Answer:
yes , k = 9
Step-by-step explanation:
The equation of a proportional relationship is
y = kx ← k is the constant of proportion
To find k divide both sides by x
[tex]\frac{y}{x}[/tex] = k
Check each ordered pair in the table
k = [tex]\frac{18}{2}[/tex] = 9
k = [tex]\frac{45}{5}[/tex] = 9
k = [tex]\frac{63}{7}[/tex] = 9
Thus the relationship is proportional with k = 9
Represent pictorially:
3x2/6 = 6/6 or = 1
Answer:
yes is correct 6/6 = 1 / 3*2=6 =1
Answer:
nonsense. what's the difference between 6/6 or 1 .
Which of the following is the constant ratio of the relation shown in the table?
Answer:
hello!
where are you from ?
Step-by-step explanation:
option 4 is correct ...there is no constant ratio.
Which shape has the greatest number of lines of symmetry?
A. rhombus
B. square
C. rectangle
D. parallelogram
(Algebra ll) Given the function below
Answer: B
Step-by-step explanation:
To find the values of x, we first need to write the function into an equation. We can derive 2 equations from the problem.
Equation 1: y=2|x+6|-4
Equation 2: y=6
Now, we can substitute.
2|x+6|-4=6
Let's solve for x.
2|x+6|-4=6 [add both sides by 4]
2|x+6|=10 [divide both sides by 2]
|x+6|=5 [subtract both sides by 6]
x=-1
Now that we know x=-1 is one of the solutions, we can eliminate C and D.
We know that the absolute value makes the number inside positive always. Therefore, let's solve for x with -5 instead.
|x+6|=-5 [subtract both sides by 6]
x=-11
Therefore, we know that B is the correct answer.
People at the state fair were surveyed about which type of lemonade they preferred. The results are shown below. Pink lemonade: 156 males, 72 females Yellow lemonade: 104 males, 48 females The events "prefers pink lemonade" and "female" are independent because P(pink lemonade | female) = P(pink lemonade) = 0.6. P(female | pink lemonade ) = P(pink lemonade) = 0.3. P(pink lemonade | female) = 0.3 and P(pink lemonade) = 0.6. P(female | pink lemonade ) = 0.3 and P(pink lemonade) = 0.6.
Answer:
[tex]P(pink) = P(pink |\ female) = 0.6[/tex]
Step-by-step explanation:
Given
[tex]\begin{array}{ccc}{} & {Male} & {Female} & {Pink} & {156} & {72} \ \\ {Yellow} & {104} & {48} \ \end{array}[/tex]
Required
Why [tex]prefers\ pink\ lemonade[/tex] and [tex]female[/tex] are independent
First, calculate [tex]P(pink |\ female)[/tex]
This is calculated as:
[tex]P(pink |\ female) = \frac{n(pink\ \&\ female)}{n(female)}[/tex]
[tex]P(pink |\ female) = \frac{72}{48+72}[/tex]
[tex]P(pink |\ female) = \frac{72}{120}[/tex]
[tex]P(pink |\ female) = 0.6[/tex]
Next, calculate [tex]P(pink)[/tex]
[tex]P(pink) = \frac{n(pink)}{n(Total)}[/tex]
[tex]P(pink) = \frac{156 + 72}{156 + 72 + 104 + 48}[/tex]
[tex]P(pink) = \frac{228}{380}[/tex]
[tex]P(pink) = 0.6[/tex]
So, we have:
[tex]P(pink) = P(pink |\ female) = 0.6[/tex]
Hence, they are independent
Answer:
P(pink lemonade | female) = P(pink lemonade) = 0.6.
Step-by-step explanation:
A
why can two prime numbers only have one common factor?
A prime number has exactly two factors, 1 and itself. For example, 13 is a prime number because the only factors of 13 are 1 and 13. The number 8 is not prime because it has four factors: 1, 2, 4 and 8. The number 1 is not a prime number because it only has one factor (itself).
