Answer:
please translate in english
what is the difference between 25ml and 25.00ml
Answer:
There is no difference between the two.
Explanation:
They both show the same volume. But, adding decimal places shows the least count of the instrument used and is more acceptable when recording values in scientific experiments
What must happen to uranium before it can be used as a fuel source?
Answer: Uranium enrichment. Uranium is used to fuel nuclear reactors; however, uranium must be enriched before it can be used as fuel. Enriching uranium increases the amount of uranium-235 (U235) that can sustain the nuclear reaction needed to release energy and produce electricity at a nuclear power plant.
Uhm cell parts and functions
A cell is the structural and fundamental unit of life. The study of cells from its basic structure to the functions of every cell organelle is called Cell Biology. Robert Hooke was the first Biologist who discovered cells
two types of cell
1) Prokaryotes
2) Eukaryotes
Characteristics of Cells
1) Cells provide structure and support to the body of an organism.
2) The cell interior is organised into different individual organelles surrounded by a separate membrane.
3) The nucleus (major organelle) holds genetic information necessary for reproduction and cell growth
[tex]hope \: its \: helpful \: to \: you \: please \: mark \: me \: a \: brainliest[/tex]
A cell is defined as the fundamental, structural and functional unit of all life.
have a great day
God bless you
what is meant by density
Answer:
The degree of compactness of a substance
Determine the effect each given mutation would have on the rate of glycolysis in muscle cells.
a. loss of binding site for fructose 1 ,6-bisphophate in pyruvate kinase.
b. loss of allosteric binding site for ATP in pyruvate kinase.
c. loss of allosteric binding site for AMP in phosphofructokinase.
d. loss of regulatory binding site for ATP in phosphofructokinase.
1. Increase
2. decrease
3. No effect
Answer:
a. Decrease
b. Increase
c. Increase
d. No effect
Explanation:
Glycolysis is present in muscle cells which converts glucose to pyruvate, water and NADH. It produces two molecules of ATP. Cellular respiration produces more molecules of ATP from pyruvate in mitochondria. Glycolysis increases in pyruvate kinase.
a. Loss of binding site for fructose 1,6-bisphosphate in pyruvate kinase: Decrease
b. Loss of allosteric binding site for ATP in pyruvate kinase: No effect
c. Loss of allosteric binding site for AMP in phosphofructokinase: Increase
d. Loss of regulatory binding site for ATP in phosphofructokinase: Increase
A. An important substrate in the glycolysis pathway is fructose 1,6-bisphosphate. It stimulates pyruvate kinase, an essential enzyme in glycolysis. The amount of pyruvate kinase that is activated will decrease if the fructose 1,6-bisphosphate binding site in pyruvate kinase is eliminated. As a result the rate of glycolysis in the muscle cells will probably decrease.
B. The allosteric ATP binding site of pyruvate kinase controls how active the enzyme is. However, pyruvate kinase is not significantly regulated by ATP in muscle cells. Therefore, it is unlikely that deletion of the ATP-binding allosteric site in pyruvate kinase would have no effect on the rate of glycolysis in muscle cells.
C. The rate-limiting enzyme in glycolysis, phosphofructokinase, is activated from all forms by AMP. It increases the rate of glycolysis by stimulating the activity of phosphofructokinase. If the allosteric binding site for AMP is eliminated, phosphofructokinase activation will be reduced. As a result, the rate of glycolysis in muscle cells will decrease.
D. Phosphofructokinase is inhibited allosterically by ATP. It regulates the rate of glycolysis by a feedback mechanism. High ATP concentrations cause phosphofructokinase to bind to its regulatory site, limiting its activity and delaying glycolysis. If the regulatory binding site for ATP is eliminated, the inhibitory action of ATP on phosphofructokinase would be lost. As a result, muscle cells will glycolysis at a faster rate.
Learn more about glycolysis, here:
https://brainly.com/question/26990754
#SPJ6
Balance the following skeleton reaction and identify the oxidizing and reducing agents: Include the states of all reactants and products in your balanced equation. You do not need to include the states with the identities of the oxidizing and reducing agents.
