Hello!
1) -3x - 4 = 23
-3x = 23 + 4
-3x = 27
x = 27 : (-3)
x = -9
2) x/2 - 12 = -4
x - 24 = -8
x = -8 + 24
x = 16
3) 6a + (-1) = 10
6a - 1 = 10
6a = 10 + 1
6a = 11
a = 11 : 6
a = 11/6
4) -(x + 2) = 12
x + 2 = -12
x = -12 - 2
x = -14
5) 7a + 12 = 10
7a = 10 - 12
7a = -2
a = -2 : 7
a = -2/7
6) -4(a + 2) = 12
a + 2 = -3
a = -3 - 2
a = -5
Good luck! :)
Whoever helps me with this question I will give them brainliest
Hi there I hope you are having a great day :) I am pretty sure that you do 280 degrees around angle so i would say you would add 63 + 73 + 83 = 219 then you would take away it 280 - 219 = 61 so y must equal to 61 this is because we can see a z shape and a z shape adds up to 280.
Hopefully that helps you.
15/4 : 5/12 =
tolong dijawab ya :)
Answer:
3/1 : 1/3
Step-by-step explanation:
Just simplify it.
which of the following is the median of 19, 31, 15, 50, 20
[tex]\huge\textsf{Hey there!}[/tex]
[tex]\large\text{19, 31, 15, 50, \& 20}[/tex]
[tex]\large\text{When you see or hear the word \underline{median}, think of the question}\\\large\text{asking you \bf what is the MIDDLE NUMBER.}\large\text{To find the}\\\large\text{middle number you have to put the numbers from descending}\\\large\text{(least/decreasing) or ascending (greatest/increasing) order}[/tex]
[tex]\large\text{15, 19, 20, 31, \& 20}[/tex]
[tex]\large\text{Make sure it is even on BOTH SIDES of the DATA SET}[/tex]
[tex]\large\text{It seems to be even on both sides of the number \bf 20}\large\text{ so \underline{20}}\\\large\text{can be your median/middle number in this given set}[/tex]
[tex]\boxed{\boxed{\huge\textsf{Answer: the median is \bf 20}}}\huge\checkmark[/tex]
[tex]\large\text{Good luck on your assignment and enjoy your day!}\\\\\\\\\\\frak{Amphitrite1040:)}[/tex]
Marissa constructed a figure with these views.
HELP ASAP EXTRA POINTS
Answer:
a triangular pyramid
Is this equation an identity? 6 + 5m = 4m
Answer:
Step-by-step explanation:
I don't think so. This equation has but one definite answer and the left and right sides don't produce the same result.
subtract 5m from both sides
6 = 4m - 5m
6 = - m Multiply both sides by - 1
-6 = m
An identity is something like 4x + 5x = 9x
It doesn't matter what x is. Any value of x will make the right side = to the left side. This becomes more important when you will study trigonometry.
I really need help with this thank you
Answer:
The photo is not clear post a clear photo then i will see that
Answer:
per = 28 units
area 32 sq units
Step-by-step explanation:
Which statement is true about the equations
-3x + 4y = 12 and 1/4x-1/3y = 1
O The system of the equations has exactly one solution at (-8, 3).
O The system of the equations has exactly one solution at (-4, 3).
O The system of the equations has no solution; the two lines are parallel.
O The system of the equations has an infinite number of solutions represented by either equation.
Find the direction in which the function is increasing most rapidly at the point Po.
f(x, y,z)= xy -lnz , Po (1,1,1)
The largest rate of change occurs in the same direction as the gradient of f at the point.
∇f(x, y, z) = (∂f/∂x, ∂f/∂y, ∂f/∂z) = (y, x, -1/z)
==> ∇f (1, 1, 1) = (1, 1, -1)
In other words, f changes at the highest rate in the direction of the vector (1, 1, -1).
Suppose 35.45% of small businesses experience cash flow problems in their first 5 years. A consultant takes a random sample of 530 businesses that have been opened for 5 years or less. What is the probability that between 34.2% and 39.03% of the businesses have experienced cash flow problems?
