Answer:
68.1
Step-by-step explanation:
If those angles are congruent, then all side lengths follow the same ratio.
So the smaller triangle side length of 9 over the small side length of the bigger triangle 21.5, is the ratio for all the sides.
9/21.5 = unknown side / 48
unknown side = 48 * 9/21.5
So to find the length of CD, multiply 48 by our ratio to get ~ 20.1
Add that to our 48 and we get 68.1
Graph the line that represents this equation:
y = -5.1 +2
currently, the US interest rate is at 2% annually. how long it will take an investor to make 10% of money from an investment if the bank pays simple interest
Answer:
5 years
Step-by-step explanation:
Tammy makes 8 dollars for each hour of work. Write an equation to represent her total pay p after working h hours.
Answer:
P=8(h)
Step-by-step explanation:
P is her total pay. You find that by multiplying what she makes an hour (8) by the total number of hours she has worked (h).
Answer:
p=8h
Step-by-step explanation:
Pay equals $8 per the number of hours
Sofia bought a clothes iron that was discounted 15% off of the original price of $35. What was the sale price of the clothes iron?
Answer:
35 - 0.15 * 35 so it is $29.75
Step-by-step explanation:
I got u
Answer:
$29.75
Step-by-step explanation:
15% = .15
.15 x 35 = 5.25
35 - 5.25 = 29.75
A local pizza place claims that they average a delivery time of 6.46 minutes. To test this claim, you order 10 pizzas over the next month at random times on random days of the week. You calculate that the average delivery time is 8.56 minutes with a standard deviation of 1.068 minutes. You create a 90% confidence interval of (7.941, 9.179). Of those listed below, what is the best conclusion you can make?
1) We cannot determine the proper interpretation based on the information given.
2) You are 90% confident that the average delivery time is less than 6.46 minutes.
3) The average delivery time does not significalty differ from 6.46 minutes.
4) The percentage of pizzas that arrive around 6.46 minutes is 90%.
5) You are 90% confident that the average delivery time is greater than 6.46 minutes.
Answer:
Place the event
But he sobered down when he saw that Jimmy was wounded.
Jimmy comes
up with the plan of curing the Emperor by telling him to eat watermelon.
The Emperor fa
lls sick with dysentery, which has plagued the kingdom.
The Emperor is cured after eating a few slices of fresh watermelon.
The next day, the page asks the Emperor t
o consume a slice of watermelon as a cure.
↓
↓
Reset Submit
Step-by-step explanation:
Help pls ty!
Adios!
Bye
the graph function f(x) is illustrated in figure below (-2,1) ,(-1,2) ,(1,2) ,(2,3) .Use the transformation techniques to graph the following functions
a) y=f(x)-2
b) y=f(-x)
Answer:
a) y = f(x) - 2 (x, y) ⇒ (x, y - 2)b) y = f(-x) (x, y) ⇒ (-x, y)a) y=f(x)-2
(-2, 1) → (-2, 1 - 2) = (-2, -1)(-1, 2) → (-1, 2 - 2) = (-1, 0)(1, 2) → (1, 2 - 2) = (1, 0)(2, 3) → (2, 3 - 2) = (2, 1)b) y=f(-x)
(-2, 1) → (-(-2), 1) = (2, 1)(-1, 2) → (-(-1), 2) = (1, 2)(1, 2) → (-1, 2)(2, 3) → (-2, 3)In this triangle, D is the midpoint of AB and E is the midpoint of BCIf AC = 36 what is the length of DE?
Answer:
A. 18
Step-by-step explanation:
Recall: the Mid-segment Theorem states that the length of the mid-segment theorem of a triangle is half the length of its third side.
DE = ½(AC) (Triangle Mid-segment Theorem)
AC = 36 (given)
Plug in the value
DE = ½(36)
DE = 18
The graphs below have the same shape. Complete the equation of the blue
graph. Enter exponents using the caret (-1); for example, enter xas x^3. Do
not include "G(x) =" in your answer.
