This question is solved by proportions
Doing this, we found that there were 144 students.
20736 was distributed. The number of rupees for each student is the number of students.
Considering n students, the amount each student receives is:
[tex]A = \frac{20736}{n}[/tex]
Considering each student received n rupees:
[tex]n = \frac{20736}{n}[/tex]
Applying cross multiplication:
[tex]n^2 = 20736[/tex]
[tex]n = \sqrt{20736}[/tex]
[tex]n = 144[/tex]
Thus, there were 144 students.
A similar question can be found at https://brainly.com/question/23843273
Please help me to solve this question pleaseee
Answer:
Step-by-step explanation:
1) ML // JK , MK is transversal,
∠LMK = ∠MKJ {Alternate interior angles are congruent}
∠LMK = 30°
In ΔMKO,
30 + 115 + ∠ JLM = 180 {Angle sum property of triangle}
145 +∠ JLM = 180
∠ JLM = 180 - 145
∠ JLM = 35°
2) AB // CD , AC is transversal
∠DCA = ∠BAC {Alternate interior angles are congruent}
∠DCA = 23
∠BCD = ∠DCA + ∠BCA
= 23 + 37
= 60
3) EF // HG ; FH is transversal
∠FHG = ∠HFE {Alternate interior angles are congruent}
∠FHG = 77
4) ZY // WX ; WY is transversal
∠ZYW = ∠XWY {Alternate interior angles are congruent}
= 65
ZY // WX ; WY is transversal
∠ZWY = ∠WYX {Alternate interior angles are congruent}
= 36
In ΔWZY
36 + 65 + ∠z = 180
101 +∠Z = 180
∠Z = 180 - 101
∠Z = 79
HURRY PLEASEE!!!! TAKING AN EXAM !! AND ITS TIMED!!! WILL GIVE BRAINLIEST!!
which rule represents the translation from the pre image ∆abc to ∆a'b'c'?
(x,y)-->(x+7,y+6)
(x,y)-->(x+7,y-6)
(x,y)-->(x-6,y+7)
(x,y)-->(x+6,y+7)
Answer:
B (x+7, y-6)
Step-by-step explanation:
It goes right 7 and down 6
Answer:
(x,y) --> (x+7, y-6)
Step-by-step explanation:
Good luck with your exam! :DD
Splash Island and Magic Park are amusement parks. If you visit splash Island, you pay $3 per ride plus a $14 entrance fee. If you visit Magic Park, you pay $5 per ride plus a $7 entrance fee. You have $32. At which park could you go on more rides?
Answer:
Splash Island.
Step-by-step explanation:
Magic Park = 32 - 7 = 25 you would have 25 dollars to spend on rides which would only get you 5 rides.
Splash Island = 32 - 14 = 18 this gives you 18 dollars to spend on rides, which would get you 6 rides.
Therefore you can go on more rides at Splash Island.
Hope this helps!
On a tuesday a magician said i made my wife disappear 31 days ago what day of the week did he make her disappear
Answer:
Saturday.
Step-by-step explanation:
To answer the above question, we must recognise that Tuesday appears once every 7 days.
If today is Tuesday, 31 days ago will be obtained as follow:
31/7 = 4 remainder 3
Thus
31 = (7 × 4) + 3
31 = (28) + 3
Thus, the 28th day is Tuesday. If we count 3 days back from Tuesday, the day will be Saturday.
Therefore, the magician made his wife disappear on Saturday.
HELPPPP, which expression is it?
Answer: D
Step-by-step explanation:
formula=V=(π)r2h
simplify the following
[tex]simplify \: the \: follwing \: \\ logx \: x9[/tex]
please I need help
Answer:
9
Step-by-step explanation:
Using the rules of logarithms
log[tex]x^{n}[/tex] = nlogx
[tex]log_{b}[/tex] b = 1
Then
[tex]log_{x}[/tex] [tex]x^{9}[/tex]
= 9[tex]log_{x}[/tex] x
= 9
please help with these two questions!!
