Answer:
the answer is x = 2 or B, hope this helps
Step-by-step explanation:
Sameer bought 8kg 500g mango and 5kg 250g apples and Anil bought 7kg 800g Guava and 4kg 625g Banana. Who bought more fruits? And by how much?.
Answer:
Below.
Step-by-step explanation:
Sameer:-
Number of mango's = total weight / weight of 1 mango
= 5 kg / 500g
= 5000/500
= 10.
Number of apples: = 5000/250 = 20.
Total number of fruit = 30.
Anil :-
Number of guava = total weight / weight of 1 guava
= 7 kg / 800g
= 7000/800
= 9.
Number of banana: = 4000/625 = 6.
Total number of fruit = 15.
Sameer bought the most fruit, 15 more than Anil.
Note: in Anil's case I rounded the values to the nearest whole number.
what is the measure of an angle if it is 120 less than 5 times its own complement
Answer:
The measure of the angle is 55º.
Step-by-step explanation:
Complement of angle x:
If two angles are complementary, the sum of their measures is of 90º. Thus, the complement of an angle x is 90 - x.
In this question:
Angle is 120 less than 5 times its own complement, so:
[tex]x = 5(90 - x) - 120[/tex]
We have to solve for x
[tex]x = 450 - 5x - 120[/tex]
[tex]6x = 330[/tex]
[tex]x = \frac{330}{6}[/tex]
[tex]x = 55[/tex]
The measure of the angle is 55º.
Casey and Malik can paint a room in 6 hours if they work together. If Malik were to work by himself, it would take him 4 hours longer than it would take Casey working by himself. How long would it take Casey to paint the room by himself if Malik calls in sick? Round to 2 decimal places.
Answer:
It would take 10 hours for Casey to paint the room by himself.
Step-by-step explanation:
Given that Casey and Malik can paint a room in 6 hours if they work together, and if Malik were to work by himself, it would take him 4 hours longer than it would take Casey working by himself, to determine how long would it take Casey to paint the room by himself if Malik calls in sick the following calculation must be performed:
6 x 2 = 12
12 x 2 = 24
(24 - 4) / 2 = 10
Therefore, it would take 10 hours for Casey to paint the room by himself.
The three methods used to classify costs into their fixed and variable components includes:_____.
a. high-low method.
b. scatter diagrams.
c. most-squares regression.
d. least-squares regression.
e. variable-fixed method.
Answer:
a. high-low method.
b. scatter diagrams.
d. least-squares regression.
Step-by-step explanation:
Costing is a measurement of the cost of production of goods and services by assessing the fixed costs and variable costs associated with each step of production.
Fixed cost can be defined as predetermined expenses in a business that remain constant for a specific period of time regardless of the quantity of production or level of outputs. Some examples of fixed costs in business are loan payments, employee salary, depreciation, rent, insurance, lease, utilities etc.
On the other hand, variable costs can be defined as expenses that are not constant and as such usually change directly and are proportional to various changes in business activities. Some examples of variable costs are taxes, direct labor, sales commissions, raw materials, operational expenses etc.
In Financial accounting, the three methods used to classify costs into their fixed and variable components includes high-low method, scatter diagrams and least-squares regression.
The high-low method is a quick and easy way to estimate costs by using historical accounting information from a range of reporting periods.
A scatter diagram (scattergraph) estimate costs by considering all the data points and not just the lowest or highest point.
A least squares regression line is a standard technique in regression analysis used to make the vertical distance obtained from the data points running to the regression line to become very minimal or as small as possible.
Generally, the sum of the residuals of a least squares regression line is always equal to zero.
Answer:
a. high-low method.
b. scatter diagrams.
d. least-squares regression.
Step-by-step explanation:
The three methods used to classify costs into their fixed and variable components includes:
high-low method.scatter diagrams.least-squares regression.Identify the transformation that occurs to create the graph of g(x). g(x)=f(x)-7
Answer:
g(x) is obtained by shift the function f(x) down 7 units by subtracting 7 units from f(x).
Step-by-step explanation:
We are given that
[tex]g(x)=f(x)-7[/tex]
We have to identify the transformation that occurs to create the graph of g(x).
To identify the transformation that occurs to create the graph of g(x)
We will subtract the 7 from f(x).
Let f(x) be any function
[tex]g(x)=f(x)-k[/tex]
It means g(x) obtained by shift the function f(x) down k units by subtracting k units from f(x).
Therefore, g(x) is obtained by shift the function f(x) down 7 units by subtracting 7 units from f(x).