Step-by-step explanation:
The graphs below have the same shape. What is the equation of the blue graph? A. G(x) = (x + 3)^3 B. G(x) = x^3 + 3 C. G(x) = x^3 - 3 D.
G(x) = (x - 3)^3
The function of the blue curve in the graph is g(x)=(x+3)²+1.
What is the function?Functions are the fundamental part of the calculus in mathematics. The functions are the special types of relations. A function in math is visualized as a rule, which gives a unique output for every input x.
The given function is f(x)=x².
In the image, we have two functions, the red one is a parent function, which is the most basic version of it. The blue function is a transformation of the red one, that is, it was only moved to the left and upwards.
From the graph, we can see that the blue function was moved to the left and upwards, that means we have to sum units to x and f(x).
So, g(x)=(x+3)²+1
Therefore, the function of the blue curve in the graph is g(x)=(x+3)²+1.
To learn more about the function visit:
https://brainly.com/question/28303908.
#SPJ7
To make a salad dressing you mix vinegar and olive oil in the ratio 2:5 how much olive oil is needed with 20 ml of vinegar
Answer:
Step-by-step explanation:
Set this up as a proportion with the ratios being
[tex]\frac{vinegar}{oil}[/tex] If there is a 2:5 ratio of vinegar to oil, that ratio looks like this:
[tex]\frac{v}{o}:\frac{2}{5}[/tex] and if we are looking for how much oil, x, is needed for 20 ml of vinegar, then that ratio completes the proportion:
[tex]\frac{v}{o}:\frac{2}{5}=\frac{20}{x}[/tex] and cross multiply.
2x = 100 so
x = 50 ml of oil
PLEASE HELP!!! WILL GIVE BRAINLIEST!!!!
Finding the line of best fit is something a Machine Learning Model would do.
This particular ML model is called "Linear Regressor" or "Linear Regression Model". Look it up and there are definitely calculators for it, as it is relatively simple.
You can also, if you know how to use ML libraries and code, use Python to determine the value of [tex]b[/tex].
Hope this helps.
How to answer this question
Answer:
(0.3049 ; 0.3751)
Step-by-step explanation:
The confidence interval for proportion can be obtained using the relation :
Phat ± Zcritical * [√phat(1-phat) / n]
phat = x / n
Sample size, n = 700
x = 238
phat = 238/700 = 0.34
Zcritical at 95% = 1.96
C.I = 0.34 ± 1.96 * [√0.34(1-0.34) / 700]
C.I = 0.34 ± 1.96 * 0.0179045
C. I = 0.34 ± 0.0350928
Lower boundary = 0.34 - 0.0350928 = 0.3049
Upper boundary = 0.34 + 0.0350928 = 0.37509
(0.3049 ; 0.3751)
To find the equation of a line, we need the slope of the line and a point on the line. Since we are requested to find the equation of the tangent line at the point (36, 6), we know that (36, 6) is a point on the line. So we just need to find its slope. The slope of a tangent line to f(x) at x
Answer:
[tex]m = \frac{1}{12}[/tex]
Step-by-step explanation:
Given
[tex](x,y) = (36,6)[/tex]
[tex]f(x) = \sqrt x[/tex] ----- the equation of the curve
Required
The slope of f(x)
The slope (m) is calculated using:
[tex]m = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}[/tex]
[tex](x,y) = (36,6)[/tex] implies that:
[tex]a = 36; f(a) = 6[/tex]
So, we have:
[tex]m = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}[/tex]
[tex]m = \lim_{h \to 0} \frac{f(36 + h) - 6}{h}[/tex]
If [tex]f(x) = \sqrt x[/tex]; then:
[tex]f(36 + h) = \sqrt{36 + h}[/tex]
So, we have:
[tex]m = \lim_{h \to 0} \frac{\sqrt{36 + h} - 6}{h}[/tex]
Multiply by: [tex]\sqrt{36 + h} + 6[/tex]
[tex]m = \lim_{h \to 0} \frac{(\sqrt{36 + h} - 6)(\sqrt{36 + h} + 6)}{h(\sqrt{36 + h} + 6)}[/tex]
Expand the numerator
[tex]m = \lim_{h \to 0} \frac{36 + h - 36}{h(\sqrt{36 + h} + 6)}[/tex]
Collect like terms
[tex]m = \lim_{h \to 0} \frac{36 - 36+ h }{h(\sqrt{36 + h} + 6)}[/tex]
[tex]m = \lim_{h \to 0} \frac{h }{h(\sqrt{36 + h} + 6)}[/tex]
Cancel out h
[tex]m = \lim_{h \to 0} \frac{1}{\sqrt{36 + h} + 6}[/tex]
[tex]h \to 0[/tex] implies that we substitute 0 for h;
So, we have:
[tex]m = \frac{1}{\sqrt{36 + 0} + 6}[/tex]
[tex]m = \frac{1}{\sqrt{36} + 6}[/tex]
[tex]m = \frac{1}{6 + 6}[/tex]
[tex]m = \frac{1}{12}[/tex]
Hence, the slope is 1/12
Brian made $198 for 11 hours of work.