NO_2(g) rightarrow NO_3^-(aq) +NO_2^- (aq) [basic]
The oxidizing agent is:______.
The reducing agent is:_______.
Answer:
a. 2NO₂ (g) + 2OH⁻ (aq) → NO₃⁻ (aq) + NO₂⁻ (aq) + H₂O (l)
b. i. NO₂⁻ is the oxidizing agent
ii. NO₃⁻ is the reducing agent.
Explanation:
a. Balance the following skeleton reaction
The reaction is
NO₂ (g) → NO₃⁻ (aq) + NO₂⁻ (aq)
The half reactions are
NO₂ (g) → NO₃⁻ (aq) (1) and
NO₂ (g) → NO₂⁻ (aq) (2)
We balance the number of oxygen atoms in equation(1) by adding one H₂O molecule to the left side.
So, NO₂ (g) + H₂O (l) → NO₃⁻ (aq)
We now add two hydrogen ions 2H⁺ on the right hand side to balance the number of hydrogen atoms
NO₂ (g) + H₂O (l) → NO₃⁻ (aq) + 2H⁺ (aq)
The charge on the left hand side is zero while the total charge on the right hand side is -1 + 2 = +1. To balance the charge on both sides, we add one electron to the right hand side.
So, NO₂ (g) + H₂O (l) → NO₃⁻ (aq) + 2H⁺ (aq) + e⁻ (4)
Since the number of atoms in equation two are balanced, we balance the charge since the charge on the left hand side is zero and that on the right hand side is -1. So, we add one electron to the left hand side.
So, NO₂ (g) + e⁻ → NO₂⁻ (aq) (5)
We now add equation (4) and (5)
So, NO₂ (g) + H₂O (l) → NO₃⁻ (aq) + 2H⁺ (aq) + e⁻ (4)
+ NO₂ (g) + e⁻ → NO₂⁻ (aq) (5)
2NO₂ (g) + H₂O (l) + e⁻ → NO₃⁻ (aq) + NO₂⁻ (aq) + 2H⁺ (aq) + e⁻ (4)
2NO₂ (g) + H₂O (l) → NO₃⁻ (aq) + NO₂⁻ (aq) + 2H⁺ (aq)
We now add two hydroxide ions to both sides of the equation.
So, 2NO₂ (g) + H₂O (l) + 2OH⁻ (aq) → NO₃⁻ (aq) + NO₂⁻ (aq) + 2H⁺ (aq) + 2OH⁻ (aq)
The hydrogen ion and the hydroxide ion become a water molecule
2NO₂ (g) + H₂O (l) + 2OH⁻ (aq) → NO₃⁻ (aq) + NO₂⁻ (aq) + 2H₂O (l)
2NO₂ (g) + 2OH⁻ (aq) → NO₃⁻ (aq) + NO₂⁻ (aq) + H₂O (l)
So, the required reaction is
2NO₂ (g) + 2OH⁻ (aq) → NO₃⁻ (aq) + NO₂⁻ (aq) + H₂O (l)
b. Identify the oxidizing agent and reducing agent
Since the oxidation number of oxygen in NO₂ is -2. Since the oxidation number of NO₂ is zero, we let x be the oxidation number of N.
So, x + 2 × (oxidation number of oxygen) = 0
x + 2(-2) = 0
x - 4 = 0
x = 4
Since the oxidation number of oxygen in NO₂⁻ is -1. Since the oxidation number of NO₂⁻ is -1, we let x be the oxidation number of N.
So, x + 2 × (oxidation number of oxygen) = 0
x + 2(-2) = -1
x - 4 = -1
x = 4 - 1
x = 3
Also, the oxidation number of oxygen in NO₃⁻ is -1. Since the oxidation number of NO₃⁻ is -1, we let x be the oxidation number of N.
