HOW TO SOLVE SYSTEMS OF EQUATIONS BY ELIMINATION
To solve systems of equations by elimination, we want to eliminate one of the variables. To do this, we want to cancel out a certain variable in both equations. For example, if you had 8x in one equation and -8 x in another, you could combine the two equations and the x would be gone!
THE SOLUTION
In our case, though, we don't have anything we can combine to cancel out the variables. But, what we can do is multiply the first equation by three. If we do this, now we have a 9x in the top and a -9x in the bottom. Then, we can solve for y!
SOLVING FOR Y
Multiply first equation by three
9x+6y=57
Combine top and bottom equations
14y=28
We divide both sides by 14.
y=2
SOLVING FOR X
Now, we can simply plug our y-value into one of the original equations and then solve for x.
3x+4=19
We subtract 28 from both sides.
3x=15
We divide both sides by 3.
x=5
Therefore, our solution is (5,2) or x=5 and y=2.
I hope that this helps! Have a wonderful day! :D
Answer:
x=5 and y=2.
Step-by-step explanation:
Select the correct answer.
What is the best way to describe a theme of this poem?
A.
The main purpose of having New Year's resolutions is to make people feel bad.
B.
The failures of the past should inspire people to accomplish more in the future.
OC.
By the end of the year, it is too late to make any changes to a person's life.
D.
People would accomplish their New Year's resolutions if they wrote them down.
B.The failures of the past should inspire people to accomplish more in the future.
f(t)= 102,000/1+4400e^-t
Answer:
Beginning (t=0) population with flu is 23.
After 4 weeks, population with flu is 1250.
After an infinite amount of weeks, the population witf flu is 102000
Step-by-step explanation:
First question asks you to replace t with 0 because it says beginning.
102000/(1+4400e^-0)=102000/(1+4400)=102000/4401=23.17655 approximately. To nearest whole number this is 23.
After 4 weeks means we replace t with 4:
102000/(1+4400e^-4)
Calculator time:
1250.17142 which to nearest whole number is 1250
If t is super large, then e^-t is super close to 0.
So the limiting number is
102000/(1+4400×0)=102000/1=102000
A ball is dropped from a height of 14 ft. The elasticity of the ball is such that it always bounces up one-third the distance it has fallen. (a) Find the total distance the ball has traveled at the instant it hits the ground the fourth time. (Enter an exact number.)
Answer:
Hello,
742/27 (ft)
Step-by-step explanation:
[tex]h_1=14\\\\h_2=\dfrac{14}{3} \\\\h_3=\dfrac{14}{9} \\\\h_4=\dfrac{14}{27} \\\\[/tex]
[tex]d=14+2*\dfrac{14}{3} +2*\dfrac{14}{9} +2*\dfrac{14}{27} \\=14*(1+\dfrac{1}{3}+\dfrac{2}{9} +\dfrac{2}{27} )\\=14*\dfrac{53}{27} \\=\dfrac{742}{27} \\[/tex]
The total distance the ball has traveled at the instant it hits the ground the fourth time [tex]28ft.[/tex]
What is the total distance?
Distance is a numerical measurement of how far apart objects or points are. It is the actual length of the path travelled from one point to another.
Here given that,
A ball is dropped from a height of [tex]14[/tex] ft. The elasticity of the ball is such that it always bounces up one-third the distance it has fallen.
So, after striking with the ground it covers the distance [tex]14[/tex] ft. so it rebounds to the height is [tex]\frac{1}{3}(14)[/tex].
Then again it hits the ground and covers the distance [tex]\frac{1}{3}(14)[/tex] and again after rebounding it goes to the height is
[tex]\frac{1(1)}{3(3)}.(14)=\frac{(1)^2}{(3)^2}(14)[/tex]
Then it falls the same distance and goes back to the height
[tex]\frac{1}{3}[/tex] ×[tex](\frac{(1)^2}{(3)^2})[/tex] ×[tex]14[/tex] = [tex]\frac{(1)^3}{(3)^3}(14)[/tex]
So, the total distance travelled is
[tex]14+2[\frac{1}{3}(14)+(\frac{1}{3})^2(14)+(\frac{1}{3})^3(14)+...][/tex]
We take the sum is twice because it goes back to the particular height and falls to the same distance.