1) 0.6838
2) 20.3738
3) 0.3162
4) - 11.6695
5) 1.2313
Answer:
1) 0.6838
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
35.45% of small businesses experience cash flow problems in their first 5 years.
This means that [tex]p = 0.3545[/tex]
Sample of 530 businesses
This means that [tex]n = 530[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.3545[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.3545(1-0.3545)}{530}} = 0.0208[/tex]
What is the probability that between 34.2% and 39.03% of the businesses have experienced cash flow problems?
This is the p-value of Z when X = 0.3903 subtracted by the p-value of Z when X = 0.342.
X = 0.3903
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.3903 - 0.3545}{0.0208}[/tex]
[tex]Z = 1.72[/tex]
[tex]Z = 1.72[/tex] has a p-value of 0.9573
X = 0.342
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.342 - 0.3545}{0.0208}[/tex]
[tex]Z = -0.6[/tex]
[tex]Z = -0.6[/tex] has a p-value of 0.27425
0.9573 - 0.2743 = 0.683
With a little bit of rounding, 0.6838, so option 1) is the answer.
1. Nikita invests 6,000 for two years at a certain rate of interest compounded annually. At the end of first year it amounts to ? 6,720
plzzzz tell me
Answer:
Hope it is helpful and useful
solve the quadratic equation x²+x-2
Step-by-step explanation:
ii hope this will help you
please mark me as brinalist friend
Answer:
x = 1
x = -2
Step-by-step explanation:
Hello!
We can solve the quadratic by factoring the equation.
Standard Form of a Quadratic: [tex]ax^2 + bx + c = 0[/tex]
Given our equation: [tex]x^2 + x - 2 = 0[/tex]
a = 1b = 1c = -2Find two numbers that multiply up to "ac" but add up to "b". The two numbers are 2 and -1. Expand x into 2x and -1x.
Factor by Grouping[tex]x^2 + x - 2 = 0[/tex][tex]x^2 + 2x - x - 2 = 0[/tex][tex]x(x + 2) -1(x + 2) = 0[/tex][tex](x - 1)(x + 2) = 0[/tex]Set each factor to 0 and solve for x:
[tex]x - 1 = 0\\x = 1[/tex][tex]x + 2 = 0\\x = -2[/tex]The solutions for x are 1 and -2.
A fish story: The mean length of one-year-old spotted flounder, in millimeters, is 127 with standard deviation of 22, and the mean length of two-year-old spotted flounder is 158 with a standard deviation of 23. The distribution of flounder lengths is approximately bell-shaped. Part 1 of 4 (a) Anna caught a one-year-old flounder that was 155 millimeters in length. What is the z-score for this length
Answer:
The z-score for this length is of 1.27.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
One-year-old flounder:
Mean of 127 with standard deviation of 22, which means that [tex]\mu = 127, \sigma = 22[/tex]
Anna caught a one-year-old flounder that was 155 millimeters in length. What is the z-score for this length
This is Z when X = 155. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{155 - 127}{22}[/tex]
[tex]Z = 1.27[/tex]
The z-score for this length is of 1.27.
In how many ways could nine people be divided into two groups of two people and one group of five people?
Nine people could be divided into two groups of two people and one group of five people ways.
(Type a whole number.)
Answer:
your can only divide then up in that specific sequence one time
Follow the process of completing the square
to solve 2x2 + 8x - 12 = 0.
After adding B2 to both sides of the equation in step 4, what is the constant on the right side of the equation?
2x^2 + 8x - 12 = 0..divide by 2
x^2 + 4x - 6 = 0
x^2 + 4x = 6...add 4 to both sides of the equation
x^2 + 4x + 4 = 6 + 4
(x + 2)^2 = 10....<== ur constant is 10
x + 2 = (+-)sqrt 10
x = -2 (+ - ) sqrt 10
x = -2 + sqrt 10
x = -2 - sqrt 10
Which of the following is true?
1. The scale factor is 5/2 with a center of dilation at point B. The image of AB is on the same line because it passes through the center of dilation and CD is parallel to its image because it does not pass through the center of dilation.