At the same rate, how many hours would he have to work to make $324 ?
Answer:
18 hours
Step-by-step explanation:
Forst u must find out how much u get for 1 hour which is 198/11=18 so every hour u get 18 dollars.
Next, Ypu must divide 324/18 to see how many hours he worked which we get 18
Finally 18 is the answer!
Step-by-step explanation:
If he made $198 in 11hrs
how many hours will he take to make $324
Let hours be x
$198=11hours
$324= x hours
= $324 *11hours / $198
= 18 hours
I hope this helps.
Keith used the following steps to find the inverse of f, but he thinks he made an error.
A box contains 10 balls, of which 3 are red, 2 are yellow, and 5 are blue. Five balls are randomly selected with replacement. Calculate the probability that fewer than 2 of the selected balls are red.
Answer:
The required probability is 0.1.
Step-by-step explanation:
red balls = 3
yellow balls = 2
blue balls = 5
Selected balls = 5
Number of elemnets in sample space = 10 C 5 = 1260
Ways to choose 1 red ball and 4 other colours = (3 C 1 ) x (7 C 4) = 105
Ways to choose 5 balls of other colours = 7 C 5 = 21
So, the probability is
[tex]\frac{105}{1260} + \frac {21}{1260}\\\\\frac{126}{1260}=0.1[/tex]
5.11.
A manufacturing process produces 500 parts per hour. A sample part is selected about every half hour, and after five parts are obtained, the average of these five measurements is plotted on an x control chart.
(a) Is this an appropriate sampling scheme if the assignable cause in the process results in an instantaneous upward shift in the mean that is of very short duration?
(b) If your answer is no, propose an alternative procedure. If your answer is yes, justify.
5.12.
Consider the sampling scheme proposed in Exercise 5.11. Is this scheme appropriate if the assignable cause results in a slow, prolonged upward drift in the mean? If your answer is no, propose an alternative procedure.
Answer:
Following are the response to the given points:
Step-by-step explanation:
For question 5.11:
For point a:
For all the particular circumstances, it was not an appropriate sampling strategy as each normal distribution acquired is at a minimum of 30(5) = 150 or 2.5 hours for a time. Its point is not absolutely fair if it exhibits any spike change for roughly 10 minutes.
For point b:
The problem would be that the process can transition to an in the state in less than half an hour and return to in the state. Thus, each subgroup is a biased selection of the whole element created over the last [tex]2 \frac{1}{2}[/tex] hours. Another sampling approach is a group.
For question 5.12:
This production method creates 500 pieces each day. A sampling section is selected every half an hour, and the average of five dimensions can be seen in a [tex]\bar{x}[/tex]line graph when 5 parts were achieved.
This is not an appropriate sampling method if the assigned reason leads to a sluggish, prolonged uplift. The difficulty would be that gradual or longer upward drift in the procedure takes or less half an hour then returns to a controlled state. Suppose that a shift of both the detectable size will last hours [tex]2 \frac{1}{2}[/tex] . An alternative type of analysis should be a random sample of five consecutive pieces created every [tex]2 \frac{1}{2}[/tex] hour.