[tex]S=14+2(\frac{\frac{1}{3}(14)}{1-\frac{1}{3}})\\\\\\S=\frac{a}{1-r}\\\\\\S=14+2(\frac{\frac{14}{3}}{\frac{2}{3}})\\\\S=14+2(\frac{14}{2})\\\\S=14+2(7)\\\\S=14+14\\\\S=28ft[/tex]
Hence, the total distance the ball has traveled at the instant it hits the ground the fourth time [tex]28ft.[/tex]
To know more about thetotal distance
https://brainly.com/question/951637
#SPJ2
Which is the solution to-x/2<-4
A x<-8
B x2-8
C x <8
D x 8
Answer:
A.x<-8
Step-by-step explanation:
=1/2x<−4
=2*(1/2x)< (2)*(-4)
= x<-8
write the expression as a decimal , 6 x 1 + 9 x 1/10 + 8 x 1/100 + 6 x 1/1000 =__
Answer:
6.986.
Step-by-step explanation:
6 x 1 + 9 x 1/10 + 8 x 1/100 + 6 x 1/1000
We do the multiplications first ( according to PEMDAS):-
= 6 + 9 * 0.1 + 8 * 0.01 + 6 * 0.001
= 6 + 0.9 + 0.08 + 0006
= 6.9 + 0.086
= 6 986.
The value of the equation in the decimal form is A = 6.986
What is an Equation?
Equations are mathematical statements with two algebraic expressions flanking the equals (=) sign on either side.
It demonstrates the equality of the relationship between the expressions printed on the left and right sides.
Coefficients, variables, operators, constants, terms, expressions, and the equal to sign are some of the components of an equation. The "=" sign and terms on both sides must always be present when writing an equation.
Given data ,
Let the equation be represented as A
Now , the value of A is
A = 6 x 1 + 9 x 1/10 + 8 x 1/100 + 6 x 1/1000
On simplifying the equation , we get
The value of 6 x 1 = 6
The value of 9 x 1/10 = 0.9
The value of 9 x 1/100 = 0.08
The value of 6 x 1/1000 = 0.006
So , substituting the values in the equation A , we get
A = 6 + 0.9 + 0.08 + 0.006
On simplifying the equation , we get
A = 6.986
Therefore , the value of A is 6.986
Hence , the value of the equation is 6.986
To learn more about equations click :
https://brainly.com/question/19297665
#SPJ2
d is none of the above , and yes
Answer:
[tex] = 2 {}^{2} - 3(2) = - 2 \\ 3 {}^{2} - 3(3) = 0 \\ 4 {}^{2} - 3(4) = 4 \\ 5 {}^{2} - 3(5) = 10[/tex]
help i need help with math help if u can
write your answer as an integer or as a decimal rounded to the nearest tenth
Answer:
123456-6-&55674
Step-by-step explanation:
rdcfvvzxv.
dgjjjdeasg JJ is Redding off in grad wassup I TV kitten gag ex TV ex raisin see
recall see
Hector's Position:
Hector was standing halfway between first and second base, at the grass line. The
grass line is 95 feet from the pitcher's mound.
6. Calculate the coordinates for Hector's position. [Note: We can assume that 95
feet is an approximately horizontal distance from the pitcher's mound to the grass
line.] (2 points: 1 for x, 1 for y)
Hector was standing at the coordinate ( __, _).
Calculate Hector's Throw:
Answer:
(137.78, 47.72)
Step-by-step explanation:
(I just finished this assignment.)
Tre's position at the pitcher's mound as the point (42.78, 42.78).
( x , y )
Hector is about 95 feet away from the pitcher's mound horizontal, (x axis).
Since we already have the correct y-coordinate, we need to solve for the correct x-coordinate.
x = 95 + 42.78
↓ ↓ ↓
95 + 42.78 = 137.72
Now all you need to do is write out the coordinates.
Hector's coordinates are (137.72, 47.78 )
Plz urgennt look at the image over 1000 points im going to need help with the last 4 questions i have?
From a club of 18 people, in how many ways can a group of five members be selected to attend a conference?