A candy bar box is in the shape of a triangular prism. The volume of the box is 1,200 cubic centimeters.
Answer:
[tex]Height = 12cm[/tex]
Step-by-step explanation:
Given
[tex]Volume = 1200cm^3[/tex]
The dimension of the base is:
[tex]Base =10cm[/tex]
[tex]Sides = 13cm[/tex]
See comment for complete question
Required
The height of the base
To do this, we make use of Pythagoras theorem where:
[tex]Sides^2 = (Base/2)^2 + Height^2[/tex]
So, we have:
[tex]13^2 = (10/2)^2 + Height^2[/tex]
[tex]13^2 = 5^2 + Height^2[/tex]
[tex]169 = 25 + Height^2[/tex]
Collect like terms
[tex]Height^2 = 169 - 25[/tex]
[tex]Height^2 = 144[/tex]
Take square roots of both sides
[tex]Height = 12cm[/tex]
Chang knows one side of a triangle is 13 cm. Which set of two sides is possible for the lengths of the other two
sides of this triangle?
5 cm and 8 cm
6 cm and 7 cm
7 cm and 2 cm
8 cm and 9 cm
Answer:
8 cm and 9 cm
Step-by-step explanation:
Hi there!
The sum of the lengths of two sides of a triangle must always be greater than the length of the third side.
5 cm and 8 cm ⇒ 5+8=13; not greater than 13
6 cm and 7 cm ⇒ 6+7=13; not greater than 13
7 cm and 2 cm ⇒ 7+2=9; not greater than 13
8 cm and 9 cm ⇒ 8+9=17; greater than 13
Therefore, the last set of two sides is possible for the lengths of the the other two sides of this triangle.
I hope this helps!
3x + y = 10 x - y = 2 2
Last year there were 221 students and 12 teachers at Hilliard School. This year there are 272 students. The principal wants to keep the same student to teacher ratio as last year. Which proportion can the principal use to find x, the number of teacher needed this year?
Answer:
3264:221
Step-by-step explanation:
If by last year there were 221 students and 12 teachers at Hilliard School, then;
221students = 12teachers
To find the equivalent ratio for 272students, we can say;
272students = x teachers
Divide both expressions
221/272 = 12/x
Cross multiply
221 * x = 272 * 12
221x = 3264
x = 3264/221
x = 3264:221
This gives the required proportion
Use the quadratic formula to find both solutions to the quadratic equation
given below.
3x2 - x + 4 = 0
Answer:
[tex]x = \dfrac{1 + i\sqrt{47}}{6}[/tex] or [tex]x = \dfrac{1 - i\sqrt{47}}{6}[/tex]
Step-by-step explanation:
[tex] x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} [/tex]
We have a = 3; b = -1; c = 4.
[tex] x = \dfrac{-(-1) \pm \sqrt{(-1)^2 - 4(3)(4)}}{2(3)} [/tex]
[tex]x = \dfrac{1 \pm \sqrt{1 - 48}}{6}[/tex]
[tex]x = \dfrac{1 \pm \sqrt{-47}}{6}[/tex]
[tex]x = \dfrac{1 + i\sqrt{47}}{6}[/tex] or [tex]x = \dfrac{1 - i\sqrt{47}}{6}[/tex]
pls help me i’m so stuck
Answer:
Step-by-step explanation:
If a point (x, y) is reflected across y = -x, coordinates of the image point will be,
(x, y)→ (-y, -x)
Following this rule,
Vertices of the triangle will be,
(3, 1) → (-1, -3)
(3, -2) → (2, -3)
(6, -3) → (3, -6)
Therefore, image of the given triangle A will be,
(-1, -3), (2, -3) and (3, -6)
What is (f.g)(x)?
f(x)=x^3 - 4x + 2
g(x)=x^2 + 2
Answer:
f(g(x)) =
[tex] {x}^{6} + 6 {x}^{4} + 8x^{2} + 2[/tex]
Step-by-step explanation:
put g(x) instead of any x in f(x)
[tex] {(x ^{2} + 2) }^{3} - 4( {x}^{2} + 2) + 2[/tex]
Determine the area of the triangle.
