Answer:
First choice: (1/4)(2 + v) = 3; v = 10 pounds of chopped vegetables
Step-by-step explanation:
"2 pounds of meat with some chopped vegetables"
2 + v
"She divides the mixture into 4 equal portions."
(1/4)(2 + v)
"Each portion weighs 3 pounds."
(1/4)(2 + v) = 3
2 + v = 12
v = 10
Answer: (1/4)(2 + v) = 3; v = 10 pounds of chopped vegetables
Answer:
(2+v)=3 v=10
Step-by-step explanation:
what equation accurately represent this statement three less than 4 times a number is less than 12
Answer: 4t - 3 < 12
Step-by-step explanation:
On the first day in each month, Enid deposited $4 into her bank account and Jim deposited $3 into his. They opened these accounts on May 15, 1990. On December 31, 1990, they each had $72 dollars in their account. How much did each person deposit on May 15?
Answer:
The amount of money in Enid bank account can be written as a linear equation.
Ye = Xe + $4*m
where Ye is the money that Enid has in her account, m is the number of months that have passed since she opened it, and Xe is the initial deposit.
For Jim, the equation is similar:
Yj = Xj + $3*m
where Yj and Xj are similar as above.
Between May 15 and December 31 of the same year, we have 7 months (where i am counting December because the deposit is made in the first day of the month).
Then we have that:
Ye = $72 = Xe + $4*7 = Xe + $28
Xe = $72 - $28 = $44
So in May 15, Enid deposited $44.
For Jim we have:
Yj = $72 = Xj + $3*7 = Xj + $21
Xj = $72 - $21 = $51
So in May 15, Jim deposited $51.
PLEASE HELP Ruri is a 30-year-old math teacher. She has been informed that she is the winner of a grand prize for the lottery. She can choose either a one-time payment of $20 million or $5000 per week for the rest of her life. Which choice would most likely result in the greatest amount of winnings for Ruri? Explain your reasoning.
Answer:
$5,000 per week
Step-by-step explanation:
Ruri is a 30 year old female.
there are about 4 weeks per month
there are about 52 weeks per year
52*5000 = 260,000
She would get 260,000 per year and lets see how much she would have at 40.
260,000*10
at 40 she would have 2,600,000
2,600,000*10
at 50 she would have 26,000,000
at 50 she already has earned more money that the $20 million.
She should go with the $5000 per week if she would like more money.
All the edges of a cube have the same length. Tony claims that the formula SA = 6s, where s is the length of
each side of the cube, can be used to calculate the surface area of a cube.
a. Draw the net of a cube to determine if Tony's formula is correct.
b. Why does this formula work for cubes?
Frances believes this formula can be applied to calculate the surface area of any rectangular prism. Is
she correct? Why or why not?
d. Using the dimensions of Length, Width and Height, create a formula that could be used to calculate the
surface area of any rectangular prism, and prove your formula by calculating the surface area of a
rectangular prism with dimensions L = 5m, W = 6m and H=8m.
Answer:
Here's what I get
Step-by-step explanation:
a. Net of a cube
Fig. 1 is the net of a cube
b. Does the formula work?
Tony's formula works if you ignore dimensions.
There are six squares in the net of a cube.
If each side has a unit length s, the total area of the cube is 6s.
c. Will the formula work for any rectangular prism?
No, because a rectangular prism has sides of three different lengths — l, w, and h — as in Fig. 2.
d. Area of a rectangular prism
A rectangular prism has six faces.
A top (T) and a bottom (b) — A = 2×l×w
A left (L) and a right (R) — A = 2×l×h
A front (F) and a back (B) — A = 2×w×h
Total area = 2lw + 2lh + 2wh
If l = 5 m, w = 6 m and h = 8 m,
[tex]\begin{array}{rl}A &=& \text{2$\times$ 5 m $\times$ 6 m + 2$\times$ 5 m $\times$ 8 m + 2 $\times$ 6 m $\times$ 8 m}\\&=& \text{60 m}^{2} + \text{80 m}^{2} + \text{96 m}^{2}\\&=& \textbf{236 m}^{2}\\\end{array}[/tex]
pls help with sum geometry
YES! quite easily.
I hope you can see the two pairs of corresponding angles between the parallel lines. they'll be equal
and then there's a pair of vertically opposite angle at centre.
that means all pairs of corresponding angles are equal, thus, triangles are similar by AAA
Answer:
[tex]\Large \boxed{\mathrm{D}}[/tex]
Step-by-step explanation:
The triangles can be proven by AA or Angle-Angle similarity.
