Answer:
A and D are the answer.
Step-by-step explanation:
We can factor this by grouping
[tex]2 {x}^{2} + 5x - 3[/tex]
[tex]2 {x}^{2} + 6x - x - 3[/tex]
[tex]2x(x + 3) -1 (x + 3)[/tex]
The roots are
[tex](x + 3) = 0[/tex]
and
[tex]2x - 1 = 0[/tex]
Let solve for zero in each roots.
[tex]x = - 3[/tex]
[tex]2x = 1[/tex]
[tex]x = \frac{1}{2} [/tex]
HELP
-5(2m-3)-4<81
I need the steps also well
Answer:
m>-7
Step-by-step explanation:
expand
-10m+15-4<81
-10m+11<81
collect like terms
-10m<81-11
-10m<70
m>-7
A school contains 140 boys and 160 girls. what is the ratio of boys to girls?
I need full working out please
Answer:
7 : 8
Step-by-step explanation:
that is the procedure above
Which expression is equivalent to 3 square root of x^5*y
Answer:
√3 x^5y
First, let's do √3
√3=1.7
1.7 • x^5 • y
if you want
1.7 • X^4• x• y.
There are tons of equivalent's!
SOMEONE HELP ASAP PLES NO EXPLANATOIN NEEDED PLS LEAVE UR ANSWER AS TEXT (SOME TIMES I CAN'T SEE IMAGES) THANK YOU SO MUCH!!!
Answer:
i cant see the image
Step-by-step explanation:
Tessa conducts an experiment and obtains results that are statistically significant. What is meant by "statistically significant"? O It means that Tessa used a large sample size. O It means that the results that Tessa obtained are too unusual to be explained by chance alone. It means that Tessa's experiment was not biased. O It means that the individuals in the experiment were randomly assigned to the treatment groups. earch 0 so DOLL
9514 1404 393
Answer:
(b) It means that the results that Tessa obtained are too unusual to be explained by chance alone
Step-by-step explanation:
The test for statistical significance is a comparison of the result to the probability that it occurred by chance. The probability of a chance occurrence is usually set at 1% or 5%. The lower the percentage, the less likely a chance occurrence is, and the more difficult showing statistical significance becomes.
Subtract the given numbers in the indicated base.
41 five
tes
24 five
-
The difference is
five
9514 1404 393
Answer:
12
Step-by-step explanation:
In base-5 arithmetic, ...
41 -24 = 12
_____
If we use : to separate columns with different place value, this can be looked at a couple of ways.
Subtraction by addition
2 : 4 + 0 : 2 = 3 : 1 . . . . . make the 1s place match
3 : 1 + 1 : 0 = 4 : 1 . . . . . . make the 5s place match
The total amount added was 0:2 +1:0 = 1:2.
Subtraction using borrowing
4 : 1 - 2 : 4 = (4-1) : (5+1) - 2 : 4
= (4-1-2) : (5+1)-4 = 1:2
Meghan sells advertisements for a radio station. Each 30 second ad costs $20 per play, and each 60 second ad
costs $35 per play. Meghan sold 12 ads for $315. She wrote the system below letting x represent the number of 30
second ads and y represent the number of 60 second ads.
X+ y = 12
20x+35y = 315
What is the solution to the system of equations?
Need answers ASAP!!!!
Answer:
usai964s46s694s4o6s64694s946649s469 opps
Answer:
[tex](x,y)=(7,5)[/tex]
Step-by-step explanation:
Megan's equation will be:
[tex]20x+35y=315[/tex]
[tex]x+y=12[/tex]
Substitute [tex]x=12-y[/tex] in the first equation:
[tex]20(12-y)+35y=315[/tex]
[tex]15y=75[/tex]
[tex]y=75/15[/tex]
[tex]y=5[/tex]
Find x:
[tex]x=12-5[/tex]
[tex]x=7[/tex]
Where x and y represent 30-second and 60-second ads sold, we find that Meghan's sales were:
[tex](x,y)=(7,5)[/tex]
hope this helps....