Which of the following describes a positive correlation?
As the number of hours spent on homework increases, the tests scores increase.
As the number of apples eaten per year increases, the number of times visiting the doctor every year remains the same.
As the number of times going to bed early increases, the number of times waking up late decreases.
The amount of time a team spent practicing increases, the number of games lost in a season decreases.
THIS IS A MULTIPLE CHOICE QUESTION
Answer:
First Choice: As the number of hours spent on homework increases, the tests scores increase.
Step-by-step explanation:
The definition of a positive correlation is a relationship between two given variables, in which both variables are moving in the same direction. This can mean when one variable increases and the other variable increases, too, or one variable decreases and the other decreases as well.
The first choice is a positive correlation because both variables are changing (increasing) in the same direction. As you spend more time on homework, you're likely to get a higher test score.
The second choice cannot be a positive correlation because only one variable is having some kind of change (increasing). The doctor visits amount remains the same, so we can call this a zero-correlation relationship because the number of apples eaten yearly doesn't affect the amount of doctor visits. An apple a day keeps the doctor a way is just a proverb, not to be taken literally.
The third choice cannot be a positive correlation because the two variables are going different directions. Even though the number of times going to bed early is increasing, the number of times waking up late decreases, which is not moving in the same direction as the other variable.
The fourth choice cannot be a positive correlation because, similarly to the third choice, the two variables are going different directions. One variable is increasing, which is the amount of practice time. Meanwhile, the other variable is decreasing (going in the opposite direction), which is the number of games lost in a season.
What is the volume of a cone with a radius of 4 inches and height of 11?
Answer:
184.22
Step-by-step explanation:
Which number would be rounded UP to the nearest ten but DOWN to the nearest hundred?
A. 232
B. 238
C. 262
D. 268
Answer:
B
Step-by-step explanation:
I NEED HELP PLEASE ASAP!!
Answer:
Option B, 1
Step-by-step explanation:
tan 45° = 1/1 = 1
The management of a large airline wants to estimate the average time after takeoff taken before the crew begins serving snacks and beverages on their flights. Assuming that management has easy access to all of the information that would be required to select flights by each proposed method, which of the following would be reasonable methods of stratified sampling?
a. For each day of the week, randomly select 5% of all flights that depart on that day of the week.
b. Divide all flights into the following 4 groups on the basis of scheduled departure time: before 9:00 am 9:00 am to 1:00 pm. 1:00 pm to 5:00 pm, and after 5:00 pm. Randomly select 5% of the flights in each group.
c. For each crew member the airline employs, randomly select 5 flights that the crew member works.
d. Divide the airports from which the airline's fights depart into 4 regions: Northeast, Northwest Southwest and Southeast. Randomly select 5% of all flights departing from airports in each region
Answer:
The answer is "Option a, Option b, and Option d".
Step-by-step explanation:
In the given question it is used to stratifying the sampling if the population of this scenario it flights takes off when it is divided via some strata.
In option a, In this case, it stratified the sampling, as the population of planes taking off has been divided into the days of the week. In option b, It also used as the case of stratified sampling. In options c, it is systematic sampling, that's why it is wrong. In option d, It is an example of stratifying the sampling.Answer:
For each day of the week, randomly select 5% of all flights that depart on that day of the week.
Divide all flights into the following 4 groups on the basis of scheduled departure time: before 9:00 am, 9:00 am to 1:00 pm, 1:00 pm to 5:00 pm, and after 5:00 pm. Randomly select 5% of the flights in each group.
Divide the airports from which the airline's flights depart into 4 regions: Northeast, Northwest, Southwest, and Southeast. Randomly select 5% of all flights departing from airports in each region.
Step-by-step explanation:
ll sampling methods that divide the flights into a small number of mutually exclusive categories are appropriate. These methods include all flights on the basis of a characteristic that might be associated with the variable being investigated and randomly selects a proportionate number of flights from each group.
The Susan B. Anthony dollar has a radius of 0.52 inches. Find the area of one side of the coin to the nearest
hundredth.
