Answer:
(-3, 5)
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightEquality Properties
Multiplication Property of Equality Division Property of Equality Addition Property of Equality Subtraction Property of EqualityAlgebra I
Coordinates (x, y)Terms/CoefficientsSolving systems of equations using substitution/eliminationStep-by-step explanation:
Step 1: Define Systems
y = x + 8
x + y = 2
Step 2: Solve for x
Substitution
Substitute in y [2nd Equation]: x + x + 8 = 2Combine like terms: 2x + 8 = 2[Subtraction Property of Equality] Subtract 8 on both sides: 2x = -6[Division Property of Equality] Divide 2 on both sides: x = -3Step 3: Solve for y
Substitute in x [1st Equation]: y = -3 + 8Add: y = 5Answer:
x = - 3
y = 5
Step-by-step explanation:
y = x + 8 ------(I)
x + y = 2 -------------(II)
Substitute y = x + 8 in equation (II)
x + x + 8 = 2
Combine like terms
2x + 8 = 2
Subtract r from both sides
2x = 2- 8
2x = -6
Divide both sides by 2
x = -6/2
x = -3
Plug in x = -3 in equation (I)
y = -3 + 8
y = 5
Given P(A) = 0.36, P(B) = 0.2 and P(ANB) = 0.122, find the value of P(AUB), rounding to the nearest thousandth, if necessary.
Answer:
The value of P(AUB) = 0.438
Step-by-step explanation:
Given:
P(A) = 0.36
P(B) = 0.2
P(A∩B) = 0.122
Find:
The value of P(AUB)
Computation:
P(AUB) = P(A) + P(B) - P(A∩B)
The value of P(AUB) = 0.36 + 0.2 - 0.122
The value of P(AUB) = 0.56 - 0.122
The value of P(AUB) = 0.438
17
Select the correct answer from each drop-down menu.
Consider this system of equations:
2x+ıy=3
(equation A)
fr-y=6
(equation B)
The expressions that give the value of y are
The solution for the given system is
and
Answer:
The expressions that give the value of y are A - 3B and (1/3)A - B
The solution is (27/13, -60/13)
Step-by-step explanation:
We can see both equation A and equation B.
Equation A: 2x + (1/4)y = 3
Equation B: (2/3)x - y = 6
To find the value of y, we have to solve both equations A and equation B simultaneously. This is done by multiplying equation B by 3 and subtracting from equation A (A - 3B) to get:
(13/4)y = -15
y = -60/13
you can also get y by dividing equation A by 3 and subtracting equation B (1/3A - B)
Put y = -60/13 in equation A to get x:
2x + (1/4)(-60/13) = 3
2x = 3 + 15/13
2x = 54/13
x = 27/13
The solution is (27/13, -60/13)
Solve for the questions (both of them) and label you answers for which question
Solve the attachment...
Answer:
2 ( Option A )
Step-by-step explanation:
The given integral to us is ,
[tex]\longrightarrow \displaystyle \int_0^1 5x \sqrt{x}\ dx [/tex]
Here 5 is a constant so it can come out . So that,
[tex]\longrightarrow \displaystyle I = 5 \int_0^1 x \sqrt{x}\ dx [/tex]
Now we can write √x as ,
[tex]\longrightarrow I = \displaystyle 5 \int_0^1 x . x^{\frac{1}{2}} \ dx [/tex]
Simplify ,
[tex]\longrightarrow I = 5 \displaystyle \int_0^1 x^{\frac{3}{2}}\ dx [/tex]
By Power rule , the integral of x^3/2 wrt x is , 2/5x^5/2 . Therefore ,
[tex]\longrightarrow I = 5 \bigg( \dfrac{2}{5} x^{\frac{5}{2}} \bigg] ^1_0 \bigg) [/tex]
On simplifying we will get ,
[tex]\longrightarrow \underline{\underline{ I = 2 }}[/tex]
does the point (-4, 2) lie inside or outside or on the circle x^2 + y^2 = 25?
