3(16u)[/tex]

[tex]\\ \large\sf\longmapsto 53u+48u[/tex]

[tex]\\ \large\sf\longmapsto 101u[/tex]

[tex]\\ \large\sf\longmapsto 101g/mol[/tex]

Now

[tex]\boxed{\sf No\:of\:moles=\dfrac{Given\:mass}{Molar\:mass}}[/tex]

[tex]\\ \large\sf\longmapsto No\:of\:moles=\dfrac{0.565}{101}[/tex]

[tex]\\ \large\sf\longmapsto No\:of\:moles=0.005mol[/tex]

We know

[tex]\boxed{\sf Molarity=\dfrac{Moles\:of\:solute}{Vol\:of\:Solution\:in\:L}}[/tex]

[tex]\\ \large\sf\longmapsto Molarity=\dfrac{0.005}{\dfrac{250}{1000}L}[/tex]

[tex]\\ \large\sf\longmapsto Molarity=\dfrac{0.005}{0.250}[/tex]

[tex]\\ \large\sf\longmapsto Molarity=0.02M[/tex]

[tex] \: \: \: \: \: \: \: \: \: [/tex]

A chemical reaction takes place inside a flask submerged in a water bath. The water bath contains 6.90kg of water at 34.7 degrees C . During the reaction 57.1kJ of heat flows out of the bath and into the flask.
Calculate the new temperature of the water bath. You can assume the specific heat capacity of water under these conditions is 4.18J.g^(-1).K^(-1) . Round your answer to significant digits.

Answers

Answer:

[tex]T_2= 36.7 \textdegree C[/tex]

Explanation:

Mass of Water [tex]m_w=6.90kg[/tex]

Temperature [tex]T=34.7 degrees[/tex]

Heat Flow [tex]H=57.1kJ[/tex]

Specific heat capacity of water [tex]\mu= 4.18J.g^(-1).K^(-1)[/tex]

Generally the equation for Final Temperature is mathematically given by

[tex]M*\mu *T_1 + Q = M*\mu *T_2[/tex]

[tex]T_2=\frac{M*\mu *T_1 + Q }{M*\mu}[/tex]

Therefore

[tex]T_2=\frac{6.90*4.18*34.7 + 57.1}{6.90*4.18}[/tex]

[tex]T_2= 36.7 \textdegree C[/tex]

How are all planets in the solar system similar?

A. They have a gas atmosphere.
B. They have a water atmosphere.
C. They have a gas-surface composition.
D. They have a rock surface composition.
THIS IS FOR SCIENCE!!!!!!
PLEASE HELP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Answers

Answer:

They have a rock surface composition.

Explanation:

I hope this will help you

6. In a particular atom, an electron moves from n = 3 to the ground state (n = 1), emitting a photon with frequency 5.2 x 1015 Hz as it does so. What is the difference in energy between n = 3 and n = 1 in this atom? g

Answers

Answer: The question wants you to determine the energy that the incoming photon must have in order to allow the electron that absorbs it to jump from  

n

i

=

2

to  

n

f

=

6

.

A good starting point here will be to calculate the energy of the photon emitted when the electron falls from  

n

i

=

6

to  

n

f

=

2

by using the Rydberg equation.

1

λ

=

R

(

1

n

2

f

1

n

2

i

)

Here

λ

si the wavelength of the emittted photon

R

is the Rydberg constant, equal to  

1.097

10

7

 

m

1

Plug in your values to find

1

λ

=

1.097

10

7

.

m

1

(

1

2

2

1

6

2

)

1

λ

=

2.4378

10

6

.

m

1

This means that you have

λ

=

4.10

10

7

.

m

So, you know that when an electron falls from  

n

i

=

6

to  

n

f

=

2

, a photon of wavelength  

410 nm

is emitted. This implies that in order for the electron to jump from  

n

i

=

2

to  

n

f

=

6

, it must absorb a photon of the same wavelength.