96.0 square units
16.9 square units
192.0 square units
97.5 square units
Answer:
A. 96.0 square units
Step-by-step explanation:
The formula for the area of a triangle when we know the side length of two sides and the measure of an included angle of a triangle is given as:
A = ½*a*b*Sin C
Where,
a = 13
b = 15
C = 80°
Plug in the values into the formula
A = ½*13*15*Sin 80
A = 96.0187559
A = 96.0 square units (nearest tenth)
Answer:A
Step-by-step explanation: I took the test
Helpppp ,I will mark you brainlist
Answer:
Okay
Step-by-step explanation:
The vertices of a triangle are P(-6,1), Q(-2,-5) and R(8,1).
Find the equation of the perpendicular bisector of the side QR
Answer:
Step-by-step explanation:
Find the slope of QR. From that we can find the the slope of the line perpendicular to QR.
Q(-2, -5) & R(8,1)
[tex]Slope \ = \frac{y_{2}-y_{1}}{x_{2}-x_{1}}\\\\=\frac{1-[-5]}{8-[-2]}\\\\=\frac{1+5}{8+2}\\\\=\frac{6}{10}\\\\=\frac{-3}{5}[/tex]
So, the slope of the line perpendicular to QR = -1/m - 1÷ [tex]\frac{-5}{3} = -1*\frac{-3}{5}=\frac{3}{5}[/tex]
Bisector of QR divides the line QR to two half. We have find the midpoint of QR.
Midpoint = [tex](\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2})[/tex]
[tex]=(\frac{-2+8}{2},\frac{-5+1}{2})\\\\=(\frac{6}{2},\frac{-4}{2})\\\\=(3,-2)[/tex]
slope = 3/5 and the required line passes through (3 , -2)
y - y1 = m(x-x1)
[tex]y - [-2] = \frac{3}{5}(x - 3)\\\\y + 2 = \frac{3}{5}x-\frac{3}{5}*3\\\\y=\frac{3}{5}x-\frac{9}{5}-2\\\\y=\frac{3}{5}x-\frac{9}{5}-\frac{2*5}{1*5}\\\\y=\frac{3}{5}x-\frac{9}{5}-\frac{10}{5}\\\\y=\frac{3}{5}x-\frac{19}{5}[/tex]
Determine the values of xfor which the function can be replaced by the Taylor polynomial if the error cannot exceed 0.001.(Enter your answer using interval notation. Round your answer to four decimal places.)
Answer:
The values of x for which the function can be replaced by the Taylor polynomial if the error cannot exceed 0.001 is 0 < x < 0.3936.
Step-by-step explanation:
Note: This question is not complete. The complete question is therefore provided before answering the question as follows:
Determine the values of x for which the function can be replaced by the Taylor polynomial if the error cannot exceed 0.001. f(x) = e^x ≈ 1 + x + x²/2! + x³/3!, x < 0
The explanation of the answer is now provided as follows:
Given:
f(x) = e^x ≈ 1 + x + x²/2! + x³/3!, x < 0 …………….. (1)
[tex]R_{3}[/tex] = (x) = (e^z /4!)x^4
Since the aim is [tex]R_{3}[/tex](x) < 0.001, this implies that:
(e^z /4!)x^4 < 0.0001 ………………………………….. (2)
Multiply both sided of equation (2) by (1), we have:
e^4x^4 < 0.024 ……………………….......……………. (4)
Taking 4th root of both sided of equation (4), we have:
|xe^(z/4) < 0.3936 ……………………..........…………(5)
Dividing both sides of equation (5) by e^(z/4) gives us:
|x| < 0.3936 / e^(z/4) ……………….................…… (6)
In equation (6), when z > 0, e^(z/4) > 1. Therefore, we have:
|x| < 0.3936 -----> 0 < x < 0.3936
Therefore, the values of x for which the function can be replaced by the Taylor polynomial if the error cannot exceed 0.001 is 0 < x < 0.3936.