[tex]\angle QUR \cong \angle TUS[/tex]
The vertical angles are congruent.
[tex]\angle R \cong \angle S[/tex]
The alternate interior angles are congruent.
What’s is the greatest common factor of 100x^2 - 250xy + 75x
Answer:
The greatest common factor of the expression is 25x
Step-by-step explanation:
Here, we are interested in giving the greatest common factor of the expression.
We can do this by factorization till we have no common factors left.
the expression is;
100x^2 -250xy + 75x
we start with the common factor x;
x(100x -250y + 75)
The next thing to do here is to find the greatest common factor of 100,250 and 75.
The greatest common factor here is 25.
Thus, we have;
25x(4x -10y + 3)
There is no more factor to get from the terms in the bracket. This simply means that the terms in the bracket are no longer factorizable
So the greatest common factor we have is 25x
Two students use different methods to solve this multiplication problem:
3/4*-4 2/9
Read each of their methods below and then enter numbers to correctly complete their
work.
Answer/Step-by-step Explanation:
Given, [tex]\frac{3}{4}*-4\frac{2}{9}[/tex]
Ivy solves this problem by writing each number as a fraction and then multiplies as shown below:
[tex] \frac{3}{4}*-4\frac{2}{9} = \frac{3}{4}* -\frac{38}{9} [/tex]
[tex] = \frac{3}{4}*-\frac{38}{9} = -\frac{3*38}{4*9} = -\frac{1*19}{2*3}[/tex]
[tex]= -\frac{19}{6}[/tex]
Fabian solves this problem by writing the mixed number as a sum and applies the distributive method of multiplication as shown below:
[tex] \frac{3}{4}*-4\frac{2}{9} = \frac{3}{4}(-4 + -\frac{2}{9}) [/tex]
[tex] = \frac{3}{4}*-4 + \frac{3}{4}*-\frac{2}{9} [/tex]
[tex] = -\frac{3}{1} + \frac{1}{2}*-\frac{1}{3} [/tex]
[tex] = -3 + (-\frac{1}{6}) [/tex]
[tex] = -3 - \frac{1}{6} = -3\frac{1}{6} [/tex]
Please answer this question now
Answer:
30.9 cm²
Step-by-step explanation:
To find the surface area of this figure, we find the area of the base and the 3 identical sides.
The base is split into two identical right triangles. Let's find the area of one and multiply by two.
Half of 3: 1.5
[tex]1.5\cdot2.6=3.9\\3.9\div2=1.95[/tex]
There are two right triangles:
[tex]1.95\cdot2=3.9[/tex]
The area of one of the sides will be the same thing, except the height is 6.
[tex]1.5\cdot6=9\\9\div2=4.5\\4.5\cdot2=9[/tex]
There are 3 sides identical to this one:
[tex]9\cdot3=27[/tex].
Add 27 and 3.9:
[tex]27+3.9=30.9[/tex]
Hope this helped!
Answer:
30.9 square centimeters
Step-by-step explanation:
3 * 1/2(3)(6) + 1/2(3)(2.6) = 30.9
Which polynomial is a factor of both expressions? x – 8 x + 7 x – 2 (x – 2)2
Answer:
C. x-2
Step-by-step explanation:
edge
Answer: the 3rd the answer c
x-2
Step-by-step explanation:
Name a real world context to describe the sums of rational numbers.
Step-by-step explanation:
when you are cooking you need to measure fractions of ingredients
Complete the table. At least the first few so I understand how to do it
Answer:
What we need to do is simply multiply the values in both columns e.g 4 * 3/36 = 12/36
Please check explanation for complete answer
Step-by-step explanation:
Here, we are concerned about filling the empty columns of the table.
What we want to do here is simply straightforward. All we need to do is to
multiply the values of x by the values of P(x) in each of the individual rows.
Also recall, we do not need to reduce the fractions.
So we have;
2. 3 * 2/36 = 6/36
3. 4 * 3/36 = 12/36
4. 5 * 4/36 = 20/36
5. 6 * 5/36 = 30/36
6. 7 * 6/36 = 42/36
7. 8 * 5/36 = 40/36
8. 9 * 4/36 = 36/36
9. 10 * 3/36 = 30/36
10. 11 * 2/36 = 22/36
11. 12 * 1/36 = 12/36
Find the value of x. Round to the nearest tenth.Find the value of x. Round to the nearest tenth.