So, x + 2 × (oxidation number of oxygen) = -1
x + 3(-2) = -1
x - 6 = -1
x = 6 - 1
x = 5
i. The oxidizing agent
The oxidation number of N changes from +4 in NO₂ to +3 in NO₂⁻. So, Nitrogen is reduced and thus NO₂⁻ is the oxidizing agent
ii. The reducing agent
The oxidation number of N changes from +4 in NO₂ to +5 in NO₃⁻. So, Nitrogen is oxidized and thus and NO₃⁻ is the reducing agent.
Calculate the no. of moles in 15g of CaCl2
Answer:
[tex]\boxed {\boxed {\sf 0.14 \ mol \ CaCl_2}}[/tex]
Explanation:
We are asked to calculate the number of moles of 15 grams of calcium chloride (CaCl₂).
To convert from grams to moles, we use the molar mass, or the mass of 1 mole of a substance. Molar masses are found on the Periodic Table because they are equivalent to the atomic masses, but the units are grams per mole instead of atomic mass units.
Look up the individual elements in the compound: calcium and chloride.
Ca: 40.08 g/mol Cl: 35.45 g/molNotice the chemical formula has a subscript of 2 after Cl or chlorine. There are 2 moles of chlorine in every 1 mole of calcium chloride. We must multiply chlorine's molar mass by 2 before adding calcium's molar mass.
Cl₂: 35.45 * 2 = 70.9 g/mol CaCl₂= 40.08 + 70.9 = 110.98 g/molWe will convert using dimensional analysis, so we must create a ratio using the molar mass.
[tex]\frac {110.98 \ g \ CaCl_2}{ 1 \ mol \ CaCl_2}[/tex]
We are converting 15 grams of calcium chloride to moles, so we must multiply the ratio by this value.
[tex]15 \ g \ CaCl_2 *\frac {110.98 \ g \ CaCl_2}{ 1 \ mol \ CaCl_2}[/tex]
Flip the ratio so the units of grams of calcium chloride cancel.
[tex]15 \ g \ CaCl_2 *\frac { 1 \ mol \ CaCl_2}{110.98 \ g \ CaCl_2}[/tex]
[tex]15 *\frac { 1 \ mol \ CaCl_2}{110.98}[/tex]
[tex]\frac { 15}{110.98} \ mol \ CaCl_2[/tex]
[tex]0.1351594882\ mol \ CaCl_2[/tex]
The original measurement of grams (15) has 2 significant figures, so our answer must have the same. For the number we calculated, that is the hundredth place. The 5 in the thousandth place tells us to round the 3 up to a 4.
[tex]0.14 \ mol \ CaCl_2[/tex]
15 grams of calcium chloride is approximately 0.14 moles of calcium chloride.
What is the mass of a piece of iron if its density is 1.98 g/mL and its volume is 2.45 mL?
0.80 g
4.858
1.248
5.998
2.71 g
Answer:
4.858 g
Explanation:
Start with the formula
density = [tex]\frac{mass}{volume}[/tex]
density = 1.98 g/mL
volume = 2.45 mL
mass = ??
rearrange the formula to solve for mass
(density) x (volume) = mass
Add in the substitutes and solve for mass
1.98 g/mL x 2.45 mL = 4.858 g
name a factor tht affects the value of electron affinity
Answer:
Atomic sizeNuclear chargesymmetry of the electronic configurationConsider the Fischer ester synthesis of methyl benzoate from benzoic acid and methanol in the presence of sulfuric acid as a catalyst. A reaction was performed in which 3.3 g of benzoic acid was reacted with excess methanol to make 1.7 g of methyl benzoate. Calculate the theoretical yield and percent yield for this reaction.
Answer:
46.2%
Explanation:
Number of moles benzoic acid reacts = 3.3g/122.12 g/mol = 0.027 moles
Since the reaction is 1:1, 0.027 moles of methyl benzoate is formed.