Answer:
Inside
Step-by-step explanation:
Given equation of the Circle is ,
[tex]\sf\implies x^2 + y^2 = 25 [/tex]
And we need to tell that whether the point (-4,2) lies inside or outside the circle. On converting the equation into Standard form and determinimg the centre of the circle as ,
[tex]\sf\implies (x-0)^2 +( y-0)^2 = 5 ^2[/tex]
Here we can say that ,
• Radius = 5 units
• Centre = (0,0)
Finding distance between the two points :-
[tex]\sf\implies Distance = \sqrt{ (0+4)^2+(2-0)^2} \\\\\sf\implies Distance = \sqrt{ 16 + 4 } \\\\\sf\implies Distance =\sqrt{20}\\\\\sf\implies\red{ Distance = 4.47 }[/tex]
Here we can see that the distance of poiñt from centre is less than the radius.
Hence the point lies within the circle
Solve: 4(x + 3) ≤ 44
x ≥ 16
x ≤ 16
x ≤ 8
x ≥ 8
Please help
Answer:
C
Step-by-step explanation:
[tex]4(x + 3) \leqslant 44 \\ \\ 4x + 12 \leqslant 44 \\ 4x \leqslant 44 - 12 \\ 4x \leqslant 32 \\ 4x \div 4 \leqslant 32 \div 4 \\ x \leqslant 8[/tex]
the first three terms of a series of which the nth term is 2n+1.
Answer:
3, 5, 7
Step-by-step explanation:
Substitute n = 1, 2, 3 into the nth term rule
a₁ = 2(1) + 1 = 2 + 1 = 3
a₂ = 2(2) + 1 = 4 + 1 = 5
a₃ = 2(3) + 1 = 6 + 1 = 7
Answer:
3, 5, 7
Step-by-step explanation:
n = 1, 2, 3 into the nth term rule
a₁ = 2(1)+1=2+1=3
a2=2(2)+1=4+1=5
a3 = 2(3)+1=6+1=7
find the coefficient of variation from the following data mean=4 variance=25
Help me with the diagram please!!!
Answer:
(B) 30
Step-by-step explanation:
Imagine you drew a line from Point T until it touched Line PR. Let's call that point where it touched Line PR "Point Z".
That line (called Line TZ) would be perpendicular to PR, forming a 90 degree angle.
Now, TZW is a triangle.
To find x, we need to find the angle measurment of Angle ZTW.
This is where we use the hexagon.
A hexagon's interior angle sum is 720, meaning each interior angle is equal to 120 degrees. So Angle UTS would equal 120 degrees.
However, Line TZ bisects that 120 degree angle, so Angle ZTW would equal 60 degrees (because 120/2 = 60).
Now we have two angles of the triangle: 90 & 60.
A triangle's interior angle sum is 180.
Add 90 & 60, which is 150, and subtract 150 from 180.
The result is 30, which is the angle measurement of x.
Hope it helps (●'◡'●)
HELP 20 points Congruence by SSS AND SAS NO LINKS
Answer:
where is the question oooo
What is the range of the given function ?
{(-2,0),(-4,-3),(2,-9),(0,5),(-5,7)}
Answer:
{0,-3,-9,5,7}
Step-by-step explanation:
range = all y values
function =(x,y)