What is the value of x
Answer:
52/3
Step-by-step explanation:
Use basic Thales therom,
[tex]\frac{3x}{4x}=\frac{3x+7}{5x-8}\\\\\frac{3}{4}=\frac{3x+7}{5x-8}\\[/tex]
Cross multiply,
3*(5x-8)=4*(3x+7)
3*5x - 3*8 = 4*3x + 4*7
15x - 24 = 12x +28
Add 24 to both sides
15x = 12x + 28 + 24
15x = 12x + 52
Subtract 12x from both sides
15x-12x =52
3x = 52
Divide both sides by 3
x = 52/3
A total of $20,000 is invested at an annual interest rate of 6%. No matter how many years this
money is invested, what is the best investment plan to earn the most money in the end?
Compounded continuously
Compounded daily
Compounded quarterly
Compounded monthly
5. What is the value of x if the quadrilateral is a kite? B X+2 C С 13 A Xth12 D
Answer: just had this problem! X = 11
in the past year bill watch 64 movies that he thought were very good he watched 80 movies over the whole year of the movies he watched what percentage did he rate as very good
Answer:
he rate it 16%
Step-by-step explanation:
64-80\100=16
what is the inverse of the function shown
Step-by-step explanation:
the down function clearly is
y = x - 5, -2 <= x <= 8
the reasons :
1. it is linear. so, we have only a form of ax+b
2. x=0 => y=-5
x=5 => y=0
so, with these 2 points alone we can see
y = ax + b
-5 = a×0 +b = b
0 = a×5 - 5
5 = a×5
1 = a
the inverse function is based on
y = x - 5
=>
x = y + 5
now renaming the variables so that y is the result and x the input variable delivers
y = x + 5
and because the original function only delivered y- values between -7 and +3, this is also the defined domain for the inverse function.
so,
y = x + 5, -7 <= x <= +3
so, we have the points
x=-7 => y=-2
x=+3 => y=8
you need to draw the line between these 2 points with filled dots at the end points (as they are included in the function).
The Statistical Abstract of the United States published by the U.S. Census Bureau reports that the average annual consumption of fresh fruit per person is 99.9 pounds. The standard deviation of fresh fruit consumption is about 30 pounds. Suppose a researcher took a random sample of 38 people and had them keep a record of the fresh fruit they ate for one year.
Appendix A Statistical Tables
(Round all z values to 2 decimal places. Round your answers to 4 decimal places.)
a. What is the probability that the sample average would be less than 90 pounds?
p =
b. What is the probability that the sample average would be between 98 and 105 pounds?
p =
c. What is the probability that the sample average would be less than 112 pounds?
p =
d. What is the probability that the sample average would be between 93 and 96 pounds?
p =
Answer:
Hence,
a) The probability that the sample average would be less than 90 pounds is 0.0210.
b) The probability that the sample average would be between 98 and 105 pounds is 0.5045.
c) The probability that the sample average would be less than 112 pounds is 0.9935.
d) The probability that the sample average would be between 93 and 96 pounds is 0.1341.
Step-by-step explanation:
a) [tex]P(X < 90) = P(Z < (90 - 99.9) / (30\sqrt(38)))[/tex]
= P(Z < -2.03) = 0.0210
b )[tex]P(98 < x <105) = P((98 -99.9) / (30 \sqrt(38)) < Z < (105 -99.9) / (30 \sqrt(38)))[/tex]
= P(-0.39 < Z < 1.05) = 0.5045
c ) [tex]P(X < 112) = P(Z < (112 - 99.9) / (30\sqrt(38)))[/tex]
= P(Z < 2.49) = 0.9935
d )[tex]P(93 < x < 96) = P((93 -99.9) / (30 \sqrt(38)) < Z < (96 -99.9) / (30 \sqrt(38)))[/tex]
= P( -1.42 < Z < -0.8 )
= 0.2119 - 0.0778 = 0.1341
Suppose X and Y are two independent exponential variables. The mean of X is twice the mean of Y. If the probability of X exceeding 50 is 0.7788, what is the probability of Y exceeding 40
If X ~ Exponential(µ), then the mean of X is 1/µ. So if the mean of X is twice the mean of Y, then the mean of Y is 1/(2µ), so that Y ~ Exponential(2µ).