Hence;
Theoretical yield of methyl benzoate = 0.027 moles × 136.15 g/mol = 3.68 g
% yield = actual yield/theoretical yield × 100
% yield = 1.7 g/3.68 g × 100
% yield = 46.2%
It is advised that the bromobenzene solution be added slowly to the magnesium-ether solution so that it isn't present in a high concentration, thus reducing the amount of by-product formed. What is the by-product
Answer:
Biphenyl
Explanation:
The reaction of bromo benzene with magnesium-ether solution yields a Grignard reagent.
The byproduct of this reaction is biphenyl. It is formed when two unreacted bromobenzene molecules are coupled together.
Hence, It is advised that the bromobenzene solution be added slowly to the magnesium-ether solution so that it isn't present in a high concentration, thus reducing the amount of biphenyl by-product formed.
0. When measuring tert-butyl alcohol for this experiment, a student first weighs an empty graduated cylinder, then pours 15 mL of the alcohol into the graduated cylinder and weighs the cylinder again. He records the amount of alcohol used as the difference in these two masses. What is wrong with this method
Answer:
Both have solutions in the graduated cylinder.
Explanation:
Recording the amount of alcohol used as the difference between two masses is the wrong method used for measuring tert-butyl alcohol for the experiment. For measuring tert-butyl alcohol for this experiment, the student has to measure the two masses when both the graduated cylinders has solution of tert-butyl alcohol not when one of it is empty (having no tert-butyl alcohol ).
The wrong aspect is that the liquid didn't need to be weighed. Instead the volume should have been recorded with the aid of the graduated cylinder.
What is a Graduated cylinder?This is a cylinder with marked readings and is used to measure the volume of liquids in the laboratory.
The graduated cylinder will accurately measure the amount of alcohol used due to it being volatile and the mass fluctuating during the measurement.
Read more about Graduated cylinder here https://brainly.com/question/24869562
Balance the redox reaction Al(s) + MnO4^- (aq) --> MnO2 (s) + Al(OH)4^- (aq) in aqueous basic solution
Answer:
Al + MnO4- + 2H2O → Al(OH)4- + MnO2
Explanation:
First of all, we out down the skeleton equation;
Al + MnO4- → MnO2 + Al(OH)4-
Secondly, we write the oxidation and reduction equation in basic medium;
Oxidation half equation:Al + 4H2O + 4OH- → Al(OH)4- + 4H2O + 3e-
Reduction half equation:MnO4- + 4H2O + 3e- → MnO2 + 2H2O + 4OH-
Thirdly, we add the two half reactions together to obtain:
Al + MnO4- + 8H2O + 4OH- + 3e- → Al(OH)4- + MnO2 + 6H2O + 3e- + 4OH-
Lastly, cancel out species that occur on both sides of the reaction equation;
Al + MnO4- + 8H2O→ Al(OH)4- + MnO2 + 6H2O
The simplified equation now becomes;
Al + MnO4- + 2H2O → Al(OH)4- + MnO2
2. Write the chemical equation for the reaction NaOH Sodium Hydroxide AgNO3 Silver Nitrate
Answer:
AgNO3 + NaOH = AgOH + NaNO3.
Explanation:
Balancing Strategies: In this reaction, the products are initially NaNO3 + AgOH. However the AgOH would break down into Ag2O and H2O. This would give us NaNO3 + Ag2O + H2O as our products for the overall reaction.
Balancing Strategies: In this reaction, the products are initially NaNO3 + AgOH. However the AgOH would break down into Ag2O and H2O. This would give us NaNO3 + Ag2O + H2O as our products for the overall reaction.However, the equation balanced here is the initial reaction which produces AgOH and NaNO3.
Please help thank you
Answer:
[tex]K=1.7x10^{-3}[/tex]
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to solve this problem by firstly setting up the equilibrium expression for the given reaction, in agreement to the law of mass action:
[tex]K=\frac{[NO]^2}{[N_2][O_2]}[/tex]
Next, we plug in the given concentrations on the data table to obtain:
[tex]K=\frac{(0.034)^2}{(0.69)(0.98)}\\\\K=1.7x10^{-3}[/tex]
Regards!