6√5 + 3√6 = 6√5 + 3√6 [cannot be simplified]
; roots do not contain any perfect squares, and the roots are not similar.
6√5(3√6) = 18√30 [can be simplified]
; although roots do not contain any perfect squares, the product rule can be applied to create a singular expression.
Solve the following inequality: |x + 1| <_3
<_ = greater than or equal to
Answer:
x <= -4 or x >= 2
Step-by-step explanation:
so, it actually says
|x+1| >= 3
so, then, this is valid for all x >= 2 (then x+1 is 3 or higher), and for all x <= -4 (then x+1 is -3 or lower, and |x+1| is still 3 or higher)
Solve each of the following:
a) x² + 4x – 77 = 0
b) x(x + 4) = -2(3x + 8)
Please show your work
Answer:
a.) x=7 or x=-11
b.) x=−2 or x=−8
Step-by-step explanation:
a) x² + 4x – 77 = 0
Step 1: Factor left side of equation.
(x−7)(x+11)=0
Step 2: Set factors equal to 0.
x−7=0 or x+11=0
x=7 or x=−11
b.) x(x + 4) = -2(3x + 8)
Step 1: Simplify both sides of the equation.
x^2+4x=−6x−16
Step 2: Subtract -6x-16 from both sides.
x^2+4x−(−6x−16)=−6x−16−(−6x−16)
x^2+10x+16=0
Step 3: Factor left side of equation.
(x+2)(x+8)=0
Step 4: Set factors equal to 0.
x+2=0 or x+8=0
x=−2 or x=−8
Answer:
a) {-11, 7}.
b) {-8, -2}
Step-by-step explanation:
a) x^2 + 4x - 77 = 0
To factor this we need 2 numbers whose product is -77 and sum is + 4.
They are + 11 and - 7, so:
( x + 11)(x - 7) = 0
x + 11 = 0 or x - 7 = 0
x = -11, 7.
b) x(x + 4) = -2(3x + 8)
x^2 + 4x = -6x - 16
x^2 + 4x + 6x + 16 = 0
x^2 + 10x + 16 = 0
(x + 2)(x + 8) = 0
x = -8, -2.
Margaret took a trip to Italy. She had to convert US dollars to euros to pay for her expenses there. At the time she was traveling, the conversion rate was represented by the function , where n is the number of dollars and E(n) is the equivalent value in euros. Later, she traveled to Dubai and converted her remaining euros into the local currency, UAE dirhams. At that time, the conversion rate was represented by the function , where x is the number of euros and D(x) is the equivalent value in dirhams. Which function can be used to convert n dollars directly to dirhams?
The conversion rate US dollars to Euros is represented with the function:
E(n)=0.72n
n- number of dollars
E(n) - Euros as a function of US dollars
The conversion rate Euros to Dirhams is :
D(x)=5.10x
x- number of Euros
D(x)- Dirhams as a function of Euros
We are trying to find D(x) in terms of n.
D(x) = 5.10x
x can be rewritten as E(n)
D(x) = 5.10(E(n))
D(x) = 5.10(E(n))
D(x) = 5.10(0.72n)
D(x) = 3.672n
According to this the following statement is true:
A) (D x E)(n) = 5.10(0.72n)
Solve the inequality and write the solution in interval notation:
x-6/x+5 <0
(-5, 6)
[-5, 6)
(-infinity,-5) U [6,infinity)
(-infinity,-5] U (6,infinity)
Answer:
A
Step-by-step explanation:
Firstly x cannot be -5 because the expression on th left would be undefined so it's only between choices a and c.
Create a number line with makes the expression on left 0 and undefined...so at 6 and -5 this happens.
-------(-5)--------(6)---------
Let's test the 3 intervals by choosing a value from that interval to see if all numbers from that interval will make the expression on left less than 0.
Number before -5 is -6:
(-6-6)/(-6+5)=-12/-1=12 >0 so this interval is not a part of our solution.
Number between -5 and 6 is 0:
(0-6)/(0+5)=-6/5<0 so this interval is a part of our solution
Number after 6 like 7:
(7-6)/(7+5)=1/12>0 so this interval is not a part of our solution.