We're given that
P(X > 50) = 1 - P(X ≤ 50) = 1 - Fx (50) ≈ 0.7788
==> Fx (50) = P(X ≤ 50) ≈ 0.2212
where Fx is the CDF of X, which is given for 0 ≤ x < ∞ to be
Fx (x) = 1 - exp(-µx)
Solve for µ :
1 - exp(-50µ) ≈ 0.2212 ==> µ ≈ -ln(0.7788)/50 ≈ 0.005
Then we have
P (Y > 40) = 1 - P (Y ≤ 40) = 1 - Fy (40)
where Fy is the CDF of Y,
Fy (y) = 1 - exp(-2µy)
so that
P (Y > 40) ≈ 1 - exp(-2 × 0.005 × 40) ≈ 0.3297
When P = 2l + 2w is solved for w, the result is:?
Answer:
[tex]\frac{p-2l}{2}[/tex]
Step-by-step explanation:
move the 2l to the other side by subtracting 2l on both sides. you get P - 2l = 2w. now divide both sides by 2 to get the answer.
Now actually compute 2 - 8
Answer:
the answer is -6. you just subtract 2 with 8
The total number of students enrolled in MATH 123 this semester
is 5,780. If it increases by 0.28% for the next semester, what will
be the enrollment next semester? Round to a whole person.
Answer:
5796 people
Step-by-step explanation:
.28 percent of 5780 is 16.184 so added 5,780+16.184=5,796.184 but rounded to a whole person is 5,796!
Mark gathered data about the number of pink and red flowers that bloomed on several of his flowering shrubs. The scatter plot shows the data he gathered and the line of best fit.
The scatter plot showing data gathered and line of best fit is attached below :
Answer:
69
Step-by-step explanation:
Given the regression model :
y = 1.73x + 0.0924
Where,
y = number of pink flowers
x = Red flowers
Slope = 1.73
Intercept = 0.0924
The number of pink flower that are predicted to bloom on a shrub of 40 red flowers :
Put x = 40 and calculate the value of y
y = 1.73(40) + 0.0924
y = 69.2 + 0.0924
y = 69.2924
Number of pink flowers = 69
Please help me i will give you brainlest
Answer:
19. - 4/11
21. 14
Step-by-step explanation:
Im sorry but i can't solve 20
Nina and Amy began arguing about who did better on their tests, but they couldn't decide who did better given that they took different tests. Nina took a test in English and earned a 71.8, and Amy took a test in Social Studies and earned a 60.7. Use the fact that all the students' test grades in the English class had a mean of 71.7 and a standard deviation of 11.7, and all the students' test grades in Social Studies had a mean of 60.6 and a standard deviation of 10.5 to answer the following questions.
a) Calculate the z-score for Nina's test grade.
b) Calculate the z-score for Amy's test grade.
c) Which person did relatively better?
i. Nina
ii. Amy
iii. They did equally well.
Answer:
a) [tex]Z = 0.0085[/tex]
b) [tex]Z = 0.0095[/tex]
c) ii. Amy
Step-by-step explanation:
Z-score:
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Question a:
Nina took a test in English and earned a 71.8. In the English class had a mean of 71.7 and a standard deviation of 11.7.
This means that [tex]X = 71.8, \mu = 71.7, \sigma = 11.7[/tex]
So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{71.8 - 71.7}{11.7}[/tex]
[tex]Z = 0.0085[/tex]
Question b:
Amy took a test in Social Studies and earned a 60.7. Students' test grades in Social Studies had a mean of 60.6 and a standard deviation of 10.5.
This means that [tex]X = 60.7, \mu = 60.6, \sigma = 10.5[/tex]
So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{60.7 - 60.6}{10.5}[/tex]
[tex]Z = 0.0095[/tex]
c) Which person did relatively better?
Amy had a higher z-score, so she did relatively better.
One angle of a triangle is twice as large as another. The measure of the third angle is 60° more than that of the smallest angle. Find the measure of each angle.
The measure of the smallest angle is º
Please help :)
Answer:
The measure of the smallest angle is 30º
Step-by-step explanation:
Let the angles be:
[tex]x \to[/tex] the first angle (the smallest)
[tex]y \to[/tex] the second angle
[tex]z \to[/tex] the third angle
So, we have:
[tex]y = 2x[/tex]
[tex]z=x + 60[/tex]
Required
Find x
The angles in a triangle is:
[tex]x + y +z = 180[/tex]
Substitute values for y and z
[tex]x + 2x +x + 60 = 180[/tex]
[tex]4x + 60 = 180[/tex]
Collect like terms
[tex]4x = 180-60[/tex]
[tex]4x = 120[/tex]
Divide by 4
[tex]x = 30[/tex]
Can someone help please
Answer:
-10.5
Step-by-step explanation:
3(7)÷(7+7-2)
21÷(0-2)
21÷ (-2)
-10.5
Will give brainliest answer please give explanation
If this block dropped into 23.0mL of water, what will the new volume be?