Help!! Picture included
Answer:
The answer is the last option- the fourth root of 16x^4.
Step-by-step explanation:
(16x^4)^(1/4) = 2*abs(x).
Whenever you are dealing with a square root of a variable, if you have an even root and get out an odd power, you're going to need to always include an absolute value.
1. Nikita invests 6,000 for two years at a certain rate of interest compounded annually. At the end of first year it amounts to ? 6,720
plzzzz tell me
Answer:
Hope it is helpful and useful
when a force of 400N is applied on a body at angle of 60 degree to the horizontal displacement,the body covers a distance of 8m.what is the work done?
Answer:
1600N
Step-by-step explanation:
Force = 400 N
Angle with horizontal = 60°
Displacement in horizontal direction = 8 m
work done formula when angle is included: Force * distance * cos(angle)
400 * 8 * cos(60)
= 400 * 8 * 1/2
= 1600N
The x intercepts of the function f(x) = 2x(x-5)^2(x+4)^3
are…
Answer:
[tex]\boxed{\sf x- intercepts = 0 , 5 \ and \ -4}[/tex]
Step-by-step explanation:
A function is given to us and we need to find the x Intercepts of the graph of the given function . The function is ,
[tex]\sf \implies f(x) = 2x( x - 5 ) ^2(x+4)^3 [/tex]
For finding the x intercept , equate the given function with 0, we have ;
[tex]\sf \implies 2x ( x - 5 )^2(x+4)^3= 0 [/tex]
Equate each factor with 0 ,
[tex]\sf \implies 2x = 0[/tex]
Divide both sides by 2 ,
[tex]\sf \implies\bf x = 0[/tex]
Again ,
[tex]\sf \implies ( x - 5)^2=0 [/tex]
Taking squareroot on both sides,
[tex]\sf \implies x - 5 = 0 [/tex]
Add 5 to both sides,
[tex]\sf \implies \bf x = 5[/tex]
Similarly ,
[tex]\sf \implies \bf x = -4 [/tex]
Hence the x Intercepts are -4 , 0 and 5 .
{ See attachment also for graph } .
Find the median: 16.12.7.9.10.16
Answer:
hey hi mate
hope you like it
plz mark it as brainliest
An exterior angle of a regular convex polygon is 40°. What is the number of sides of the polygon?
A. 8
B. 9
C. 10
D.11
Answer:
option B
Step-by-step explanation:
Sum of interior angles of a polygon with n sides:
[tex]= (n - 2 )\times 180[/tex]
[tex]Therefore, Each \ interior \ angle = (\frac{n - 2}{n} )\times 180[/tex]
[tex]Sum \ of \ one \ of \ the \ interior \ angle \ with \ its \ exterior \ angle \ is \ 180^\circ[/tex]
[tex][ \ because \ straight \ line \ angle = 180^\circ \ ][/tex]
That is ,
[tex]Exterior \ angle + Interior \ angle = 180^\circ\\\\40^ \circ + (\frac{n-2}{n}) \times 180 = 180^\circ\\\\40 n + 180n - 360 = 180n\\\\40n = 180n - 180n + 360 \\\\40n = 360 \\\\n = 9[/tex]
OR
Sum of exterior angles of a regular polygon = 360
Given 1 exterior angle of the regular polygon is 40
Therefore ,
[tex]n \times 40 = 360\\\\n = \frac{360}{40} \\\\n = 9[/tex]
Answer:
9
Step-by-step explanation:
A decorative wall in a garden is to be built using bricks that are 5 1/2 inches thick and mortar joints are 1/4 inch thick. What is the height of the wall?
Step-by-step explanation:
how many layers of bricks are used ?
also, I assume, the thickness of bricks means actually their height when laid.
but still, I cannot answer that, as nothing indicates if there is only one layer of bricks or 2 or 3 or 4 or ...