A solution is made by dissolving 5.84 grams of NaCl in enough distilled water to give a final volume of 1.00 L. What is the molarity of the solution
Group of answer choices
0.0250 M
0.400 M
0.100 M
1.00 M
Answer:
Explanation:
1. A solution is made by dissolving 5.84g of NaCl is enough distilled water to a give a final volume of 1.00L. What is the molarity of the solution? a. 0.100 M b. 1.00 M c. 0.0250 M d. 0.400 M 2. A 0.9% NaCl (w/w) solution in water is a. is made by mixing 0.9 moles of NaCl in a 100 moles of water b. made and has the same final volume as 0.9% solution in ethyl alcohol c. a solution that boils at or above 100°C d. All the above (don't choose this one) 3. In an exergonic process, the system a. gains energy b. loses energy c. either gains or loses energy d. no energy change at all
Answer:
[tex]\boxed {\boxed {\sf 0.100 \ M }}[/tex]
Explanation:
Molarity is a measure of concentration in moles per liter.
[tex]molarity = \frac{moles \ of \ solute}{liters \ of \ solution}}[/tex]
The solution has 5.84 grams of sodium chloride or NaCl and a volume of 1.00 liters.
1. Moles of SoluteWe are given the mass of solute in grams, so we must convert to moles. This requires the molar mass, or the mass of 1 mole of a substance. These values are found on the Periodic Table as the atomic masses, but the units are grams per mole, not atomic mass units.
We have the compound sodium chloride, so look up the molar masses of the individual elements: sodium and chlorine.
Na: 22.9897693 g/mol Cl: 35.45 g/molThe chemical formula (NaCl) contains no subscripts, so there is 1 mole of each element in 1 mole of the compound. Add the 2 molar masses to find the compound's molar mass.
NaCl: 22.9897693 + 35.45 = 58.4397693 g/molThere are 58.4397693 grams of sodium chloride in 1 mole. We will use dimensional analysis and create a ratio using this information.
[tex]\frac {58.4397693 \ g\ \ NaCl} {1 \ mol \ NaCl}[/tex]
We are converting 5.84 grams to moles, so we multiply by that value.
[tex]5.84 \ g \ NaCl *\frac {58.4397693 \ g\ NaCl} {1 \ mol \ NaCl}[/tex]
Flip the ratio. It remains equivalent and the units of grams of sodium chloride cancel.
[tex]5.84 \ g \ NaCl *\frac {1 \ mol \ NaCl}{58.4397693 \ g\ NaCl}[/tex]
[tex]5.84 *\frac {1 \ mol \ NaCl}{58.4397693 }[/tex]
[tex]0.09993194823 \ mol \ NaCl[/tex]
2. MolarityWe can use the number of moles we just calculated to find the molarity. Remember there is 1 liter of solution.
[tex]molarity= \frac{moles \ of \ solute}{liters \ of \ solution}[/tex]
[tex]molarity= \frac{ 0.09993194823 \ mol \ NaCl}{1 \ L}[/tex]
[tex]molarity= 0.09993194823 \ mol \ NaCl/L[/tex]
3. Units and Significant FiguresThe original measurements of mass and volume have 3 significant figures, so our answer must have the same. For the number we calculated, that is the thousandths place. The 9 in the ten-thousandths place tells us to round the 9 to a 0, but then we must also the next 9 to a 0, and the 0 to a 1.
[tex]molarity \approx 0.100 \ mol \ NaCl/L[/tex]
1 mole per liter is 1 molar or M. We can convert the units.
[tex]molarity \approx 0.100 \ M \ NaCl[/tex]
The molarity of the solution is 0.100 M.
A tree is an example
of a vascular plant that
is
because it
has deep roots.
A. tall
B. tiny
C. small
Dyshort
A skydiver slows down from 65 m/s to 5 m/s by opening the parachute. If this
takes 0.75 seconds, what is the skydiver's acceleration?