To find the energy of this photon, you can use the Planck - Einstein relation, which looks like this

E

=

h

c

λ

Here

E

is the energy of the photon

h

is Planck's constant, equal to  

6.626

10

34

.

J s

c

is the speed of light in a vacuum, usually given as  

3

10

8

.

m s

1

As you can see, this equation shows you that the energy of the photon is inversely proportional to its wavelength, which, of course, implies that it is directly proportional to its frequency.

Plug in the wavelength of the photon in meters to find its energy

E

=

6.626

10

34

.

J

s

3

10

8

m

s

1

4.10

10

7

m

E

=

4.85

10

19

.

J

−−−−−−−−−−−−−−−−−  

I'll leave the answer rounded to three sig figs.

So, you can say that in a hydrogen atom, an electron located on  

n

i

=

2

that absorbs a photon of energy  

4.85

10

19

 

J

can make the jump to  

n

f

=

6

.

Explanation:

The half life of radium-226 is 1600 years. If you have 200 grams of radium today how many grams would be present in 8000 years?

Answers

Answer:

Half life is the time taken by a radio active isotope to reduce by half of its original amount. Radium-226 has a half life of 1602 years meaning that it would take 1602 years for a mass of radium to reduce by half.

Number of half lives in 9612 years = 9612/1602 = 6 half lives

New mass = Original mass x (1/2)n where n is the number of half lives.

Therefore, New mass= 500 x (1/2)∧6

                                 = 500 x 0.015625

                                 = 7.8125 g

Hence the mass of radium after 9612 years will be 7.8125 grams.

Explanation:

Answer:

[tex]\boxed {\boxed {\sf 6.25 \ grams}}[/tex]

Explanation:

We are asked to find the mass of a sample of radium-226 after half-life decay. We will use the following formula:

[tex]A= A_o *\frac{1}{2}^{\frac{t}{h}}[/tex]

In this formula, [tex]A_o[/tex] is the initial amount, t is the time, and h is the half-life.

For this problem, the initial amount is 200 grams of radium-226, the time is 8,000 years, and the half-life is 1,600 years.

[tex]\bullet \ A_o= 200 \ g \\\\bullet \ t= 8,000 \ \\\bullet \ h= 1,600[/tex]

Substitute the values into the formula.

[tex]A= 200 \ g * \frac{1}{2} ^{\frac{8.000}{1,600}[/tex]

Solve the fraction in the exponent.

[tex]A= 200 \ g * \frac{1}{2}^{5}[/tex]

Solve the exponent.

[tex]A= 200 \ g *0.03125[/tex]

[tex]A= 6.25 \ g[/tex]

In addition, we can solve this another way. First, we find the number of half-lives by dividing the total time by the half-life.

8,000/1,600= 5 half-lives

Every half-life, 1/2 of the mass decays. Divide the initial mass in half, then that result in half, and so on 5 times.

1.  200 g/2= 100 g2. 100 g / 2 = 50 g3. 50 g / 2 = 25 g 4. 25 g / 2 = 12.5 g5. 12.5 g / 6.25 g

After 8,000 years, 6.25 grams of radium-226 remains.

Please help me! I am a bit stuck on this.

Answers

Option 2 is the correct answer

A hot pot of water is set on the counter to cool. After a few minutes it has lost 495 J of heat energy. How much heat energy has the surrounding air gained?

_____unit_____

Answers

Answer:

495 J

Explanation:

When the hot pot was set on the counter to cool, heat energy was lost from the pot. Note that according to the first law of thermodynamics, heat is neither created nor destroyed.

This implies that, the heat energy lost from the pot must be gained by the surrounding air. Therefore, if 495 J of energy is lost from the pot, then 495 J of energy is gained by the surrounding air.