8. The point in a distribution below which 75% of the cases lie in the?
A 3rd decile
B. 7th percentile C. 3rd quartile D. 1st quartile
Answer:
C. 3rd quartile
Step-by-step explanation:
Percentile:
A data belonging to the xth percentile means that the data is greater than x% of the values of the data-set, and smaller than (100 - x)%.
Point below 75% of the cases lie:
This is the 75th percentile, which is the 3rd quartile, as 75 = 3*100/4. Thus, the correct answer is given by option c.
The participants in a research study self-report their sleep quality levels by choosing the response option that best characterizes their average sleep quality per night from the following response options: 1 = extremely low sleep quality, 2 - very low sleep quality, 3 - low sleep quality, 4 = extremely high sleep quality. Which measurement scale is being used to classify sleep quality?
Answer:
This is a Categorical variable and the measurement scale is ordinal scale.
Step-by-step explanation:
The measurement scale that is being used to classify sleep is the ordinal measurement. In this question, the variable that is called sleep quality is a categorical variable. categorical variables are variables that have the data representing groups. sleep quality has been given this categorical order extremely low very low low and extreme high.
The ordinal scale is a scale that denotes order it has all variables in a specific order.
can anyone help with this please !!!!
Answer:
"Add equations A and B to eliminate [tex]y[/tex]. Add equations A and C to eliminate [tex]y[/tex]".
Step-by-step explanation:
Let be the following system of linear equations:
[tex]4\cdot x + 4\cdot y + z = 24[/tex] (1)
[tex]2\cdot x - 4\cdot y +z = 0[/tex] (2)
[tex]5\cdot x - 4\cdot y - 5\cdot z = 12[/tex] (3)
1) We eliminate [tex]y[/tex] by adding (1) and (2):
[tex](4\cdot x + 2\cdot x) +(4\cdot y - 4\cdot y) + (z + z) = 24 + 0[/tex]
[tex]6\cdot x +2\cdot z = 24[/tex] (4)
2) We eliminate [tex]y[/tex] by adding (1) and (3):
[tex](4\cdot x + 5\cdot x) +(4\cdot y - 4\cdot y) +(z -5\cdot z) = (24 + 12)[/tex]
[tex]9\cdot x -4\cdot z = 36[/tex] (5)
Hence, the correct answer is "Add equations A and B to eliminate [tex]y[/tex]. Add equations A and C to eliminate [tex]y[/tex]".
Nikola thinks that the model that reflects the growth of smartphones shipped from manufacturers to stores around the world may be logistic rather than exponential. Do you agree with Nikola
Answer:
When most people have a smartphone, that is, the variable starts getting closer to its capacity, the demand will start to have a slight decrease, until it stabilizes, so yes, Nikola is correct.
Step-by-step explanation:
Exponential model:
The variable keeps growing consistently, at a fixed rate.
Logistic model:
The variable starts growing, but as it approaches a limit, for example, the carry capacity of an environment, the growth rate starts to decrease, until the variable stabilizes at a fixed value.
Growth of smartphones shipped from manufacturers to stores around the world.
When most people have a smartphone, that is, the variable starts getting closer to its capacity, the demand will start to have a slight decrease, until it stabilizes, so yes, Nikola is correct.
Questions 23 and 29: Use the following information to answer each question. A recent book noted that only 20% of all investment managers outperform the Dow Jones Industrial Average over a five-year period. A random sample of 200 investment managers that had graduated from one of the top ten business programs in the country were followed over a five-year period. Fifty of these outperformed the Dow Jones Industrial Average. Let p be the true proportion of investment managers who graduated from one of the top ten business programs who outperformed the Dow Jones over a five-year period.
23. Based on the results of the sample, a 95% confidence interval for p is:
a. (1.95, 3.15)
b. (0.0195, 0 .0315)
c. (0.190, 0.310)
d. (0.028, 0.031)
e. (0.195, 0.315)
f. We can assert that p = 0.20 with 100% confidence, because only 20% of investment managers outperform the standard indexes.