A. 45 m/s2 up
B. 80 m/s2 up
C. 45 m/s2 down
D. 80 m/s2 down
Answer:
D. -80m/s^2
Explanation:
V = u + at
5 = 65 + a (0.75)
0.75a = -60
a = -60/0.75
a = -80m/s^2
Therefore, is decelerating at 80m/s^2
Answer:
[tex]\boxed {\boxed {\sf D. \ 80 \ m/s^2 \ down}}[/tex]
Explanation:
We are asked to find the acceleration of a skydiver. Acceleration is the change in velocity over the change in time, so the formula for calculating acceleration is:
[tex]a= \frac{v_f-v_i}{t}[/tex]
The skydiver was initially traveling 65 meters per second, then he slowed down to a final velocity of 5 meters per second. He slowed down in 0.75 seconds.
[tex]\bullet \ v_f = 5 \ m/s \\\bullet \ v_i= 65 \ m/s \\\bullet \ t= 0.75 \ s[/tex]
Substitute the values into the formula.
[tex]a= \frac{ 5 \ m/s - 65 \ m/s}{0.75 \ s}[/tex]
Solve the numerator.
[tex]a= \frac{-60 \ m/s}{0.75 \ s}[/tex]
Divide.
[tex]a= -80 \ m/s^2[/tex]
The acceleration of the skydiver is -80 meters per second squared or 80 meters per second squared down. The skydiver is slowing down or decelerating, so the acceleration is negative or down.
What type of bonding is occuring in the compound below?
A. Covalent polar
B. Metallic
C. Ionic
D. Covalent nonpolar
Answer:
(B). it's metallic bonding
What is the balanced form of the following equation?
Br2 + S2O32- + H2O → Br1- + SO42- + H+
Answer:
5 Br₂ + S₂O₃²⁻ + 5 H₂O ⇒ 10 Br⁻ + 2 SO₄²⁻ + 10 H⁺
Explanation:
We will balance the redox reaction through the ion-electron method.
Step 1: Identify both half-reactions
Reduction: Br₂ ⇒ Br⁻
Oxidation: S₂O₃²⁻ ⇒ SO₄²⁻
Step 2: Perform the mass balance, adding H⁺ and H₂O where appropriate
Br₂ ⇒ 2 Br⁻
5 H₂O + S₂O₃²⁻ ⇒ 2 SO₄²⁻ + 10 H⁺
Step 3: Perform the charge balance, adding electrons where appropriate
2 e⁻ + Br₂ ⇒ 2 Br⁻
5 H₂O + S₂O₃²⁻ ⇒ 2 SO₄²⁻ + 10 H⁺ + 10 e⁻
Step 4: Make the number of electrons gained and lost equal
5 × (2 e⁻ + Br₂ ⇒ 2 Br⁻)
1 × (5 H₂O + S₂O₃²⁻ ⇒ 2 SO₄²⁻ + 10 H⁺ + 10 e⁻)
Step 5: Add both half-reactions
5 Br₂ + S₂O₃²⁻ + 5 H₂O ⇒ 10 Br⁻ + 2 SO₄²⁻ + 10 H⁺
e. Which of the following is a mixture? i. Water ii. Hydrogen iii. Air iv. Iron
water is known as the mixture
Answer:
iv. Iron
water is not a mixture
hydrogen is the simplest element
air is pure
1. Draw the condensed structural formula of sodium benzoate showing all charges, atoms including any lone pairs in the side chain functional group, and all sigma and pi bonds.
2. Draw the condensed structural formula of benzoic acid showing all atoms including any lone pairs in the side chain functional group, and all sigma and pi bonds. Indicate the acidic hydrogen.
3. Draw the condensed structural formula of tetrahydrofuran (THF) showing all heteroatoms plus their lone pairs and all sigma and pi bonds.
The structures are shown in the image attached.
A structural formula is the representation of the molecule in which all atoms and bonds in the molecule are shown.