The winner is everything between-5 and 6 so answer is A.
3x + ky = 8
X – 2ky = 5
are simultaneous equations where k is a constant.
Show that x = 3.
Answer:
3X +ky=8 eqn 1
X-2ky=5 eqn 2
but we want to eliminate ky to get our X.
So let's multiply eqn 1 by 2.
We will have 6x +2ky=16 now eqn 3
now we add eqn 1 and 2
We will have 7x=21
divide by 7
x=3
Ilhan needs to write in function notation and evaluate this equation at the given value of the
independent variable. What answer should she get? 6x + y = 3; x=3
Answer:
it should be the second one I hope this help
When this open-ended cylinder is opened out, it forms a rectangle with a width of 25 cm. What is the area of the rectangle?.
Answer:
Just want the points
Step-by-step explanation:
The amount of water dispensed by a water dispenser is normally distributed,
with a mean of 11.60 ounces and a standard deviation of 0.15 ounces. In
which range will the amount of water dispensed be found 68% of the time?
A. 11.30 ounces to 11.90 ounces
B. 11.15 ounces to 12.05 ounces
C. 11.45 ounces to 11.75 ounces
D. 11.00 ounces to 12.20 ounces
SUBMIT
Answer:
The correct answer is - C. 11.45 ounces to 11.75 ounces.
Step-by-step explanation:
According to the empirical rule of the distribution for 68% falls under the normal curve falls within 1 standard deviation of the mean.
That is:
μ±δ
From the given information, the mean is
μ = 11.60
and the standard deviation is
δ = 0.15
We substitute the given parameters to obtain;
11.60±0.15
11.75 and 11.45
This means the lower limit is
11.45
and the upper limit is
11.75
A research historian is interested in finding sunken treasure in the Atlantic Ocean. She knows that her equipment is only good enough to recover items that are at a depth of 5 000 m or less. The speed of sound through the water is 1 530 m/s. While working, the sonar equipment detects a reflection that is of interest. The echo from the item takes 6.2 s to return to the sonar detector. Will she be able to retrieve this item?
Answer:
Yes, she will be able to retrieve the item
Step-by-step explanation:
The information with regards to the research historian interest in finding a sunken treasure are;
The depth from which the equipment can recover items = 5,000 m
The speed of sound through water, v = 1,530 m/s
The time it takes the echo from the item to return to the sonar detector, t = 6.2 s
Let d, represent the depth at which the item is located
Given that an echo travels from the sonar detector to the item and back to the sonar detector, the distance traveled by the sound wave which is received as an echo by the sonar detector = 2 × d
Velocity, v = Distance/time
∴ Distance = Velocity × Time
The distance traveled by the echo = 2 × d = v × t
2 × d = v × t
∴ 2 × d = 1,530 m/s × 6.2 s
d = (1,530 m/s × 6.2 s)/2 = 4,743 m
The depth at which the item is located, d = 4,743 m is less than the maximum depth the equipment can recover items, therefore, she will be able to retrieve the item.
Can you answer this math homework? Please!
Answer:
Height is equal = Y = 1.8 X + 3.1 = 2.3 X + 1.9
=> 2.3 X - 1.8 X = 3.1 - 1.9
=> 0.5 X = 1.2
=> x = 1.2/0.5 = 2.4
Time = 2.4 weeks
Step-by-step explanation:
Answer:
2.4
Step-by-step explanation:
17
x
3
8
Find the unknown side length, x. Write your answer in simplest radical form.
A 15
B. 5/10
C2/70
D. 4 37
==========================================================
Explanation:
It helps to add point labels. Let's place point A at the very top point of the triangle. Then point B will be at the 90 degree angle. Point C is the far left point. Lastly, point D is on segment BC such that DC = 3.
Since BC = 8 and CA = 17, we can use the pythagorean theorem to get...