An 80% confidence interval is (150, 170). What is the margin of error?
Answer:
10
Step-by-step explanation:
it is what it is
Applying the translation (x, y) - (x - 3, y + 7) maps the point (-4,7) onto the point
9
O A) (14, -7)
12
B) (7, -14)
15
C) (14, 7)
D) (-7, 14)
Answer: Choice D. (-7, 14)
Work Shown:
[tex](x,y) \to (x-3, y+7)\\\\(-4,7) \to (-4-3, 7+7)\\\\(-4,7) \to (-7, 14)\\\\[/tex]
The point has moved 3 units to the left and 7 units up. See the diagram below.
you count after 2. What is the number?
4. When this 3-digit number is rounded to the
nearest hundred, it rounds to 200. Rounded
to the nearest ten, this number rounds to
200. The sum of the digits of this number
is 19. What is the number?
Answer:
I think the answer is 100 because nothing greater than 200 if its rounded hope this helped if not sorry
Give two examples of addition of two mixed numbers with different denominators
SHOW ALL STEPS
Answer:
First Example: 3 1/2 + 4 3/4, Second Example: 6 3/8 + 7 9/15
Extra Example: 8 4/20 + 3 5/10
Step-by-step explanation:
First Example:
1/2 + 3/4
1/2 is equal to 2/4 so it is now compatible to be added to 3/4.
2/4 + 3/4
= 5/4
Now for the mixed numbers since its 3 and 4, 3 + 4 = 7.
Final answer is 7 5/4.
Second Example:
3/8 + 9/15
9/15 can be reduced to 3/5
Now the equation is 3/8 + 3/5
= 15/40 + 24/40 is an equivalent equation
15/40 + 24/40
= 39/40
Now for the mixed numbers since its 6 and 7, 6 + 7 = 13
Final answer is 13 39/40.
I am going to include one last example just in case you need one:
Third Example:
4/20 + 5/10
We can reduce these to
1/5 + 1/2
= 2/10 + 5/10 is the equivalent equation
2/10 + 5/10
= 7/10
Now for the mixed numbers since its 8 and 3, 8 + 3 = 11.
Final answer is 11 7/10.
I Hope this helps!
What is the domain of the given
set of ordered pairs?
(2, 4), (5,5), (8, 6), (11, 7)
Answer:
2, 5, 8, 11
Step-by-step explanation:
The domian is the x axis points thingy
1.3 hectoliters is how many liters
Answer: 130 liters
Step-by-step explanation:
1 hectoliter = 100 liters
1.3 hectoliters = 1.3 · 100 = 130 liters
Rewrite in simplest terms: (9x+5)-(-2x+10)(9x+5)−(−2x+10) . Someone please help me
Answer:
18x^(2)-69x-55
Step-by-step explanation:
dont have the time to rn
Answer:
[tex]{ \bf{(9x + 5) - ( - 2x + 10)(9x + 5) - ( - 2x + 10)}} \\ = { \tt{(9x + 5) - ( - {18x}^{2} + 80x + 50) - ( - 2x + 10)}} \\ = { \tt{(9 - 80 + 2)x + {18x}^{2} + 5 - 50 - 10 }} \\ = { \tt{ {18x}^{2} - 69x - 55}}[/tex]
if x+y=12 and xy =27,then find the value of x^2+y^2
PLEASE HELP !
Answer:
90
Step-by-step explanation:
=> x + y = 12
=> x² + y² + 2xy = 144
=> x² + y² + 2 * 27 = 144
=> x² + y² = 144 - 54
=> x² + y² = 90
Given that the area of a triangle ABC is 4.5 m², a=4, b=3, find two possible measures for angle C. Round your answer to the nearest tenth
Answer:
[tex]C = 48.6[/tex]
Step-by-step explanation:
Given
[tex]Area= 4.5m^2[/tex]
[tex]a =4[/tex]
[tex]b = 3[/tex]
Required
Find angle C
The area of the triangle will be calculated using:
[tex]Area = \frac{1}{2}ab \sin C[/tex]
So, we have:
[tex]4.5= \frac{1}{2} * 4 * 3 * \sin C[/tex]
[tex]4.5= 6 * \sin C[/tex]
Divide both sides by 6
[tex]0.75= \sin C[/tex]
Take arc sin of both sides
[tex]\sin^{-1}(0.75)= C[/tex]
[tex]48.6 = C[/tex]
[tex]C = 48.6[/tex]