Answer:
0.85 in²
Step-by-step explanation:
really ? you need help with that ? you could not find the formula for the area of a circle on the internet and type it into your calculator ? I can't do anything else here.
a circle area is
A = pi×r²
r being the radius.
and pi being, well, pi (3.1415....)
r = 0.52 in
so,
A = pi×0.52² = pi×0.2704 = 0.849486654... in²
the area of one side of the coin is 0.85 in²
A ball is thrown in air and it's height, h(t) in feet, at any time, t in seconds, is represented by the equation h(t)=−4t2+16t. When is the ball higher than 12 feet off the ground?
A. 3
B. 1
C. 1
D. 4
Hence the time that the ball will be height than 12 feet off the ground is 4secs
Given the expression for calculating the height in feet as;
h(t) = -4t²+16t
If the ball is higher than 12feet, h(t) > 12
Substituting h = 12 into the expression
-4t²+16t > 12
-4t²+16t - 12 > 0
4t²- 16t + 12 > 0
t²- 4t + 3 > 0
Factorize
(t²- 3t)-(t + 3) > 0
t(t-3)-1(t-3) > 0
(t-1)(t-3)>0
t > 1 and 3secs
Hence the time that the ball will be height than 12 feet off the ground is 4secs
Learn more: https://brainly.com/question/18405392
Geometry help I don’t get this stuff at all
Answer:
The last option
V = (-1.5,3)
other options dont lie where V is exact
V is only Exact at (-1.5,3)
power sharing helps the ruling party to retain power for a long time. tick or wrong
Why does cube root 7 equal 7 to the 1/3 power
Answer:
Step-by-step explanation:
Here's how you convert:
[tex]\sqrt[n]{x^m}=x^{\frac{m}{n}[/tex] The little number outside the radical, called the index, serves as the denominator in the rational power, and the power on the x inside the radical serves as the numerator in the rational power on the x.
A couple of examples:
[tex]\sqrt[3]{x^4}=x^{\frac{4}{3}[/tex]
[tex]\sqrt[5]{x^7}=x^{\frac{7}{5}[/tex]
It's that simple. For your problem in particular:
[tex]\sqrt[3]{7}[/tex] is the exact same thing as [tex]\sqrt[3]{7^1}=7^{\frac{1}{3}[/tex]
The tree diagram below shows the possible combinations of juice and snack that can be offered at the school fair.
A tree diagram. Orange branches to popcorn and pretzels. Grape branches to popcorn and pretzels. Apple branches to popcorn and pretzels. Grapefruit branches to popcorn and pretzels.
How many different combinations are modeled by the diagram?
6
8
12
32
Answer:
B. 8Step-by-step explanation:
The combinations are:
Orange - 2 (with popcorn and pretzels)Grape - 2 (with popcorn and pretzels)Apple - 2 (with popcorn and pretzels)Grapefruit - 2 (with popcorn and pretzels)Total number of combinations:
4*2 = 8Correct choice is B
there are 8different combinations are modeled by the diagram.
Answer:
Solution given:
orange:2
grape:2
apple:2
grapefruit:2
no of term:4
now
total no. of combination ia 4*2=8
How many ways can a president, vice president, secretary, and treasurer be chosen from a club with 8 member
Answer:
504
Step-by-step explanation:
To calculate the volume of a chemical produced in a day a chemical manufacturing company uses the following formula below:
[tex]V(x)=[C_1(x)+C_2(x)](H(x))[/tex]
where represents the number of units produced. This means two chemicals are added together to make a new chemical and the resulting chemical is multiplied by the expression for the holding container with respect to the number of units produced. The equations for the two chemicals added together with respect to the number of unit produced are given below:
[tex]C_1(x)=\frac{x}{x+1} , C_2(x)=\frac{2}{x-3}[/tex]
The equation for the holding container with respect to the number of unit produced is given below:
[tex]H(x)=\frac{x^3-9x}{x}[/tex]
a. What rational expression do you get when you combine the two chemicals?
b. What is the simplified equation of ?
c. What would the volume be if 50, 100, or 1000 units are produced in a day?
d. The company needs a volume of 3000 How many units would need to be produced in a day?