so all the second values are ranges
2. What is the area of the figure below. Simplify.
Answer:
x^2 - 9
Step-by-step explanation:
length = 2x - 6 = 2(x-3)
Area = [2(x-3) * (x + 3)]/2 = (x-3)(x+3) = x^2-9
Answer: x = 9
2x -6= x +3
2x -x= 3 +6
x= 9
John finds that the sum of two numbers is 24 and their difference is one sixth of the sum. Find the smallest number between the two numbers
Answer:
The smallest number is 10
Step-by-step explanation:
x+y=24---equation 1
x-y=¹/6×24=>x-y=4---equation 2
Add both equations
2x=28
x=14
put x=14 into equation 1
14+y=24
y=24-14=10
4x^2+22x factor the polynomial
Answer:
2x(2x+11)
Step-by-step explanation:
4x^2 +22x
Factor out 2x
2x*2x +2x*11
2x(2x+11)
Evaluate without a calculator:
CSC -120°
Answer:
- [tex]\frac{2\sqrt{3} }{3}[/tex]
Step-by-step explanation:
Using the identity and the exact value
csc x = [tex]\frac{1}{sinx}[/tex] and sin60° = [tex]\frac{\sqrt{3} }{2}[/tex]
- 120° is in the third quadrant where sin < 0 , then
csc - 120° = - sin60° , then
csc - 120°
= [tex]\frac{1}{-sin60}[/tex]
= - [tex]\frac{1}{\frac{\sqrt{3} }{2} }[/tex]
= - [tex]\frac{2}{\sqrt{3} }[/tex] ( rationalise the denominator )
= - [tex]\frac{2}{\sqrt{3} }[/tex] × [tex]\frac{\sqrt{3} }{\sqrt{3} }[/tex]
= - [tex]\frac{2\sqrt{3} }{3}[/tex]
The equivalent value of the trigonometric relation cosec ( -120 )° = 2√3/3
What are trigonometric relations?Trigonometry is the study of the relationships between the angles and the lengths of the sides of triangles
The six trigonometric functions are sin , cos , tan , cosec , sec and cot
Let the angle be θ , such that
sin θ = opposite / hypotenuse
cos θ = adjacent / hypotenuse
tan θ = opposite / adjacent
tan θ = sin θ / cos θ
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
Given data ,
We know that the cosecant function is defined as the reciprocal of the sine function:
cosec (θ) = 1 / sin(θ)
Therefore, to evaluate cosec(-120°), we first need to find sin(-120°).
We know that sine is an odd function, which means that sin(-θ) = -sin(θ). Therefore,
sin(-120°) = -sin(120°)
We can now use the fact that the sine function has a period of 360 degrees, which means that sin(120°) is the same as sin(120° - 360°) = sin(-240°).
Using the same logic as before, we get:
sin(-240°) = -sin(240°)
Now , from the trigonometric relations , we get
Now, we can use the fact that sin(240°) = sin(240° - 360°) = sin(-120°), which means that:
sin(-240°) = -sin(-120°)
Therefore, we have:
sin(-120°) = -sin(120°) = -sin(-240°) = sin(240°)
Now, we can use the unit circle or trigonometric identities to find sin(240°). One way to do this is to draw a 30-60-90 degree triangle in the third quadrant of the unit circle, with the angle of 240° as the reference angle:
In this triangle, the opposite side (O) has a length of √3, the adjacent side (A) has a length of -1, and the hypotenuse (H) has a length of 2.
Therefore, sin(240°) = O/H = (√3)/2.
Finally, we can use the definition of the cosecant function to find cosec(-120°):
cosec(-120°) = 1/sin(-120°) = 1/sin(240°) = 1/((√3)/2) = 2/√3 = (2√3)/3.
Hence , cosec(-120°) is equal to (2√3)/3.
To learn more about trigonometric relations click :
https://brainly.com/question/14746686
#SPJ2
Help me please PLEAASEEEE
determine if 5yx - 17xy are like terms
Step-by-step explanation:
yes they are because they have the same variables which are X& Y
Answer:
5yx-7xy
they are like terms, it's all multiplication just a different arrangement
5xy-7xy=-2xy
Step-by-step explanation:
hope this is helpful
Which is the graph of the equation y-1=- f (x-3)?
Evaluate the expression. 24.32
2^4×3^2 = 144
___________
Answer:
144 would be the answer.