Since the question requires that all the lone pairs, formal charges and sigma and pi bonds should be shown, then the simple condensed structural formula becomes insufficient in this case.
I have attached images of the structural formula of sodium benzoate (image 1), benzoic acid (image 2) and tetrahydrofuran (image 3).
All the formal charges, lone pairs as well as sigma and pi bonds are fully shown.
https://brainly.com/question/9988658
15.27
The following equilibria were attained at 823 K:
COO(s) + H2() Co(s) + H2O(g) K = 67
COO(s) + CO(8) = Co(s) + CO2(8) K = 490
Based on these equilibria, calculate the equilibrium con-
stant for
H2(g) + CO2(g) = CO(g) + H2O(g) at 823 K.
The equilibrium constant for the reaction is K = 0.137
We obtain the equilibrium constant considering the following equilibria and their constants:
COO(s) + H₂(g) → Co(s) + H₂O(g) K₁ = 67
COO(s) + CO(g) → Co(s) + CO₂(g) K₂ = 490
We write the first reaction in the forward direction because we need H₂(g) in the reactants side:
(1) COO(s) + H₂(g) → Co(s) + H₂O(g) K₁ = 67
Then, we write the second reaction in the reverse direction because we need CO₂(g) in the reactants side. Thus, the equilibrium constant for the reaction in the reverse direction is the reciprocal of the constant for the reaction in the forward direction (K₂):
(2) Co(s) + CO₂(g) → COO(s) + CO(g) K₂ = 1/490
From the addition of (1) and (2), we obtain:
COO(s) + H₂(g) → Co(s) + H₂O(g) K₁ = 67
+
Co(s) + CO₂(g) → COO(s) + CO(g) K₂ = 1/490
-------------------------------------------------
H₂(g) + CO₂(g) → CO(g) + H₂O(g)
Notice that Co(s) and COO(s) are removed that appear in the same amount at both sides of the chemical equation.
Now, the equilibrium constant K for the reaction that is the sum of other two reactions is calculated as the product of the equilibrium constants, as follows:
K = K₁ x K₂ = 67 x 1/490 = 67/490 = 0.137
You can learn more about equilibrium constants here:
https://brainly.com/question/15118952
What volume of each solution contains 0.14 mol of KCl? Express your answer using two significant figures.
1.8 M KCl
Answer:
Solution given:
1 mole of KCl[tex]\rightarrow [/tex]22.4l
1 mole of KCl[tex]\rightarrow [/tex]74.55g
we have
0.14 mole of KCl[tex]\rightarrow [/tex]74.55*0.14=10.347g
74.55g of KCl[tex]\rightarrow [/tex]22.4l
10.347 g of KCl[tex]\rightarrow [/tex]22.4/74.55*10.347=3.11litre
volume of each solution contains 0.14 mol of KCl contain 3.11litre.
[tex]\:[/tex]
1 mole of KCl → 22.4l
1 mole of KCl → 74.55g
we have
0.14 mole of KCl → 74.55*0.14=10.347g
74.55g of KCl → 22.4l
10.347 g of KCl → 22.4/74.55*10.347=3.11litre
volume of each solution contains 0.14 mol of KCl contain 3.11litre.