A sample of 25 one-year-old girls had a mean weight of 24.1 pounds with a standard deviation of pounds. Assume that the population of weights is normally distributed. A pediatrician claims that the standard deviation of the weights of one-year-old girls is less than pounds. Do the data provide convincing evidence that the pediatrician's claim is true
Answer:
Paedtricians claim isn't true.
Step-by-step explanation:
The hypothesis :
H0 : σ = 7
H0 : σ > 7
The test statistic ; χ² :
χ² = [(n - 1) * s²] ÷ σ²
n = 25 ; s = 4.3, σ = 7
χ² = [(25 - 1) * 4.3²] ÷ 7²
χ² = [(24 * 4.3²] ÷ 49
χ² = 443.76 / 49
χ² = 9.056
At α = 0.01 ; critical value = 42.980
Since critical value > test statistic, we fail to reject the null, H0.
Which simplified fraction is equal to 0.53? Need answers now plz
Answer:
8/15
Step-by-step explanation:
Answer:
8/15
Step-by-step explanation:
when you divide 8/15 its 0.53
How would 0.42 be shown as a percent?
A. 0.42%
B. 4%
C. 4.2%
D. 42%
Answer:
42%
Step-by-step explanation:
to find percentages, you move the decimal point twice to the right
Need an answer quick!!
Lines A and B are parallel
A
1
2
3125°
B
5 6
78
m26 = [? ]°
Answer:
<6 = 55°Step-by-step explanation:
Here,
<6 + 125° = 180° [Co-interior angles]
=> <6 = 180 - 125
=> <6 = 55° (Ans)
Find the solution of the differential equation that satisfies the given initial condition. (dP)/(dt)
Answer:
[tex]P = (\frac{1}{3}t^\frac{3}{2} + \sqrt 2 - \frac{1}{3})^2[/tex]
Step-by-step explanation:
Given
[tex]\frac{dP}{dt} = \sqrt{Pt[/tex]
[tex]P(1) = 2[/tex]
Required
The solution
We have:
[tex]\frac{dP}{dt} = \sqrt{Pt[/tex]
[tex]\frac{dP}{dt} = (Pt)^\frac{1}{2}[/tex]
Split
[tex]\frac{dP}{dt} = P^\frac{1}{2} * t^\frac{1}{2}[/tex]
Divide both sides by [tex]P^\frac{1}{2}[/tex]
[tex]\frac{dP}{ P^\frac{1}{2}*dt} = t^\frac{1}{2}[/tex]
Multiply both sides by dt
[tex]\frac{dP}{ P^\frac{1}{2}} = t^\frac{1}{2} \cdot dt[/tex]
Integrate
[tex]\int \frac{dP}{ P^\frac{1}{2}} = \int t^\frac{1}{2} \cdot dt[/tex]
Rewrite as:
[tex]\int dP \cdot P^\frac{-1}{2} = \int t^\frac{1}{2} \cdot dt[/tex]
Integrate the left hand side
[tex]\frac{P^{\frac{-1}{2}+1}}{\frac{-1}{2}+1} = \int t^\frac{1}{2} \cdot dt[/tex]
[tex]\frac{P^{\frac{-1}{2}+1}}{\frac{1}{2}} = \int t^\frac{1}{2} \cdot dt[/tex]
[tex]2P^{\frac{1}{2}} = \int t^\frac{1}{2} \cdot dt[/tex]
Integrate the right hand side
[tex]2P^{\frac{1}{2}} = \frac{t^{\frac{1}{2} +1 }}{\frac{1}{2} +1 } + c[/tex]
[tex]2P^{\frac{1}{2}} = \frac{t^{\frac{3}{2}}}{\frac{3}{2} } + c[/tex]
[tex]2P^{\frac{1}{2}} = \frac{2}{3}t^\frac{3}{2} + c[/tex] ---- (1)
To solve for c, we first make c the subject
[tex]c = 2P^{\frac{1}{2}} - \frac{2}{3}t^\frac{3}{2}[/tex]
[tex]P(1) = 2[/tex] means
[tex]t = 1; P =2[/tex]
So:
[tex]c = 2*2^{\frac{1}{2}} - \frac{2}{3}*1^\frac{3}{2}[/tex]
[tex]c = 2*2^{\frac{1}{2}} - \frac{2}{3}*1[/tex]
[tex]c = 2\sqrt 2 - \frac{2}{3}[/tex]
So, we have:
[tex]2P^{\frac{1}{2}} = \frac{2}{3}t^\frac{3}{2} + c[/tex]
[tex]2P^{\frac{1}{2}} = \frac{2}{3}t^\frac{3}{2} + 2\sqrt 2 - \frac{2}{3}[/tex]
Divide through by 2
[tex]P^{\frac{1}{2}} = \frac{1}{3}t^\frac{3}{2} + \sqrt 2 - \frac{1}{3}[/tex]
Square both sides
[tex]P = (\frac{1}{3}t^\frac{3}{2} + \sqrt 2 - \frac{1}{3})^2[/tex]
Write down 4 pairs of integers a and b such that a divided by b is -5
Find the gradient of the tangent line to the curve y=-x² + 3x at the point (2, 2).
Answer:
Y' = - 1
Step-by-step explanation:
Y' = - 2x +3
So y' (2,2) =-2*2 +3= - 1
Find the range of the data.
Scores: 81, 79, 80, 88, 72, 96, 86, 73, 79, 88
Answer:
24
Step-by-step explanation:
To find the range, you must subtract the lowest value from the highest value in the data set. If you organize the set from least to greatest, 72 is the lowest, and 96 is the highest.
So, 96 - 72 = 24, which is the range.
It takes Ricky, traveling at 24 mph, 45 minutes longer to go a certain distance than it takes Maria traveling at 51 mph, Find the distance traveled.
Answer:
85 mi
Step-by-step explanation:
Let d = the distance in miles traveled
Let M = the time in hours for Maria to travel d miles
[tex]m+\frac{3}{4} =[/tex] time in hours for Ricky to travel d miles
(Note that [tex]\frac{3}{4}[/tex] hrs = 45 min)
----------------------
Maria's equation:
d = 51m
Ricky's equation:
d = 24 · [tex](m+\frac{3}{4} )[/tex]
----------------------
Substitution:
51m = 24 · [tex](m+\frac{3}{4} )[/tex]
51m = 24m + 45
6m = 10
m = [tex]\frac{5}{3}[/tex]
----------------------
d = 51m
d = 51 · [tex](\frac{5}{3})[/tex]
d = 85
----------------------
The distance traveled is 85 mi
If it takes Ricky, traveling at 24 mph, 45 minutes longer to go a certain distance than it takes Maria traveling at 51 mph, the distance traveled is 85 miles
Speed and distancesSpeed is the ratio of distance traveled to time taken. Mathematically:
Distance = Speed/Time
According to the given question:
Let d be the distance in miles traveledLet M be the time in hours for Maria to travel d milesLet the required time in hours for Ricky to travel be d milesSet up the Maria equation:
d = 51m
Set up Ricky's equation:
d = 24 · (m+3/4)
Substitute
51m = 24 · (m+3/4)
51m = 24m + 45
6m = 10
m = 5/3
Determine the required distance
d = 51m
d = 51 · 5/3
d = 85
Hence the distance traveled is 85 mile
Learn more on distance and speed here: https://brainly.com/question/26046491
which of the following function shows the absolute value parent function FX=lxl shifted up
Answer:
The answer is C.
as for C . the value of f(x) increases by 7 and so the graph goes up by units 7.