Lindsey is a member of the swim team at a local university. She has been working hard to perfect her dive for an upcoming swim meet. Lindsey's dive can be modeled by the quadratic equation y = – 16x2 + 33x + 45, where x is time in seconds, and y is Lindsey's height in the air in feet.
Answer:
There is no actual question here, this is just a statement.
re-read the question .... i assume it says "what is the highest that she will get during a dive?"
highest point is at t = 33/32
– 16(33/32)^2 + 33(33/32) + 4 =
62.015625
Step-by-step explanation:
Lindsey will be 30 feet in the air at approximately 1.09 seconds and 2.48 seconds.
To find the time at which Lindsey will be 30 feet in the air, we need to solve the quadratic equation y = -16x² + 33x + 45 for x when y = 30.
Setting y equal to 30, we have:
30 = -16x² + 33x + 45
Rearranging the equation, we have:
16x² - 33x - 15 = 0
To solve this quadratic equation, we can factor or use the quadratic formula. In this case, factoring might be more challenging, so we'll use the quadratic formula:
x = (-b ± √(b² - 4ac)) / (2a)
Plugging in the values from our equation, we have:
x = (-(-33) ± √((-33)² - 4(16)(-15))) / (2(16))
Simplifying, we get:
x = (33 ± √(1089 + 960)) / 32
x = (33 ± √(2049)) / 32
Calculating the square root of 2049, we have:
x = (33 ± √(2049)) / 32
x ≈ 1.09 or x ≈ 2.48
To learn more about quadratic equation click on,
https://brainly.com/question/27958207
#SPJ2
Complete question is:
Lindsey is a member of the swim team at a local university. She has been working hard to perfect her dive for an upcoming swim meet. Lindsey's dive can be modeled by the quadratic equation y = – 16x² + 33x + 45, where x is time in seconds, and y is Lindsey's height in the air in feet.
At what time will Lindsey be 30 feet in air?
What is the equation of the following line?
Answer:
The equation of the line is y=7x
What is the equation of the following line written in general form? (The y-intercept is -1.)
Answer:
2x-y-1=0
Step-by-step explanation:
.
WILL MARK BRAINLIEST
Please help solve problems with common tangents.
Answer:
not sure, sorry : p
Step-by-step explanation:
Write each as a percent. Use proportions.
7/25
2/3
3/8
Can Someone Help Me With This ?
Answer:
its to pixelated
Step-by-step explanation:
What function is graphed below?
Answer:
[tex]y\ =\ \ \tan\theta\ +2[/tex]
Step-by-step explanation:
Find the area of circle Q in terms of x
Answer:
The answer is C 100πcm^3
A 90 % confidence interval for the average salary of all CEOs in the electronics industry was constructed using the results of a random survey of 45 CEOs. the interval was ($133, 306, $150, 733). To make useful inferences from the data, it is desired to reduce the width of the confidence interval. Which of the following will result in a reduced interval width?
A) Increase the sample size and increase the confidence level.
B) Decrease the sample size and increase the confidence level.
C) Decrease the sample size and decrease the confidence level.
D) Increase the sample size and decrease the confidence level.
Answer: D) Increase the sample size and decrease the confidence level.
Step-by-step explanation:
A reduced interval width means that the data is more accurate. This can only be achieved if the sample size is increased because a larger sample size is able to capture more of the characteristics of the variables being tested.
A smaller confidence interval will also lead to a reduced interval width because it means that the chances of the prediction being correct have increased.
1/5 + 3/4 + 1/2
please helpppo asap
Answer:
29/20 or 1 9/20 or 1.45
Answer:
[tex]\frac{1}{5}+\frac{3}{4}+\frac{1}{2}[/tex]
lease common multiplier of 5,4,2 is 20
[tex]\frac{4}{20}+\frac{15}{20}+\frac{10}{20}[/tex]
[tex]Add\: 4+15+10= 29[/tex]
[tex]1/5+3/4+1/2=29/20[/tex]
[tex]Answer :\frac{29}{20}[/tex]
--------------------------
hope it helps
have a great day!!
(NEED THIS ASAP)
Tests show that the hydrogen ion concentration of a sample of apple juice is 0.0003 and that of ammonia is 1.3 x 10-9. Find the approximate pH of each liquid using the formula pH = -log (H+), where (H+) is the hydrogen ion concentration The pH value of the apple juice is___ The pH value of ammonia is____
1.pH of apple juice
A. 8.11
B. 1.75
C. 3.5
D. 2.1
2. pH of ammonia
A. 1.1
B. 7.0
C. 5.4
D. 8.9
Answer: I believe but not 100% sure
1) C
2) B
Step-by-step explanation:
The pH value of the apple juice is 3.5, option C) is the correct answer.
The pH value of the ammonia is 8.9, option D) is the correct answer.
What is pH of solution?The pH of a solution is defined as the logarithm of the reciprocal of the hydrogen ion concentration [H+] of the given solution.
From the formular;
pH = -log[ H⁺ ]
Given the data in the question.
For the Apple juice;
hydrogen ion concentration H⁺ = 0.0003 pH of the apple juice pH = ?pH = -log[ H⁺ ]
pH = -log[ 0.0003 ]
pH = 3.5
The pH value of the apple juice is 3.5
Option C) is the correct answer.
For the ammonia;
hydrogen ion concentration H⁺ = 1.3 × 10⁻⁹pH of the ammonia pH = ?pH = -log[ H⁺ ]
pH = -log[ 1.3 × 10⁻⁹]
pH = 8.9
The pH value of the ammonia is 8.9
Option D) is the correct answer.
Learn more about pH & pOH here: brainly.com/question/17144456
#SPJ2
What is the product?
Let ℤ be the set of all integers and let, (20) 0 = { ∈ ℤ| = 4, for some integer }, 1 = { ∈ ℤ| = 4 + 1, for some integer }, 2 = { ∈ ℤ| = 4 + 2, for some integer }, 3 = { ∈ ℤ| = 4 + 3, for some integer }. Is {0, 1, 2, 3 } a partition of ℤ? Explain your answer.
Answer:
[tex]\{0, 1, 2, 3\}[/tex] is a partition of Z
Step-by-step explanation:
Given
[tex]$$A _ { 0 } = \{n \in \mathbf { Z } | n = 4 k$$,[/tex] for some integer k[tex]\}[/tex]
[tex]$$A _ { 1 } = \{ n \in \mathbf { Z } | n = 4 k + 1$$,[/tex] for some integer k},
[tex]$$A _ { 2 } = { n \in \mathbf { Z } | n = 4 k + 2$$,[/tex] for some integer k},
and
[tex]$$A _ { 3 } = { n \in \mathbf { Z } | n = 4 k + 3$$,[/tex]for some integer k}.
Required
Is [tex]\{0, 1, 2, 3\}[/tex] a partition of Z
Let
[tex]k = 0[/tex]
So:
[tex]$$A _ { 0 } = 4 k[/tex]
[tex]$$A _ { 0 } = 4 k \to $$A _ { 0 } = 4 * 0 = 0[/tex]
[tex]$$A _ { 1 } = 4 k + 1$$,[/tex]
[tex]A _ { 1 } = 4 *0 + 1$$ \to A_1 = 1[/tex]
[tex]A _ { 2 } = 4 k + 2[/tex]
[tex]A _ { 2} = 4 *0 + 2$$ \to A_2 = 2[/tex]
[tex]A _ { 3 } = 4 k + 3[/tex]
[tex]A _ { 3 } = 4 *0 + 3$$ \to A_3 = 3[/tex]
So, we have:
[tex]\{A_0,A_1,A_2,A_3\} = \{0,1,2,3\}[/tex]
Hence:
[tex]\{0, 1, 2, 3\}[/tex] is a partition of Z