Calculate the numerical value of the equilibrium constant, Kc, for the reaction below if the equilibrium concentrations for CO, H2 , CH4 and H2O are 0.989 M, 0.993 M, 1.078 M and 0.878 M, respectively. (calculate your answer to three sig figs)
CO(g) + 3 H2(g) ⇌ CH4(g) + H2O(g)

Answers

Kc = [CH4]×[H2O] / [CO]×[H2]^3

Kc = 1.078×0.878 / (0.989×0.933^3)

Kc = 0.977

The numerical value of the equilibrium constant, Kc, for the given reaction is found to be 0.977.

What is Equilibrium constant?

The Equilibrium constant may be defined as the numerical value that significantly indicated the correlation between the amounts of products and reactants present at equilibrium in a reversible chemical reaction at a definite temperature.

According to the question, the reaction is as follows:

[tex]CO +3H_2[/tex] ↔ [tex]CH_4+ H_2O[/tex].

The equilibrium concentrations are 0.989 M, 0.993 M, 1.078 M and 0.878 M, respectively.

Now, the equilibrium constant is calculated by the following formula:

Kc =  [CH4]×[H2O] / [CO]×[tex][H_2]^3[/tex]

             =  1.078×0.878 / (0.989×0.93[tex]3^3[/tex]).

             = 0.9464/(0.989 × 0.8121)

             =  0.977.

Therefore, the numerical value of the equilibrium constant, Kc, for the given reaction is found to be 0.977.

To learn more about Equilibrium constant, refer to the link:

https://brainly.com/question/19340344

#SPJ2


Dung dịch nào sau đây chỉ chứa các ion (bỏ qua sự điện li của nước, các chất điện li mạnh phân li hoàn toàn)?
A. HBr, Na2S, Mg(OH)2, Na2CO3.
B. H2SO4, NaOH, NaCl, HF.
C. HNO3, H2SO4, KOH, K2SiO3.
D. Ca(OH)2, KOH, CH3COOH, NaCl.

Answers

Answer:

Dung dịch nào sau đây chỉ chứa các ion (bỏ qua sự điện li của nước, các chất điện li mạnh phân li hoàn toàn)?

A. HBr, Na2S, Mg(OH)2, Na2CO3.

B. H2SO4, NaOH, NaCl, HF.

C. HNO3, H2SO4, KOH, K2SiO3.

D. Ca(OH)2, KOH, CH3COOH, NaCl.

A solution is prepared by dissolving 6.60 g of an nonelectrolyte in water to make 550 mL of solution. The osmotic pressure of the solution is 1.84 atm at 25 °C. The molecular weight of the nonelectrolyte is ________ g/mol.

Answers

Answer:

160 g/mol

Explanation:

Step 1: Calculate the molarity of the solution

We will use the following expression.

π = M × R × T

where,

π: osmotic pressure of a nonelectrolyteM: molarityR: ideal gas constantT: absolute temperature (25 °C = 298 K)

M = π / R × T

M = 1.84 atm / (0.0821 atm.L/mol.K) × 298 K = 0.0752 mol/L

Step 2: Calculate the moles of solute in 550 mL (0.550 L)

0.550 L × 0.0752 mol/L = 0.0413 mol

Step 3: Calculate the molecular weight of the nonelectrolyte

0.0413 moles weigh 6.60 g.

6.60 g/0.0413 mol = 160 g/mol

385 x 42.13 x 0.079 is (consider significant figures):

Answers

385 x 42.13 x 0.079 = 1281.38395

Please help fast
All four referenced Greek thinkers: Democritus, Aristotle, Archimedes, and Anaxagoras, observed Nature and argued for his theory of
the composition of matter and natural laws. Only one of them tested his hypothesis and proposed a natural laws based on reproducible
observations, controlled experiments, and mathematical reasoning. All others used logic and thought experiments, as philosophers do,
to support their theories. Who is the experimental scientist in this group?
O Democritus
O Aristotle
O Archimedes
O Anaxagoras

Answers

Answer:

Anaxagoras was perhaps the first literate person to attempt to explain physical phenomena rationally, basing his ideas upon careful observations and simple experiments. This is fundamental to modern science and is the sine qua non of environmental study.

convert 100kcals to kilojoules​

Answers

Answer:

Explanation:

418.4kj is the correct answer

A base which can be used to relieve indigestion

Answers

Explanation:

Antacids are medications used to manage the symptoms of indigestion and heartburn. Antacids contain active ingredients that are bases. These allow antacids to neutralize any stomach acid which could be causing digestive discomfort.