Step-by-step explanation:
Question:- [tex]2^{4}[/tex] · [tex]3^{2}[/tex]
[tex]2^{4}[/tex] = 2 x 2 x 2 x 2
= 4 x 2 x 2
= 8 x 2
= 16
[tex]3^{2}[/tex] = 3 x 3
= 9
So, [tex]2^{4}[/tex] · [tex]3^{2}[/tex] = 16 x 19
= 144
Which of the following is an example of an exponential equation?
y=(3x)^2
y=x/2
y=x^4
y=2(3)^x
Answer:
Option D
Step-by-step explanation:
y = 2(3)^x is the example of exponential equation.
the question is on the image
Answer:
(i) - rectangular prism
(Ii) - triangular prism
(iii) - square pyramid
Step-by-step explanation:
Find the greatest common factor of the
following monomials:
12a^2, 32a^3
Answer:
4a^2
Step-by-step explanation:
GCF of 12 and 32 is 4.
GCF of a^3 and a^2 is a^2.
Therefore, the answer is 4a^2.
After simplification, the value of 1-2/1(1+2)-3/(1+2)(1+2+3)-4/(1+2+3)(1+2+3+4)-...-100/(1+2+...+99)(1+2+...+100)
is a proper fraction in its lowest form. Find the difference of its numerator and denominator.
Answer: no
Step-by-step explanationn. .......................................................w:eorkeok,feoferkeorkoe
What is the scale factor from abc to xyz?
Answer:
C
Step-by-step explanation:
The scale factor is the ratio of corresponding sides, image to original, so
scale factor = [tex]\frac{XY}{AB}[/tex] = [tex]\frac{9}{45}[/tex] = [tex]\frac{1}{5}[/tex] → C
The scale factor will be equal to 1 / 5. the correct option is C.
What is a scale factor?The scale factor is defined as the proportion of the new image's size to that of the previous image. Dilation is the process of increasing the size of an object while maintaining its shape. Depending on the scale factor, the object's size can be increased or decreased.
In the given image all the angles are the same and the sides are dilated so the scale factor will be calculated as below,
Scale factor = Original size / dilated size
Scale factor = XY / AB
Scale factor = 9 / 45
Scale factor = 1 / 5
Therefore, the scale factor will be equal to 1 / 5. the correct option is C.
To know more about scale factors follow
https://brainly.com/question/25722260
#SPJ2
Whose solution strategy would work?
Answer:
1452628383763637£838
Answer:
B
Step-by-step explanation:
Which ordered pair is the best estimate
for the solution of the system of
equations?
y= 3/2x +6
y=1/4x -2
Answer: -6.4, -3.6
Explanation: A souloution of the system of equations is, when two equations intercept (y= 3/2x +6, y=1/4x -2)
Solve. Algebra 1
1-4p-2p=1-5p
Answer:
p = 0
Step-by-step explanation:
1 - 4p - 2p = 1 - 5p
-6p + 1 = -5p + 1
-p + 1 = 1
-p = 0
p = 0
what is the measure of 6 ?
Answer:
54°
Step-by-step explanation:
Here :-
13x + 9 + 5x + 9 = 1801 8x + 18= 180 18x = 162x = 9Measure of 6 :-
6 = 5x + 9 6 = 5*9 +9 6 = 45 + 9 6 = 54°Answer:
m<6 = m<2 = 54º
Step-by-step explanation:
13x + 9 + 5x + 9 = 180
18x + 18 = 180
18x = 180 - 18
18x = 162
x = 162 / 18
x = 9
13x + 9
13(9) + 9
126
180 - 126
54
m<6 = m<2 = 54º
Can someone please help me. If you do thanks
Answer:
(B)
Step-by-step explanation:
Can't explain lol, but that's the answer
PLEASE HURRY Aline has a slope of -1/2 and a y-intercept of -2. What is the x-intercept of the line?
Answer:
x- intercept = - 4
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Here m = - [tex]\frac{1}{2}[/tex] and c = - 2 , then
y = - [tex]\frac{1}{2}[/tex] x - 2 ← equation of line
To find the x- intercept let y = 0
0 = - [tex]\frac{1}{2}[/tex] x - 2 ( add 2 to both sides )
2 = - [tex]\frac{1}{2}[/tex] x ( multiply both sides by - 2 to clear the fraction )
- 4 = x
The x- intercept is - 4