24. Suppose you had been in charge of designing the study. What sample size would be needed to construct a margin of error of 2% with 95% confidence? Use the prior estimate of pâ=0.2 for this estimate.
a. n=2401
b. n=1537
c. n=16
d. n=1801
e. n>30
Suppose you wish to see if there is evidence that graduates of one of the top ten business programs performs better than other investment managers. Conduct a hypothesis test. Use a level of significance of α=0.05
25. Which of the following pairs of hypotheses is the most appropriate for addressing this question?
a. H0: p=0.2
Ha: p<0.2
b. H0: p=0.2
Ha: pâ 0.2
c. H0: p=0.2
Ha: p>0.2
d. H0: p<0.2
Ha: p=0.2
e. H0: pâ 0.2
Ha: p=0.2
f. H0: p>0.2
Ha: p=0.2
26. How many measurements must you have in order to assure that p^ is normally distributed?
a. nâ¥30
b. nâ¥5
c. npâ¥10 and n(1âp)â¥10
d. npâ¥5 and n(1âp)â¥5
27. The value of your test statistic is:
a. 1.768
b. 0.039
c. 1.923
d. 0.077
28. The P-value of your test is:
a. 1.768
b. 0.039
c. 1.923
d. 0.077
29. Is there sufficient evidence to conclude that graduates from the top ten business programs perform better than other investment managers?
a. Yes. I rejected H0
b. Yes. I failed to reject H0
c. Yes. I accepted Ha
d. No. I rejected H0
e. No. I failed to reject H0
f. No. I failed to accept Ha
Answer:
https://www.chegg.com/homework-help/questions-and-answers/questions-23-29-use-following-information-answer-question-recent-book-noted-20-investment--q13619465
Step-by-step explanation:
this might help you
The number of chocolate chips in a bag of chocolate chip cookies is approximately normally distributed with mean of 1262 and a standard deviation of 118. Determine the 26th percentile for the number of chocolate chips in a bag. (b) Determine the number of chocolate chips in a bag that make up the middle 95% of bags. (c) What is the interquartile range of the number of chocolate chips in a bag of chocolate chip cookies?
Answer:
a) 1186
b) Between 1031 and 1493.
c) 160
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Normally distributed with mean of 1262 and a standard deviation of 118.
This means that [tex]\mu = 1262, \sigma = 118[/tex]
a) Determine the 26th percentile for the number of chocolate chips in a bag.
This is X when Z has a p-value of 0.26, so X when Z = -0.643.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-0.643 = \frac{X - 1262}{118}[/tex]
[tex]X - 1262 = -0.643*118[/tex]
[tex]X = 1186[/tex]
(b) Determine the number of chocolate chips in a bag that make up the middle 95% of bags.
Between the 50 - (95/2) = 2.5th percentile and the 50 + (95/2) = 97.5th percentile.
2.5th percentile:
X when Z has a p-value of 0.025, so X when Z = -1.96.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-1.96 = \frac{X - 1262}{118}[/tex]
[tex]X - 1262 = -1.96*118[/tex]
[tex]X = 1031[/tex]
97.5th percentile:
X when Z has a p-value of 0.975, so X when Z = 1.96.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]1.96 = \frac{X - 1262}{118}[/tex]
[tex]X - 1262 = 1.96*118[/tex]
[tex]X = 1493[/tex]
Between 1031 and 1493.
(c) What is the interquartile range of the number of chocolate chips in a bag of chocolate chip cookies?
Difference between the 75th percentile and the 25th percentile.
25th percentile:
X when Z has a p-value of 0.25, so X when Z = -0.675.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-0.675 = \frac{X - 1262}{118}[/tex]
[tex]X - 1262 = -0.675*118[/tex]
[tex]X = 1182[/tex]
75th percentile:
X when Z has a p-value of 0.75, so X when Z = 0.675.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]0.675 = \frac{X - 1262}{118}[/tex]
[tex]X - 1262 = 0.675*118[/tex]
[tex]X = 1342[/tex]
IQR:
1342 - 1182 = 160