100 mL of 0.2 mol/L sodium carbonate solution and 200 mL of 0.1 mol/L calcium nitrate solution are mixed together. Calculate the mass of calcium carbonate that would precipitate and the concentration of the sodium nitrate solution that will be produced.

Answers

Answer:

Explanation:

Na2CO3+Ca(NO3)2=CaCO3+2NaNO3

nNa2CO3=0.02

nCa(NO3)2=0.02

mCaCO3=0.02*100=2 gram

nNaNo3=0.04

Cm=2/15

From the calculation, the mass of the product is 2 g.

What is a reaction?

A chemical reaction occurs when two more substances are mixed together. In this case, the reaction is shown by; Ca(NO3)2 + Na2CO3 ----> CaCO3(s) + 2NaNO3.

Number of moles of Na2CO3 = 100/1000 L *  0.2 mol/L = 0.02 moles

Number of moles of  Ca(NO3)2 = 200/1000 L *  0.1 mol/L = 0.02 moles

Since the reaction is equimolar, amount of the product = 0.02 moles * 100 g/mol = 2 g

Learn more about chemical reaction:https://brainly.com/question/22817140

#SPJ6

Carbon dioxide gas is collected at 27.0 oC in an evacuated flask with a measured volume of 30.0L. When all the gas has been collected, the pressure in the flask is measured to be 0.480atm. Calculate the mass and number of moles of carbon dioxide gas that were collected.

Answers

Answer:

[tex]M_{CO_2}= 25.7g[/tex]

Explanation:

From the question we are told that:

Temperature [tex]T=27.0[/tex]

Volume [tex]V=30L[/tex]

Pressure [tex]P=0.480atm[/tex]

Generally the equation for Ideal gas is mathematically given by

PV=nRT

Therefore

[tex]n=\frac{0.480 x 30}{0.08205 x 300}[/tex]

[tex]n=0.59moles[/tex]

Generally Mass of CO2 is given as

[tex]M_{CO_2}= 0.59 * 44 g/mol[/tex]

[tex]M_{CO_2}= 25.7g[/tex]

QUESTION 11
Identify the reaction type.
KOH + HNO3 -> H2O + KNO3
O combustion
O decomposition
O combination
O single displacement
O double displacement

Answers

O single displacement
Is correct answer
The answer is a single displacement. (C)

Arrange the following compounds in order of increasing reactivity (least reactive first.) to electrophilic aromatic substitution:.

Bromobenzene Nitrobenzene Benzene Phenol

a. Bromobenzene < Nitrobenzene < Benzene < Phenol
b. Nitrobenzene < Bromobenzene < Benzene < Phenol
c. Phenol < Benzene < Bromobenzene < Nitrobenzene
d. Nitrobenzene < Benzene < Bromobenzene < Phenol

Answers

Answer:

Nitrobenzene < Bromobenzene < Benzene < Phenol

Explanation:

Aromatic compounds undergo electrophilic aromatic substitution reaction in the presence of relevant electrophiles. Certain substituents tend to increase or decrease the tendency of an aromatic compound towards electrophilic aromatic substitution reaction.

Substituents that increase the electron density around the ring such as in phenol tends to make the ring more reactive towards electrophilic substitution. Halogens such as bromine has a -I inductive effect as well as a +M mesomeric effect.

However the -I(electron withdrawing effect) of the halogens supersedes the +M electron donation due to mesomeric effect.