(AB)^2 + (BC)^2 = (AC)^2
(AB)^2 + (8)^2 = (17)^2
(AB)^2 + 64 = 289
(AB)^2 = 289-64
(AB)^2 = 225
AB = sqrt(225)
AB = 15
Now focus on triangle ABD and apply the pythagorean theorem again to find side AD
(AB)^2 + (BD)^2 = (AD)^2
AD = sqrt( (AB)^2 + (BD)^2 )
AD = sqrt( (AB)^2 + (BC-CD)^2 )
AD = sqrt( (15)^2 + (8-3)^2 )
AD = sqrt(250)
AD = sqrt(25*10)
AD = sqrt(25)*sqrt(10)
AD = 5*sqrt(10) .... answer is choice B
In the diagram below, lines AB and CD are...
Answer:
Perpendicular
Step-by-step explanation:
Perpendicular lines intersect and create 4 90 degree angles
Line AB and CD intersect and create 4 90 degree angles therefore line AB and CD are perpendicular
Help anyone can help me do 16 and 17 question,I will mark brainlest.The no 16 question is find the area of the shaded region
Answer:
Question 16 = 22
Question 17 = 20 cm²
Step-by-step explanation:
Concepts:
Area of Square = s²
s = sideArea of Triangle = bh/2
b = baseh = heightDiagonals of the square are congruent and bisect each other, which forms a right angle with 90°
Segment addition postulate states that given 2 points A and C, a third point B lies on the line segment AC if and only if the distances between the points satisfy the equation AB + BC = AC.
Solve:
Question # 16
Step One: Find the total area of two squares
Large square: 5 × 5 = 25
Small square: 2 × 2 = 4
25 + 4 = 29
Step Two: Find the area of the blank triangle
b = 5 + 2 = 7
h = 2
A = bh / 2
A = (7) (2) / 2
A = 14 / 2
A = 7
Step Three: Subtract the area of the blank triangle from the total area
Total area = 29
Area of Square = 7
29 - 7 = 22
-----------------------------------------------------------
Question # 17
Step One: Find the length of PT
Given:
PR = 4 cmRT = 6 cmPT = PR + RT [Segment addition postulate]
PT = (4) + (6)
PT = 10 cm
Step Two: Find the length of S to PT perpendicularly
According to the diagonal are perpendicular to each other and congruent. Therefore, the length of S to PT perpendicularly is half of the diagonal
Length of Diagonal = 4 cm
4 ÷ 2 = 2 cm
Step Three: Find the area of ΔPST
b = PT = 10 cm
h = S to PT = 2 cm
A = bh / 2
A = (10)(2) / 2
A = 20 / 2
A = 10 cm²
Step Four: Find the length of Q to PT perpendicularly
Similar to step two, Q is the endpoint of one diagonal, and by definition, diagonals are perpendicular and congruent with each other. Therefore, the length of Q to PT perpendicularly is half of the diagonal.
Length of Diagonal = 4 cm
4 ÷ 2 = 2 cm
Step Five: Find the area of ΔPQT
b = PT = 10 cm
h = Q to PT = 2 cm
A = bh / 2
A = (10)(2) / 2
A = 20 / 2
A = 10 cm²
Step Six: Combine area of two triangles to find the total area
Area of ΔPST = 10 cm²
Area of ΔPQT = 10 cm²
10 + 10 = 20 cm²
Hope this helps!! :)
Please let me know if you have any questions
HELP?p?P?p?p?p?P?P?p?p?p?p?P?p?p?p?p?p?p?pp?p?p?P
Answer:
Yes, its a rational number.
Step-by-step explanation:
Rational numbers can be whole numbers, fractions, and decimals, and in this case it is a decimal.
Hope this helped!