Answer:
x = 55.6Step-by-step explanation:
In order to find the value of x we use sine
sin ∅ = opposite / hypotenuse
From the question
x is the hypotenuse
the opposite is 19
So we have
sin 20 = 19/x
x = 19/sin 20
x = 55.55
We have the final answer as
x = 55.6 to the nearest tenthHope this helps you
Answer:
x = 55.6
Step-by-step explanation:
construct a right-angled triangle ABC where angle A =90 degree , BC= 4.5cm and AC= 7cm. please ans fast........ Very urgent. Pls don't give wrong answers
Answer and Step-by-step explanation: The described right triangle is in the attachment.
As it is shown, AC is the hypotenuse and BC and AB are the sides, so use Pytagorean Theorem to find the unknown measure:
AC² = AB² + BC²
[tex]AB^{2} = AC^{2}-BC^{2}[/tex]
[tex]AB =\sqrt{AC^{2}-BC^{2}}[/tex]
[tex]AB =\sqrt{7^{2}-4.5^{2}}[/tex]
[tex]AB =\sqrt{28.75}[/tex]
AB = 5.4
Then, right triangle ABC measures:
AB = 5.4cm
BC = 4.5cm
AC = 7cm
help me im dangered plzzzzzzzzzzzzzzzzzzzz
Answer:
A
Step-by-step explanation:
Hi!
An exponent is the same thing as just multiplying the expression by itself the number of times the exponent says. So we need to multiply 1/3 by itself three times.
1/3 * 1/3 * 1/3 = 1/27
Show all work to solve the equation for x. If a solution is extraneous, be sure to identify it in your final answer.
square root of the quantity x minus 3 end quantity plus 5 equals x
Answer:
Step-by-step explanation:
[tex]\sqrt{x-3} +5=x\\\sqrt{x-3} =x-5\\squaring ~both~sides\\x-3=x^2-10x+25\\x^2-10x-x+25+3=0\\x^2-11x+28=0\\x^2-7x-4x+28=0\\x(x-7)-4(x-7)=0\\(x-7)(x-4)=0\\x=7,4[/tex]
put x=7 in the given equation
[tex]\sqrt{7-3} +5=7\\\sqrt{4} +5=7\\2+5=7\\7=7[/tex]
which is true .
∴ x=7 is a solution of the given eq.
now put x=4 in the given eq.
[tex]\sqrt{4-3} +5=7\\1+5=7\\6=7\\[/tex]
which is not true.
∴x=4 is an extraneous solution.
Which of the following are natural numbers? There may be more than one correct answer. Select all that apply. If only one answer is correct, select "only" and the answer that applies. A.) only B.) −1,−2,−3,… C.) 7,8,9,… D.) fractions E.) 22
Answer:
Option C and option E
Step-by-step explanation:
C.) 7,8,9,…
E.) 22
Natural numbers are also called counting numbers.
They begin from 1, 2, 3 to infinity.
Natural numbers are greater than zero (0)
They do not have decimal point in them.
They are positive integers, as such they do not have minus
Natural numbers can include commas when they are large like 3,000
Find f(x) and g(x) so the function can be expressed as y = f(g(x)). (1 point) [tex]y=\frac{7}{x^{2} } +10[/tex]
Answer:
The functions are [tex]f(x) = 7\cdot x+10[/tex] and [tex]g(x) = \frac{1}{x^{2}}[/tex], respectively.
Step-by-step explanation:
Let suppose that [tex]g(x) = \frac{1}{x^{2}}[/tex], then [tex]f(g(x))[/tex] is:
[tex]f(g(x)) = 7\cdot \left(\frac{1}{x^{2}} \right) + 10[/tex]
[tex]f(g(x)) = 7\cdot g(x) + 10[/tex]
Thus,
[tex]f(x) = 7\cdot x + 10[/tex]
The functions are [tex]f(x) = 7\cdot x+10[/tex] and [tex]g(x) = \frac{1}{x^{2}}[/tex], respectively.