Putting all these together, the order of increasing reactivity of the compounds towards electrophilic aromatic substitution is;

Nitrobenzene < Bromobenzene < Benzene < Phenol

Other Questions
Why does reading fiction make you a better person? Pleasure and participation sports focus on personal engagement and the notion that _____. Multiple choice question. the body is to be trained and subordinated in a quest for achieving competitive success the body is to be nurtured and enjoyed in a quest for challenging experiences equal participation diminishes the value of winning humiliation, shame, and derogation are consistent with the underlying spirit of these sports\ Use the PRESENT TENSE in the following sentences 1.- Yo ____________ (querer) que mis hijos estudien mucho2.- Nosotros ______________________ (cerrar) la ventana.3.- Antonio ______________________ (venir) a vernos.4.- Los doctores _____________________(hacer) ejercicios.5.- Mi sobrino __________________________ (ser) abogado.6.- Pedro__________________________ (amar) a Marta.7.-Ustedes no ____________________(tomar) vino.8.- Linda _____________(traer) el ordenador/la computadora.9.- Ella no ____________________(lavar) la ropa sucia.10.- Mis hijos ____________________ (poner) la mesa -3x8y=20Whats the solution? Find the value of x in the triangle shown below.(not a test just need help with khan academy) Calculate the efficiency of the following appliances:1. A radiator that converts 1000) of electrical energy into 900Jof heat energy and 100J of light energy2. A torch that converts 100J of chemical energy into 35) oflight energy and 65J of heat energy3. A car that converts 10,000J of chemical energy into 6000) ofkinetic energy and 4000J of heat energy.4. An energy saver light converts 1,000J of electrical energyinto 7003 of light energy and 300J of heat energy.5. A speaker converts 100J of electrical energy into 50J ofsound energy and 50J of heat and kinetic energy.we How to say how much dose this cost in Japanese? Solve the following numerical problems. a) A load of 400N is lifted up by an effort of 100N. If load distance is 20cm, what will be the effort distance? (Ans: 80cm) b) Two boys, Shrijan having weight 600N and Shrijesh having weight 300N are playing see-saw. If Shrijan is sitting at 2m from fulcrum, where should Shrijesh sit from fulcrum to balance Shrijan?(Ans: 4m) c) A lever of length 1m has been used ttoko lift a load of 600N by applying an effort of 200N. If load is at 20cm from fulcrum, calculate mechanical advantage, velocity ratio and efficiency. (Ans: MA = 3, VR = 4, n=75%) d) Study the figure below and find the value of effort. (Ans: 120N) Muyn) 2.5m 600N 0.5m ? Science and Enyin Why do we use semiconductor instead of metal in thermopile? the cost of using 19 hcf of water is $36.48 and the cost of using 32 hcf is 56.63 what is the cost of using 28 hcf of water? Convert the 7pi/5 to a degree measure A=252B=504C=792D=75 Who did the Declaration of Independence address rationalise the denominator of 2sq3+3sq2/4sq3+sq2 Members of a band class were arguing over whichinstruments are played by the best academic students. Asurvey was conducted, and here are the results:All 13 flute players had a grade point average (GPA)between 3.84 and 3.88.There were only 3 percussionists. One had a GPA of2.4, one had a GPA of 2.8, and one had a GPA of 3.2.Among the saxophone players, 4 had a GPA of 3.9,and the other 5 had a GPA of 4.0.h Modern plant-breeding techniques (artificial selection in action) have reduced genetic variability in many of our most commercially valuable plants. To most people, that would generate a shrug. However, a biology student that has studied evolution understands the problem with this. Briefly explain why there is an issue with this. Which action demonstrates effective communication? if (x) and 1(x) are inverse functions of each other and S(x) = 2x+5, what is (8)? NW8023 3. A belief shared by Presidents Theodore Roosevelt, William Taft, andWoodrow Wilson is that the Federal Government shouldA. allow the free-enterprise system to work without regulationB. use its power to regulate unfair business practicesC. provide jobs for unemployed workersD.support unions in labor-management disputes what is the least common factor for 9 8 7 if a person invests $290 at 6% percent annual interest, find the approximate value of the investment at the end of 15 years