OR
g(x) = |x| + 7
we know that |x| is f(x), so :-
g(x) = f(x) + 7
and since f(x) is plot on y- axis the graph climbs the y axis by 7 units
*The graph shifts right or left for the other functions*
A 27% solution ( 27mg per 100 mL of solution) is given intravenously. Suppose a total of 1,36 L of the solution is given over a 10 -hour period. Complete parts (a) through (c) below.
a. What is the flow rate in units of mL/hr?
nothing mL/hr (Type an integer or decimal rounded to the nearest thousandth as needed.)
What is the flow rate in per hour?
nothing mg/hr (Type an integer or decimal rounded to the nearest thousandth as needed.)
b. If each mL contains 13 drops (the drop factor is expressed as gtt/mL), what is the flow rate in units of 13gtt/hr?
nothing gtt/hr (Type an integer or decimal rounded to the nearest thousandth as needed.)
c. During the 10 -hour period, how much is delivered?
nothing mg (Type an integer or decimal rounded to the nearest thousandth as needed.)
Answer:
Step-by-step explanation:
a.
(1.36 L)/(10 hr) = (0.136 L)/(hr)
Flow rate = (0.136 L)/(hr) × (1000 mL)/L = (136 mL)/(hr)
136 mL × (27 mg)/(100 mL) = 36.72 mg
Delivery rate = (36.72 mg)/(hr)
b.
(136 mL)/(hr) × (13 gtt)/(mL) = (1868 gtt)/(hr)
c.
10 hr × (36.72 mg)/)hr) = 367.2 mg
Which ordered pair (a, b) is the solution to the given system of linear equations? 3a+b= 10 -4a-2b=2
(1,7)
(3, 1)
(11, -23)
(23, -11)
Hello,
answer C (11,-23)
[tex]\left\{\begin{array}{ccc}3a+b&=&10\\-4a-2b&=&2\end{array}\right.\\\\\\\left\{\begin{array}{ccc}6a+2b&=&20\\-4a-2b&=&2\end{array}\right.\\\\\\\left\{\begin{array}{ccc}3a+b&=&10\\2a&=&22\end{array}\right.\\\\\\\left\{\begin{array}{ccc}a&=&11\\b&=&10-3*11\end{array}\right.\\\\\\\left\{\begin{array}{ccc}a&=&11\\b&=&-21\end{array}\right.\\[/tex]
Answer: C. (11,-23)
Step-by-step explanation:
Can someone help and explain this to me ,much appreciated thankyouuu
Answer:
A. 2x + 1
Step-by-step explanation:
f(x) = 2x + 7
g(x) = x - 3
To find f(g(x)), substitute x = x - 3 into f(x) = 2x + 7
Thus:
f(g(x)) = 2(x - 3) + 7
f(g(x)) = 2x - 6 + 7
Add like terms
f(g(x)) = 2x + 1
Joe bikes at the speed of 30 km/h from his home toward his work. If Joe's wife leaves home 5 mins later by car, how fast should she drive in order to overtake him in 10 minutes.
Answer:
Joe's wife must drive at a rate of 45km/hour.
Step-by-step explanation:
We are given that Joe leaves home and bikes at a speed of 30km/hour. Joe's wife leaves home five minutes later by car, and we want to determine her speed in order for her to catch up to Joe in 10 minutes.
Since Joe bikes at a speed of 30km/hour, he bikes at the equivalent rate of 0.5km/min.
Then after five minutes, when his wife leaves, Joe is 5(0.5) or 2.5 km from the house. He will still be traveling at a rate of 0.5km/min, so his distance from the house can be given by:
[tex]2.5+0.5t[/tex]
Where t represents the time in minutes after his wife left the house.