Two buildings are 12m apart on the same horizontal level. From the top of the taller building, the angle of depression of the bottom of the shorter building is 48degrees and from the bottom, the angle of of elevation of the top of the shorter building is 36 degrees. Calculate the difference in the heights of the buildings
Answer:
4.61 m
Step-by-step explanation:
The angle of depression of the bottom of the shorter building from the top of the taller building = 48° equals the angle of elevation of the top of the taller building from the bottom of the shorter building
Using trig ratios
tan48° = H/d where H = height of taller building and d = their distance apart = 12 m
H = dtan48° = 12tan48° = 13.33 m
Also, the angle of elevation of the top of the shorter building from the bottom of the taller building is 36°
Using trig ratios
tan36° = h/d where h = height of shorter building
h =dtan36° = 12tan36° = 8.72 m
Now, the difference in height of the buildings is thus H - h = 13.33 m - 8.72 m = 4.61 m
Solve for X answer asap thanks
Answer:
Step-by-step explanation:
The formula we need for this is
4(4 + x) = 5(5 + 3) and
16 + 4x = 5(8) and
16 + 4x = 40 and
4x = 24 so
x = 6, choice C.
Suppose that $9500 is placed in an account that pays 9% interest compounded each year.
Assume that no withdrawals are made from the account.
Follow the instructions below. Do not do any rounding.
(a) Find the amount in the account at the end of 1 year.
so
(b) Find the amount in the account at the end of 2 years.
$
?
Answer:
$11286.95 second year
$10335 first year
Step-by-step explanation:
9% of 9500 is 855, 9500 plus 855 = 10335. (first year)
9% of 10335 is 931.95, and 10335+931.95 is 11286.95. (second year)
The amount in the account at the end of 1 year $10335 (first year)
The amount in the account at the end of 2 years $11286.95.
What is the compound interest?Compound interest is when you earn interest on both the money you've saved and the interest you earn.
Formula:
A = P(1 + {r}/{n})^{n.t}
here, we have,
$9500 is placed in an account that pays 9% interest compounded each year.
so, we get,
9% of 9500 is 855,
9500 plus 855 = 10335. (first year)
again,
9% of 10335 is 931.95,
and 10335+931.95 is 11286.95. (second year)
Hence, The amount in the account at the end of 1 year $10335 (first year)
The amount in the account at the end of 2 years $11286.95.
To learn more on Compound interest click:
brainly.com/question/29335425
#SPJ2
Which of the following symbols could correctly finish the statement. Select all that apply. 0___-8 = ≠ > < ≥ ≤
Answer:
>
Step-by-step explanation:
Even though its 0 its still greater than any negative number.
Answer:
Step-by-step explanation:
5. Find the product of p(x) and q(x) if p(x) = 2x+7 and q(x) = 4x-9
a. Is p(x) a polynomial? If not, give an explanation.
b. Is q(x) a polynomiala If not, give an explanation.
c. Is the product a polynomials If not, give an explanation,
d. If the product is a polynomial, identify type and degree.
Answer:
p(x), q(x), and their product are all polynomials.
p(x) · q(x) = 6x² + 10x - 63
Step-by-step explanation:
First of all P(x) and q(x) are polynomials because polynomials refer to any sum, difference, or product of a collection of algebraic terms. The word polynomials is general. P(x) and q(x) are polynomials but more specifically they are binomials since they only have two terms. Their product is a polynomial as well, but more specifically its a trinomial because it has three terms.
process of multiplying
Using the distributive property (or foil method) when multiplying p(x) and q(x) you would first get the expression 6x² - 18x + 28x - 63. From here you would combine "like terms". This would give you your final answer of
6x² + 10x - 63. Sorry, I couldn't help you with the D question but I hope this helps ;)
Please help me understand this. Thank you! Gina has borrowed 100 songs from her friend. She plans to download an equal number of songs on her music player each week for 5 weeks. The graph shows the number of songs left to download, y, for a certain number of weeks, x: A graph titled Song Downloading shows the Number of Weeks on x-axis and Number of Songs Left to Download on the y-axis. The x-axis scale is shown from 0 to 5 at increments of 1, and the y-axis scale is shown from 0 to 140 at increments of 20. A straight line joins the ordered pairs 0, 100 and 1, 80 and 2, 60 and 3, 40 and 4, 20 and 5, 0. Part A: What is the rate of change and initial value of the function represented by the graph, and what do they represent in this scenario? Show your work to find the rate of change and initial value. (6 points) Part B: Write an equation in slope-intercept form to model the relationship between x and y. (4 points)
Answer:
Rate of Change/Slope = -20
Equation: y= -20x +100
Step-by-step explanation:
A. We know the rate of change is also known as the slope. If we used the slope formula to find the slope we can find the Rate of Change.
[tex]\frac{y2 - y1}{x2 - x1} = \frac{100-80}{1-2} = \frac{20}{-1} = -20[/tex]
B. Since we know the slope and 1 point on the graph we can substitute them in for 'b'
(0,100)
(100)=-20(0) + b
b = 100
Since we know the slope and the b value we can write the equation:\
y = -20x +100
The rate of change refers to the slope of the line, that is the change in y-axis per unit change in the value on the x-axis. Hence, the rate of change is :
Slope = - 20y = -20x + 100Slope = Rise / Run Rise = (y2 - y1) = (0 - 100) = - 100Run = (x2 - x1) = (5 - 0) = 5Slope = - 100 / 5 = - 20
General form of a slope - intercept relation :
y = bx + cThe intercept, c can be calculated thus:
100 = - 20(0) + c
100 = 0 + c
c = 100
Hence, the slope - intercept equation will be y = - 20x + 100
Learn more : https://brainly.com/question/18479471
-7p+2(5p-8)=6(p+6)-7
Answer:
-15
Step-by-step explanation:
-7p+10p-16=6p+36-7
3p-16=6p+29
3p-6p=29+16
-3p=45
p=45/-3
p=-15
If the initial amount of iodine-131 is 537 grams , how much is left after 10 days?
Answer:
225.78 grams
Step-by-step explanation:
To solve this question, we would be using the formula
P(t) = Po × 2^t/n
Where P(t) = Remaining amount after r hours
Po = Initial amount
t = Time
In the question,
Where P(t) = Remaining amount after r hours = unknown
Po = Initial amount = 537
t = Time = 10 days
P(t) = 537 × 2^(10/)
P(t) = 225.78 grams
Therefore, the amount of iodine-131 left after 10 days = 225.78 grams
**Yoxelt buys 4 1/2 gallons of soda. One-fourth of the soda he bought was Pepsi and the rest was Sprite. How many gallons of Pepsi did Yoxelt buy? Show all work below.
Answer:
1 1/8
Step-by-step explanation:
1/4 of the 4 1/2 gallons were Pepsi, so the amount is ...
(1/4)(9/2) = (1·9)/(4·2) = 9/8 = 1 1/8
Yoxelt bought 1 1/8 gallons of Pepsi.
URGENT PLZ HELP THANK YOU!
Answer:
[tex](-5)^{11}[/tex]
Step-by-step explanation:
We can use the exponent rules. If we have [tex]\frac{a^b}{a^c}[/tex], then it will simplify to [tex]a^{b-c}[/tex].
b is 5, c is -6, and a is -5 so:
[tex]-5^{5-(-6)}\\-5^{11}[/tex]
Hope this helped!
What is the y−intercept of the line that passes through the point (4,9)and is parallel to the line y=12x+2?
Answer:
y- intercept = - 39
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
y = 12x + 2 ← is in slope- intercept form
with slope m = 12
Parallel lines have equal slopes, thus
y = mx + c ← is the partial equation
To find c substitute (4, 9) into the partial equation
9 = 48 + c ⇒ c = 9 - 48 = - 39 ← y- intercept
Answer:
y-intercept = -39
Step-by-step explanation:
if two lines are parallel it means they have the same gradient so we compare the equation given to the default equation of a line
y=mx+c
y=12x+2
comparing we have the gradient m=12 now finding the equation of the line parallel to the given line we use
y-y1=m(x-x1)
y1=9 and x1=4
y-9=12(x-4)
y-9=12x-48
y=2x-48+9
y=2x-39
comparing to the default equation of a line y=mx+c where c is the y-intercept
therefore the y-intercept is -39
a hotel manager wants miriam to tile their lobby using the dame design she created for Mr.Rivera.The lobby measures 45 feet by 45 feet. he wants the outer edge to be the same color as the center tile. will this occur ? justify your answer
Answer:
Yes it will occur
Step-by-step explanation:
The lobby measures 45 feet by 45 feet
Area of the lobby = 45 * 45
=2025 ft^2
So, the lobby has 2025 tiles
subtract 1 black tile in the center
2025 tiles - 1 black tile =2024 tiles
The number of blue tiles and black tiles is 2024 tiles
He wants the outer edge to be the same color as the center tile so, divide by 2
2024/2 = 1012 tiles
The number of tiles in the outer edge is 1012 tiles and the number of tiles in the center is 1012 tiles
8 kids bought a 3 cakes. How many equal parts will need to divide it so that everyone can have it. Easy one!
Answer:
3/8 is your answer.
Step-by-step explanation:
Given:
8 kids bought a 3 cakes.
Required:
How many equal parts will need to divide it so that everyone can have it.
Solution:
3/8
Hope this helps ;) ❤❤❤