Answer: yes
Step-by-step explanation:
yes 1.86 is a rational number
50 POINTS PLEASE HELP
Given the list of measures of EXTERIOR angles (missing one) of a polygon, find the missing angle:
a. ___, 92°, 28°, 55°, 75°, 55°
b. ___, 71°, 69°, 40°, 62°
c. ___, 120°, 38°, 80°
d. ___, 90°, 60°, 40°, 30°, 60°, 30°
Answer:
Step-by-step explanation:
The measures of the exterior angles of all polygons add up to 360. So all we have to do is subtract the given values from 360 and we will have the missing angle.
a. 55
b. 118
c. 122
d. 50
A 4.0kg brick is sliding on a surface. The coefficient of kinetic friction between the surfaces is 0.25. What is the size of the force of friction?
a. ON b. 1 N
c. 10 N
d. 4 N
Answer:
Choice C. 10N
Step-by-step explanation:
[tex]F_{k} =U_{k} *F_{N}\\F_{k} =.25*[(4kg*10m/s2)] : [40N][/tex]
[tex]F_{k} =10N[/tex]
HELPASAP (15 points)
A circle with an arc length of ____ centimeters is intercepted by a central angle of 3pi/4 radians has a radius of ____ centimeters.
1st Blank Options: 12pi, 4pi, 2pi
2nd Blank Options: 3, 16, 24
i’ve came so far and i’m almost there.. please help!!
Answer:
m = -1/3
Step-by-step explanation:
To get the slope of the line, we identify two points on the line and use the slope formula
We can have the points (-2,3) and (1,2)
We have the slope formula as;
m = (y2-y1)/(x2-x1)
m = (2-3)/(1 + 2) = -1/3
2/3 of a number is 11 work out half the number
Answer:
33/4
Step-by-step explanation:
Let n = number
2/3 * n = 11
Multiply each side by 3/2
3/2 * 2/3 n = 11 * 3/2
n = 33/2
We want to find 1/2 of n
1/2 * 33/2 = 33/4
WILL MARK BRAINLIEST! Can someone please help! I don't understand some of these questions :(
Answer:
18
Step-by-step explanation:
The interior and exterior angle of a polygon is supplementary
let interior be I
let exterior be E
I + E = 180
Since the interior angle is 8 times that of an exterior angle,
8E + E = 180 [replacing I with 8E]
9E = 180
E = 20
The exterior angle is 20 degrees
I + E = 180
I + 20 = 180
I = 160
The interior angle is 160 degrees.
The equation to find the interior angle of a polygon with 'n' number of sides is:
I = ( (n − 2) × 180 ) ⁄ n
We know the interior angle, so plug it in and solve for n:
160 = ( (n − 2) × 180 ) ⁄ n
160n = (n − 2) × 180
160n = 180n − 360
-20n = -360
n = 18
I need to verify this function is symmetric with respect to the y-axis. How would I go about doing that?
h(x)=x^4-5x^2+3
Answer:
Yes, the function is symmetric about y-axis.
Step-by-step explanation:
To check whether the function is symmetric with respect to y-axis, replace each x as -x and simplify.
If h(x) = h(-x) then it is symmetric about y-axis.
Let's find h(-x) now.
h(-x)= [tex](-x)^4} -5(-x)^{2} +3[/tex]
Let's simplify it
h(-x)=[tex]x^{4}-5x^{2} +3[/tex]
Here, h(x) = h(-x). The function is symmetric about y-axis.
What is the solution to the equation?
3 + V3x – 5= x
Answer: (D) 7
Step-by-step explanation:
Each side of a pentagon is 10 cm greater than the previous side. If the perimeter of this pentagon is 500 cm, find the lengths of the sides.
Answer: See explanation
Step-by-step explanation:
The perimeter of a pentagon is gotten through the summation of its five sides. Let the first side be represented by x. Since each side of a pentagon is 10 cm greater than the previous side, then the sides will be:
First side = x
Second side = x + 10
Third side = x + 10 + 10 = x + 20
Forth side = x + 30
Fifty side = x + 40
Therefore,
x + (x + 10) + (x + 20) + (x + 30) + (x + 40) = 500
5x + 100 = 500
5x = 500 - 100
5x = 400
x = 400/5
x = 80
Therefore, the lengths will be:
First side = x = 80cm
Second side = x + 10 = 80 + 10 = 90cm
Third side = x + 20 = 80 + 20 = 100cm
Forth side = x + 30 = 80 + 30 = 110cm
Fifty side = x + 40 = 80 + 40 = 120cm