Answer:
[tex]V(x) = [\frac{x}{x + 1} + \frac{2}{x-3}] * \frac{x^3 - 9x}{x}[/tex]
[tex]V(x) = [\frac{(x^2-x+2)(x + 3)}{(x + 1)}][/tex]
[tex]V(50) = 2548.17[/tex] [tex]V(100) = 10098.10[/tex] [tex]V(1000) = 999201.78[/tex]
[tex]x = 54.78[/tex]
Step-by-step explanation:
Given
[tex]V(x) = [C_1(x) + C_2(x)](H(x))[/tex]
[tex]C_1(x) = \frac{x}{x+1}[/tex]
[tex]C_1(x) = \frac{2}{x-3}[/tex]
[tex]H(x) = \frac{x^3 - 9x}{x}[/tex]
Solving (a): Expression for V(x)
We have:
[tex]V(x) = [C_1(x) + C_2(x)](H(x))[/tex]
Substitute known values
[tex]V(x) = [\frac{x}{x + 1} + \frac{2}{x-3}] * \frac{x^3 - 9x}{x}[/tex]
Solving (b): Simplify V(x)
We have:
[tex]V(x) = [\frac{x}{x + 1} + \frac{2}{x-3}] * \frac{x^3 - 9x}{x}[/tex]
Solve the expression in bracket
[tex]V(x) = [\frac{x*(x-3) + 2*(x+1)}{(x + 1)(x -3)}] * \frac{x^3 - 9x}{x}[/tex]
[tex]V(x) = [\frac{x^2-3x + 2x+2}{(x + 1)(x -3)}] * \frac{x^3 - 9x}{x}[/tex]
[tex]V(x) = [\frac{x^2-x+2}{(x + 1)(x -3)}] * \frac{x^3 - 9x}{x}[/tex]
Factor out x
[tex]V(x) = [\frac{x^2-x+2}{(x + 1)(x -3)}] * \frac{x(x^2 - 9)}{x}[/tex]
[tex]V(x) = [\frac{x^2-x+2}{(x + 1)(x -3)}] * (x^2 - 9)[/tex]
Express as difference of two squares
[tex]V(x) = [\frac{x^2-x+2}{(x + 1)(x -3)}] * (x- 3)(x + 3)[/tex]
Cancel out x - 3
[tex]V(x) = [\frac{x^2-x+2}{(x + 1)}] *(x + 3)[/tex]
[tex]V(x) = [\frac{(x^2-x+2)(x + 3)}{(x + 1)}][/tex]
Solving (c): V(50), V(100), V(1000)
[tex]V(x) = [\frac{(x^2-x+2)(x + 3)}{(x + 1)}][/tex]
Substitute 50 for x
[tex]V(50) = [\frac{(50^2-50+2)(50 + 3)}{(50 + 1)}][/tex]
[tex]V(50) = \frac{(2452)(53)}{(51)}][/tex]
[tex]V(50) = 2548.17[/tex]
Substitute 100 for x
[tex]V(100) = [\frac{(100^2-100+2)(100 + 3)}{(100 + 1)}][/tex]
[tex]V(100) = \frac{9902)(103)}{(101)}[/tex]
[tex]V(100) = 10098.10[/tex]
Substitute 1000 for x
[tex]V(1000) = [\frac{(1000^2-1000+2)(1000 + 3)}{(1000 + 1)}][/tex]
[tex]V(1000) = [\frac{(999002)(10003)}{(10001)}][/tex]
[tex]V(1000) = 999201.78[/tex]
Solving (d): V(x) = 3000, find x
[tex]V(x) = [\frac{(x^2-x+2)(x + 3)}{(x + 1)}][/tex]
[tex]3000 = [\frac{(x^2-x+2)(x + 3)}{(x + 1)}][/tex]
Cross multiply
[tex]3000(x + 1) = (x^2-x+2)(x + 3)[/tex]
Equate to 0
[tex](x^2-x+2)(x + 3)-3000(x + 1)=0[/tex]
Open brackets
[tex]x^3 - x^2 + 2x + 3x^2 - 3x + 6 - 3000x - 3000 = 0[/tex]
Collect like terms
[tex]x^3 + 3x^2- x^2 + 2x - 3x - 3000x + 6 - 3000 = 0[/tex]
[tex]x^3 + x^2 -3001x -2994 = 0[/tex]
Solve using graphs (see attachment)
[tex]x = -54.783[/tex] or
[tex]x = -0.998[/tex] or
[tex]x = 54.78[/tex]
x can't be negative. So:
[tex]x = 54.78[/tex]
Diện tích xung quanh của hình chóp tứ giác đều có cạnh bằng 6cm và độ dài trung đoạn bằng 10cm là:
A. 120 cm2 B. 240 cm2 C. 180 cm2 D. 60 cm2
Answer:
B. 240 cm2
Step-by-step explanation:
Chu vi đáy: 10x=40
Diện tích xung quanh: Sxq=1/2 x40x12=240
Help please guys thanks
Answer:
D
Step-by-step explanation:
sqrt_{4}(81)^5=(81^(5))^(1/4)=81^(5/4)
Answer:
D
Step-by-step explanation:
if it was properly typed, it would have been All of the above but the most correct option is D.
Find the area of the shaded part !
Answer:
Step-by-step explanation:
Semicircle:
Shaded area of semicircle = area of outer semicircle - area of inner semicircle
Outer semicircle:
d = 40 m r = 40/2 = 20m
Area of outer semicircle = πr²
= 3.14*20*20
= 1256 m²
Inner semicircle:
d = 30 m r = 30/2 = 15 m
Area of outer semicircle = πr²
= 3.14*15*15
= 706.5 m²
Shaded area of semicircle = 1256 - 706.5 = 549.5 m²
Shaded area of semicircle in both sides = 2 * 549.5 = 1099 m²
Rectangle on both sides:
Length = 50 m
width = 30 m
Area of shaded rectangles on both sides = 2* (length *width)
= 2* 50 * 30
= 3000 m²
Shaded area = 1099 + 3000 = 4099 m²
Write an equation that represents the line.
Use exact numbers.
Answer: y=2/3X- 4/3
Step-by-step explanation:
Slope = (4-2)/(4-1)=2/3
Y-2=2/3(x-1)
Y-2=2/3x-2/3
Y=2/3X-2/3+2
Y=2/3X-4/3
a special window in the shape of a rectangle with semicircles at each end is to be constructed so that the outside perimeter is 100 feet. find the dimensions of the rectangle tha tmaximizes the total area of the window
Answer:
The dimensions of the rectangle are length 25 feet and width 15.92 feet
Step-by-step explanation:
Let L be the length of the rectangle and w be the width.
The area of the rectangular part of the shape is Lw while the area of the two semi-circular ends which have a diameter which equals the width of the rectangle is 2 × πw²/8 = πw²/4. The area of each semi-circle is πw²/4 ÷ 2 = πw²/8
So, the area of the shape A = Lw + πw²/4.
The perimeter of the shape, P equals the length of the semi-circular sides plus twice its length. The length of a semi-circular side is πw/2. So, both sides is 2 × πw/2 = πw
P = πw + 2L
Since the perimeter, P = 100 feet, we have
πw + 2L = 100
From this L = (100 - πw)/2
Substituting L into A, we have
A = Lw + πw²/4.
A = [(100 - πw)/2]w + πw²/4.
A = 50w - πw²/2 + πw²/4.
A = 50w - πw²/2
Now differentiating A with respect to w and equating it to zero to find the value of w which maximizes A.
So
dA/dw = d[50w - πw²/2]/dw
dA/dw = 50 - πw
50 - πw = 0
πw = 50
w = 50/π = 15.92 feet
differentiating A twice to get d²A/dw² = - π indicating that w = 50/π is a value at which A is maximum since d²A/dw² < 0.
So, substituting w = 50/π into L, we have
L = (100 - πw)/2
L = 50 - π(50/π)/2
L = 50 - 50/2
L = 50 - 25
L = 25 feet
So, the dimensions of the rectangle are length 25 feet and width 15.92 feet
Beginning in January, a person plans to deposit $1 at the end of each month into an account earning
15% compounded monthly. Each year taxes must be paid on the interest earned during that year. Find
the interest earned during each year for the first 3 years.
Answer:
hi I am a Nepal
[tex] {233333}^{2332} [/tex]