A sample of a compound is analyzed and found to contain 0.420 g nitrogen, 0.480g oxygen, 0.540 g carbon and 0.135 g hydrogen. What is the empirical formula of the compound? a. C2H5NO b. CH3NO c. C3H9N2O2 d. C4HN3O4 e. C4H13N3O3
Answer:
c. C3H9N2O2
Explanation:
The empirical formula of a compound is defined as the simplest whole number ratio of atoms present in a molecule. To solve this question we need to convert the mass of each atom to moles. With the moles we can find the ratio as follows:
Moles N -Molar mass: 14.01g/mol-
0.420g N * (1mol/14.01g) = 0.0300 moles N
Moles O -Molar mass: 16g/mol-
0.480g O * (1mol/16g) = 0.0300 moles O
Moles C -Molar mass: 12.01g/mol-
0.540g C * (1mol/12.01g) = 0.0450 moles C
Moles H -Molar mass: 1.0g/mol-
0.135g H * (1mol/1g) = 0.135moles H
Dividing in the moles of N (Lower number of moles) the ratio of atoms is:
N = 0.0300 moles N / 0.0300 moles N = 1
O = 0.0300 moles O / 0.0300 moles N = 1
C = 0.0450 moles C / 0.0300 moles N = 1.5
H = 0.135 moles H / 0.0300 moles N = 4.5
As the empirical formula requires whole numbers, multiplying each ratio twice:
N = 2, O = 2, C = 3 and H = 9
And the empirical formula is:
c. C3H9N2O2
Consider the reaction: NaNO3(s) + H2SO4(l) NaHSO4(s) + HNO3(g) ΔH° = 21.2 kJ
How much heat must absorbed by the reaction system to convert 100g of NaNO3 into NaHSO4(s)?
Answer:
endet nach selam nw
4gh7
A 1 liter solution contains 0.370 M hypochlorous acid and 0.493 M sodium hypochlorite. Addition of 0.092 moles of barium hydroxide will: (Assume that the volume does not change upon the addition of barium hydroxide.)
In the original solution you have the mixture of a weak acid (Hypochlorous acid) and its conjugate base (Sodium hypochlorite). That is a buffer.
The barium hydroxide will react with hypochlorous acid. If this reaction cause the complete reaction of hypochlorous acid, the buffer break its capacity and the pH change in several units. In this case:
The addition of barium hydroxide will raise the pH slightly because the buffer still working.
The initial moles of those species are:
Hypochlorous acid:
[tex]1L * \frac{0.370mol}{1L} = 0.370 moles[/tex]
Sodium hypochlorite:
[tex]1L * \frac{0.493mol}{1L} = 0.493 moles[/tex]
Now, a strong acid as barium hydroxide (Ba(OH)₂) reacts with a weak acid as hypochlorous acid (HClO) as follows:
Ba(OH)₂ + 2HClO → Ba(ClO)₂ + 2H₂O
For a complete reaction of 0.092 moles of barium hydroxide are required:
[tex]0.092 moles Ba(OH)_2*\frac{2mol HClO}{1molBa(OH)_2} = 0.184 moles HClO[/tex]
As there are 0.370 moles, the moles of HClO after the reaction are:
0.370 moles - 0.184 moles = 0.186 moles of HClO will remain
As you still have hypochlorite and hypochlorous acid you still have a buffer.
Thus, the pH will raise slightly because the amount of acid is decreasing and slightly because the buffer can keep the pH.
Learn more about buffers in:
https://brainly.com/question/24302294
what is valency of an atom?
The number of replaceable electrons in an atom is called its valency.
Examples
Monovalent - HydrogenDivalent - OxygenValency = 8 - Number of electron in last shell [When number of electrons in last shell > 4]Valency = Number of electron in last shell [When number of electrons in last shell < 4]Thanks !
☺️☺️☺️☺️☺️☺️☺️
Answer:
the combining capacity if an atom is know as valency.
the property of an element that determines the number of other atimd with an aton if the element can combine.
Which subshells are found in each of the following shells
electron subshell - M shell
Answer:
3
Explanation:
The electron shells are labelled as K,L,M,N,O,P, and Q or 1,2,3,4,5,6, and 7.
As we go from innermost shell outwards, this number denotes the number of subshell in the shell. Electrons in outer shells have higher average energy and travel farther from the nucleus than those in inner shells.
Hence, M shell contains s,p and d subshells.
There are three isotopes of carbon. They have mass number of 12, 13 and 14. The average atomic mass of carbon is 12.0107 amu. What does this say about the relative abundances of the three isotopes?
Answer:
lots more of the carbon 12 than the others
havent calculated it percentage-wise but you can see its very close to 12 meaning it is of far greater abundance that carbon 13 and 14
Explanation: