List of possible integral roots = 1, -1, 2, -2, 3, -3, 6, -6
List of corresponding remainders = 0, -16, -4, 0, 0, 96, 600, 1764
Check out the table below for a more organized way to represent the answer. The x values are the possible roots while the P(x) values are the corresponding remainders.
====================================================
Explanation:
We'll use the rational root theorem. This says that the factors of the last term divide over the factors of the first coefficient to get the list of all possible rational roots.
We'll be dividing factors of 6 over factors of 1. We'll do the plus and minus version of each. Since we're dividing over +1 or -1, this means that we're basically just looking at the plus minus of the factors of 6.
Those factors are: 1, -1, 2, -2, 3, -3, 6, -6
This is the list of possible integral roots.
Basically we list 1,2,3,6 with the negative versions of each value thrown in as well.
---------------------------------
From there, you plug each value into the P(x) function
If we plugged in x = 1, then,
P(x) = x^4 - 3x^3 - 3x^2 + 11x - 6
P(1) = (1)^4 - 3(1)^3 - 3(1)^2 + 11(1) - 6
P(1) = 1 - 3 - 3 + 11 - 6
P(1) = 0
This shows that x = 1 is a root, since we get a remainder 0. Do the same for the other possible rational roots listed above. You should find (through trial and error) that x = -2 and x = 3 are the other two roots.
Help with solving this Functions problem
Answer:
See answers below
Step-by-step explanation:
Given the following functions:
r(x) = x - 6
s(x) = 2x²
r(s(x)) = r(2x²)
Replacing x with 2x² in r(x) will give;
r(2x²) = 2x² - 6
r(s(x)) = 2x² - 6
(r-s)(x) = r(x) - s(x)
(r-s)(x) = x - 6 - 2x²
Rearrange
(r-s)(x) = - 2x²+x-6
(r+s)(x) = r(x) + s(x)
(r-s)(x) = x - 6 + 2x²
Rearrange
(r-s)(x) = 2x²+x-6
Open the graphing tool one last time. Compare the graphs of y=log (x-k) and y=log x+k in relation to their domain, range, and asymptotes. Describe what you see.
Answer:
sorry I don't know the answer
Answer:
For the equation y=log(x-k), the domain depends on the value of K. Sliding K moves the left bound of the domain interval. The range and the right end behavior stay the same. For the equation y=log x+k, the domain is fixed, starting at an x-value of 0. The vertical asymptote is also fixed. The range of the equation depends on K.
Step-by-step explanation:
What is the difference of the two polynomials? (NineX squared plus 8X) minus (twoX squared plus 3X)
Answer:
[tex]7x {}^{2} + 5x[/tex]
Step-by-step explanation:
[tex]9x {}^{2} + 8x - (2x {}^{2} + 3x) \\ \\ = 9x {}^{2} + 8x - 2x {}^{2} - 3x (remove \: brackets) \\\ \\ = 7x {}^{2} - 5x [/tex]
Remember the dataset of alligators which was about the length and weight of several aligators in Florida. The variable X is the length of aligator and the Y variable is the weight of them. A researcher decided to use decision tree and designed two steps: X<4, X>4. What is the name of this method of splitting?A. Multi-way splitting.B. Entropy classification.C. Binary splitting.D. Gini index.
Answer:
A. multi-way split.
Step-by-step explanation:
Multi way split consists of internal at decision tree branches. Gini index measures probability of impurity in the random variables chosen. Entropy is measure of uncertainty in the sample selected. Binary splitting is used to speed up numerical evaluation.
he following chart reports the number of cell phones sold at a big-box retail store for the last 26 days. a. What are the maximum and the minimum numbers of cell phones sold in a day? b. Using the median, what is the typical number of cell phones sold?
Answer:
Maximum = 19
Minimum = 4
Median = 12
Step-by-step explanation:
The maximum number of phone sold per day is the value to the right of the horizontal axis as the values are arranged in ascending order ; Hence, the maximum number of phones sold per day is 19
Also, the minimum number of phones sold per day is the value to the left of the plot, Hence, minimum number of phones sold per day is 14.
The Median value : 4, 9, 14, 19
The median = 1/2(n+1)th term
1/2(5)th term = 2.5 th term
Median (9 + 14) /2 = 13 /2 = 11.5 = 12 phones
Each side of a square is increasing at a rate of 8 cm/s. At what rate (in cm2/s) is the area of the square increasing when the area of the square is 49 cm2
Answer:
Step-by-step explanation:
This is nice and simple. I'm going to walk through it like I do when teaching this concept to my class for the first time. This is a good problem for that.
We are given a square and we are looking for the rate at which the area is increasing when a certain set of specifics are given. That means that the main equation for this problem is the area of a square, which is:
[tex]A=s^2[/tex] where s is a side.
Since we are looking for the rate at which the area is changing, [tex]\frac{dA}{dt}[/tex], we need to take the derivative of area formula implicitly:
[tex]\frac{dA}{dt}=2s\frac{ds}{dt}[/tex] that means that if [tex]\frac{dA}{dt}[/tex] is our unknown, we need values for everything else. We are given that the initial area for the square is 49. That will help us determine what the "s" in our derivative is. We plug in 49 for A and solve:
[tex]49=s^2[/tex] so
s = 7
We are also given at the start that the sides of this square are increasing at a rate of 8cm/s. That is [tex]\frac{ds}{dt}[/tex]. Filling it all in:
[tex]\frac{dA}{dt}=2(7)(8)[/tex] and
[tex]\frac{dA}{dt}=112\frac{cm^2}{s}[/tex]
The surface area of a square of side L is given by
[tex]A = L^2[/tex]
The rate of change of the area per unit time is
[tex]\dfrac{dA}{dt} = 2L\dfrac{dL}{dt}[/tex]
We can express the length L on the right hand side in terms of the area A [tex](L = \sqrt{A})[/tex]:
[tex]\dfrac{dA}{dt} = 2\sqrt{A}\dfrac{dL}{dt}[/tex]
[tex]\:\:\:\:\:\:\:=2(\sqrt{49\:\text{cm}^2})(8\:\text{cm/s})[/tex]
[tex]\:\:\:\:\:\:\:=112\:\text{cm}^2\text{/s}[/tex]
At the city museum, child admission is S5.80 and adult admission is $9.20. On Monday, twice as many adult tickets as child tickets
were sold, for a total sales of $895.40. How many child tickets were sold that day?
[tex]You can call c the number of children and a for adults; you get:5.20c+8.50a=1097.60anda=4c meaning that the number of adults was four times the children.Substituting this value of a into the first equation we get:5.2c+8.5(4c)=1097.65.2c+34c=1097.6rearranging:c=1097.639.2=28and so:a=4c=4⋅28=112[/tex]
I got: 28 children and 112 adults.
Complete the table for the function y = x−−√3 + 7.
Answer:
option D (5 6 8 9) is the answer
Answer:
X [tex]\Longrightarrow -8\Longrightarrow -1\Longrightarrow 1\Longrightarrow 8[/tex]
Y[tex]\Longrightarrow 5\Longrightarrow 6\Longrightarrow 8\Longrightarrow 9[/tex]
[tex]Answer\hookrightarrow D)[/tex]
-------------------------
Hope it helps...
Have a great day!!
An alarm clock is slow. It falls behind 4 minutes every 24 hours. If the clock was showing the correct time at 6:00 this morning, how many seconds ahead was the clock at 10:00 last night?
Answer:
80 Seconds
I dont really want to type the whole thing out, just think about it again, or go to a tutor website, you should be able to get it, you have to use these, multiplication of three numbers, and multiplication and division by factorization of numbers.
distance between 4, -4 and -7, -4
Step-by-step explanation:
here's the answer to your question
Answer: Distance = 11
Step-by-step explanation:
Concept:
Here, we need to know the idea of the distance formula.
The distance formula is the formula, which is used to find the distance between any two points.
If you are still confused, please refer to the attachment below for a clear version of the formula.
Solve:
Find the distance between A and B, where:
A (4, -4)B (-7, -4)[tex]Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]Distance=\sqrt{(4+7)^2+(-4+4)^2}[/tex]
[tex]Distance=\sqrt{(11)^2+(0)^2}[/tex]
[tex]Distance=\sqrt{121+0}[/tex]
[tex]Distance=\sqrt{121}[/tex]
[tex]Distance=11[/tex]
Hope this helps!! :)
Please let me know if you have any questions
A class contains 18 girls and 14 boys. For all parts of this question, each boy and girl are distinguishable from one another. Answer the following questions:a)In how many ways can a committee of one boy and one girl be chosen
Answer:
The total number of ways is 252.
Step-by-step explanation:
Number of girls = 18
number of boys = 14
Commitee of one girl and a boy
(18 C 1)(14 C 1)
= 252
Use the figure to find u.
Answer:
u = 2
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
cos theta = adj side / hypotenuse
cos 45 = sqrt(2) / u
u cos 45 = sqrt(2)
u = sqrt(2) / cos 45
u = sqrt(2) / 1/ sqrt(2)
u = sqrt(2) * sqrt(2)
u =2
u=2
Answer:
Solution given:
Relationship between base and hypotenuse is given by cos angle.Cos 45°=base/hypotenuse
[tex]\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{u}[/tex]
doing crisscrossed multiplication
[tex]\sqrt{2}*\sqrt{2}=1*u[/tex]
u=2
3w2 – 21w = 0
Need some help.
Answer:
The solutions are w=0 ,7
Step-by-step explanation:
3w^2 – 21w = 0
Factor out 3w
3w(w-7) =0
Using the zero product property
3w=0 w-7=0
w =0 w=7
The solutions are w=0 ,7
The winter group provides tax advice
what? ;-;.............
Initial amount problem help
Answer:
3000
growth
2.2%
Step-by-step explanation:
please help me!!!!!!!!!!!!
Step-by-step explanation:
24. = 249030/30
=8,301 rs
Answer:
24. 8301, divide 249030 by 30
25. 9989001, but i dont know the property
Step-by-step explanation:
A human resources office is working to implement an increase in starting salaries for new
administrative secretaries and faculty at a community college. An administrative secretary
starts at $28,000 and new faculty receive $40,000. The college would like to determine the
percentage increase to allocate to each group, given that the college will be hiring 8
secretaries and 7 faculty in the upcoming academic year. The college has at most $5,000 to
put towards raises. What should the percentage increase be for each group?
Answer:
Step-by-step explanation :
Let % increase in administrative secretary be = x
Let % increase in new faculty receive be = y
Administrative secretary salary = 28,000
New faculty receive Salary = 40,000
(8)*(x/100)* (28000) + (7)*(y/100)*(40000) = 5,000
2240x +2800 y = 5,000
224x +280 y = 500
56x +70y = 125
Therefore, x and y should be chosen such that it satisfy the above equation.
Test for symmetry and then graph the polar equation.
r=3−5sinθ
Answer:
Symmetric with respect to the x-axis
Symmetric with respect to the y-axis
Symmetric with respect to the origin
can you help me with these high rated questions
I wish you will help me with his highlighted questions
Answer:
52 is (a)
55 is.( d)
56. is (d)
simplify
log(125) + log(625) / log(25) - log(5)
Answer:
3.39794000867
Step-by-step explanation:
first add log 125 and 625 and divide the answer by log 25 and minus the answer by 5
Answer:
The answer is 7.
The work done by a machine in 2 minutes is 480J. Calculate the power of the machine
Answer:
I think the power is 4
Step-by-step explanation:
480J / 120 = 4
Put 2 mins into seconds which is 120 seconds
Sorry if it is wrong :)
Answer:
[tex]4\text{ watts}[/tex]
Step-by-step explanation:
In physics, the power of a machine is given by [tex]P=\frac{W}{\Delta t}[/tex], where [tex]W[/tex] is work in Joules and [tex]\Delta t[/tex] is time in seconds.
Convert 2 minutes into seconds:
2 minutes = 120 seconds.
Substitute [tex]W=480[/tex] and [tex]\Delta t=120[/tex] to solve for [tex]P[/tex]:
[tex]P=\frac{480}{120}=\boxed{4\text{ watts}}[/tex]
Find m/c.
A
18 in
12 in
C
B
28 in
If the total income generated from Gasoline for AER was $408 millions, how much would be the cost for a barrel of gasoline
PAIesung
0 Weber
chool Careers
Reading list
- Blake bought a motorcycle for $550 last year and sold it for $330 this year. What is his sale
price as a percentage of his purchase price?
Answer:
The sale price was 60% of the purchase price.
Step-by-step explanation:
Given that Blake bought a motorcycle for $ 550 last year and sold it for $ 330 this year, to determine what is his sale price as a percentage of his purchase price, the following calculation must be performed:
550 = 100
330 = X
330 x 100/550 = X
33000/550 = X
60 = X
Therefore, the sale price was 60% of the purchase price.
Simplify the following expression: (4x2)2 • (3x3)3
Answer:
432x^13
Step-by-step explanation:
(4x^2)^2 • (3x^3)^3
We know that a^b^c = a^(b*c)
4^2 x^2^2 * 3^3 x^3^3
16 x^4 * 27 x^9
We know that a^b ^ a^c = a^(b+c)
16*27 x^(4+9)
432x^13
Answer:
432x¹³
Step-by-step explanation:
( 4x² ) ² • ( 3x³ ) ²
( 16x²)² • ( 27x³)²
[tex]16 x{}^{2 \times 2} \times 6 {}^{3 \times 3 } \\ 16x {}^{4} \times27 {}^{9} [/tex]
[tex](16 \times 27)x {}^{4 + 9} [/tex]
432x¹³
Suppose 5 men and 7 women are on a crowded elevator. At the next floor, four people get off the elevator. Find the probability that three are women.
0.010
0.354
0.424
0.25
Answer:
B. 0.354Step-by-step explanation:
Combination of 4 out of 5 + 7 = 12 is:
12C4 = 12!/8!4! = 495Combination of 1 man and 3 women is:
5C1*7C3 = 5*7!/4!3! = 5*35 = 175Required probability:
P(3W) = 175/495 ≈ 0.353Correct choice is B
5 = –6x2 + 24x
5 = –6(x2 – 4x)
inside the parentheses and
.
–19 = –6(x – 2)2
StartFraction 19 Over 6 EndFraction = (x – 2)2
Plus or minus StartRoot StartFraction 19 Over 6 EndFraction EndRoot = x – 2
The two solutions are
Plus or minus StartRoot StartFraction 19 Over 6 EndFraction EndRoot.
Answer:
x = 2 - sqrt(19/6)
x = 2 + sqrt(19/6)
Step-by-step explanation:
Answer:
add 4
subtract 24 from 5
2
Step-by-step explanation:
The sum of two binomials is 12x2 − 5x. If one of the binomials is x2 − 2x, the other binomial is:
1. 11x2 − 7x.
2. 12x2 − 3x.
3. 11x2 − 3x.
4. None of these choices are correct.
Answer:
C. 11x² - 3x
Step-by-step explanation:
(12x² - 5x) - (x² - 2x)
12x² - 5x - x² + 2x
12x - x² - 5x + 2x
11x² - 3x
А _______ equation can be written in the form ax2 + bx+c=0 where a, b, and c are real numbers, and a is a nonzero number.
Fill in the blank.
A) quadratic
B) quartic
C) linear
D) cubic
Wrong answers WILL be reported. Thanks!
Answer:
A) quadratic
Step-by-step explanation:
ax2 + bx+c=0
Since the highest power of the equation is 2
A) quadratic -2
B) quartic- 4
C) linear- 1
D) cubic-3
Find the values of c such that the area of the region bounded by the parabolas y = 4x2 − c2 and y = c2 − 4x2 is 32/3. (Enter your answers as a comma-separated list.)
Answer:
-2,2
Step-by-step explanation:
Let
[tex]y_1=4x^2-c^2[/tex]
[tex]y_2=c^2-4x^2[/tex]
We have to find the value of c such that the are of the region bounded by the parabolas =32/3
[tex]y_1=y_2[/tex]
[tex]4x^2-c^2=c^2-4x^2[/tex]
[tex]4x^2+4x^2=c^2+c^2[/tex]
[tex]8x^2=2c^2[/tex]
[tex]x^2=c^2/4[/tex]
[tex]x=\pm \frac{c}{2}[/tex]
Now, the area bounded by two curves
[tex]A=\int_{a}^{b}(y_2-y_1)dx[/tex]
[tex]A=\int_{-c/2}^{c/2}(c^2-4x^2-4x^2+c^2)dx[/tex]
[tex]\frac{32}{3}=\int_{-c/2}^{c/2}(2c^2-8x^2)dx[/tex]
[tex]\frac{32}{3}=2\int_{-c/2}^{c/2}(c^2-4x^2)dx[/tex]
[tex]\frac{32}{3}=2[c^2x-\frac{4}{3}x^3]^{c/2}_{-c/2}[/tex]
[tex]\frac{32}{3}=2(c^2(c/2+c/2)-4/3(c^3/8+c^3/28))[/tex]
[tex]\frac{32}{3}=2(c^3-\frac{4}{3}(\frac{c^3}{4}))[/tex]
[tex]\frac{32}{3}=2(c^3-\frac{c^3}{3})[/tex]
[tex]\frac{32}{3}=2(\frac{2}{3}c^3)[/tex]
[tex]c^3=\frac{32\times 3}{4\times 3}[/tex]
[tex]c^3=8[/tex]
[tex]c=\sqrt[3]{8}=2[/tex]
When c=2 and when c=-2 then the given parabolas gives the same answer.
Therefore, value of c=-2, 2