And since we want to catch up in 10 minutes, Joe's distance from the house 10 minutes after his wife left will be:
[tex]2.5+0.5(10)=7.5\text{ km}[/tex]
Let s represent the wife's speed in km/min. So, her speed times 10 minutes must total 7.5 km:
[tex]10s=7.5[/tex]
Solve for s:
[tex]\displaystye s=0.75\text{ km/min}[/tex]
Thus, Joe's wife must drive at a rate of 0.75km/min, or 45km/hour.
Drag the tiles to the correct boxes to complete the pairs.
Match each division of rational expressions with its quotient.
Answer:
Step-by-step explanation:
Um where is the diagrahm
Which function has the following characteristics?
- A vertical asymptote at x=3
- A horizontal asymptote at y=2
- Domain: {x ≠ ±3}
A. y= (2x-8) / (x-3)
B. y= (2x^2 - 8) / (x^2 - 9)
C. y= (x^2 - 9) / (x^2 - 4)
D. y= (2x^2 - 18) / (x^2 - 4)
The function has the characteristics is (b) y= (2x^2 - 8) / (x^2 - 9)
How to determine the function?The features are given as:
A vertical asymptote at x=3A horizontal asymptote at y=2Domain: {x ≠ ±3}The function that has the above features is (b).
This is proved as follows:
y= (2x^2 - 8) / (x^2 - 9)
Set the denominator not equal to 0, to determine the domain
x^2 - 9 ≠ 0
Add 9 to both sides
x^2 ≠ 9
Take the square roots
x ≠ ±3 --- domain
Replace ≠ with =
x = ±3 --- vertical asymptote
Set the numerator to 0
2x^2 - 8 = 0
Divide through by 2
x^2 - 4 = 0
This gives
x^2 = 4
Take the square roots
x = 2 ---- horizontal asymptote
Hence, the function has the characteristics is (b) y= (2x^2 - 8) / (x^2 - 9)
Read more about functions at:
https://brainly.com/question/4138300
#SPJ1
Let f(x)
2x + 8, g(x) = x2 + 2x – 8, and h(x) = 3x – 6.
Perform the indicated operation. (Simplify as far as possible.)
(h · f)(3) =
Answer:
36
Step-by-step explanation:
(h · f)(x) = h(f(x))
h(f(x)) = h(2x+8)
h(f(x))= 3(2x+8) - 6
h(f(x)) = 6x + 24 - 6
h(f(x))= 6x + 18
If x = 3
h(f(x))= 6(3) + 18
h(f(x))= 18 + 18
h(f(x))= 36
Hence (h · f)(3) = 36
Multiply 25 x 47 x 3
What does y equal in the solution of the system of equations below? 5y-3x-4z=22 2z-2x=-6 2z+3x=-6
9514 1404 393
Answer:
y = 2
Step-by-step explanation:
Subtracting the second equation from the third gives ...
(2z +3x) -(2z -2x) = (-6) -(-6)
5x = 0
x = 0
Using this in the third equation, we have ...
2z +0 = -6
z = -3
And substituting these values into the first equation, we have ...
5y -3(0) -4(-3) = 22
5y = 10 . . . . . subtract 12
y = 2
__
The solution to the system is (x, y, z) = (0, 2, -3).
arrange the following in descending order - 5, 0, -15, 2.5, 2.05
Answer:
2.5, 2.05, 0, -5, -15
Step-by-step explanation:
for negative numbers the bigger is worth less
Write an algebraic expression for the situation. 28 divided by a number n An algebraic expression for the situation is
Answer:
[tex]\frac{28}{n}[/tex]
Step-by-step explanation:
Please HELP!
How many pairs (A, B) are there where A and B are subsets of {1, 2, 3, 4, 5, 6, 7, 8} and A ∩ B has exactly two elements?
Answer:
There are 256 pairs in all.
Two factors of x² +5x+6 are ….. and …..
Hello!
[tex]\large\boxed{(x + 2)(x + 3)}[/tex]
x² + 5x + 6
Find two numbers that add up to 5 and multiply to 6. We get:
2, 3
Therefore:
(x + 2)(x + 3)