2. The scale factor is 5/2 with a center of dilation at point B. The image of AB is on the same line because it does not pass through the center of dilation and CD is parallel to its image because it does pass through the center of dilation.
3. The scale factor is 2/5 with a center of dilation at point B. The image of AB is on the same line because it does not pass through the center of dilation and CD is parallel to its image because it does pass through the center of dilation.
4. The scale factor is 2/5 with a center of dilation at point B. The image of AB is on the same line because it passes through the center of dilation and CD is parallel to its image because it does not pass through the center of dilation.
Answer:
Option A
Step-by-step explanation:
If the quadrilateral ABCD is dilated by a scale factor 'k' to form quadrilateral A'B'C'D',
Scale factor = [tex]\frac{\text{Length of one side of the Image}}{\text{Length of one side of the original}}[/tex]
k = [tex]\frac{BA'}{BA}[/tex]
Distance between B(2, -5) and A(-1, -1) = [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
= [tex]\sqrt{(2+1)^2+(-5+1)^2}[/tex]
= 5 units
Distance between B(2, -5) and A'(-5.5, 5) = [tex]\sqrt{(-5.5-2)^2+(5+5)^2}[/tex]
= [tex]\sqrt{(-7.5)^2+(10)^2}[/tex]
= 12.5 units
Scale factor 'k' = [tex]\frac{12.5}{5}[/tex]
k = [tex]\frac{5}{2}[/tex]
Therefore, ABCD is dilated by a scale factor [tex]\frac{5}{2}[/tex] about point B.
BA and it's image BA' are on the same line and passes through center of dilation B.
Similarly, lines CD and C'D' will be parallel because they do not pass through center of dilation.
Therefore, Option (A) will be the correct option.
work out the area of this shape ,give me right answer with explanation I’ll pay you
Answer:240 square centimeters
Step-by-step explanation:
1. 10x7=70
2. 7x10=70
3. 25x4=100
70+70+100=240
John’s grocery bill totaled $200. After he used his coupons, the cash register showed the total bill as $20. Which statement is true?
The grocery bill before the coupons were used was 10 times as much as the bill after the coupons were used.
The grocery bill after the coupons were used was 10 times as much as the bill before the coupons were used.
The grocery bill before the coupons were used was 100 times as much as the bill after the coupons were used.
The grocery bill after the coupons were used was 100 times as much as the bill before the coupons were used.
Answer:
The grocery bill before the coupons were used was 10 times as much as the bill after the coupons were used.
Step-by-step explanation:
The price after coupons were used is 20, and the price before was 200. 20x10 =200
Solve the inequality 5x + 3 2 >48
Answer:
[tex]{ \tt{5x + 3 \geqslant 48}} \\ { \tt{5x \geqslant 45}} \\ { \tt{x \geqslant 9}}[/tex]
Answer:
x[tex]\geq[/tex]9
Step-by-step explanation:
5x+3[tex]\geq \\[/tex]48 /-3
5x[tex]\geq[/tex]45 //5
x[tex]\geq[/tex]9
Pls help! Answer the question
===============================================================
Explanation:
The given stem and leaf plot leads to this data set
68,68,69,69
71,72,77,77,78,78
80,81
I broke it up to have each tens digit get its own row. That way it's bit more readable.
Unfortunately, the term "average" in math is very vague. It could mean one of the following
meanmedianmodeTo get the mean (specifically the arithmetic mean), we will add up the values and then divide by n = 12 because there are 12 values in the list above. Adding said values gets us
68+68+69+69+71+72+77+77+78+78+80+81 = 888
Dividing that over 12 then leads to 888/12 = 74
The arithmetic mean is 74.
-------------
To get the median, we would first sort the data set. Though that is already done for us. From here, we locate the middle-most item.
Since there are n = 12 items here, the middle item is between slot n/2 = 12/2 = 6 and slot 7
The values in slots 6 and 7 are 72 and 77 respectively. The midpoint of those values is (72+77)/2 = 149/2 = 74.5
The median is 74.5
-------------
The mode is possibly the quickest measure of center or average we can compute. We simply look at the value that shows up the most. In this case, the following values show up twice (which is the most frequent of all the values)
68697778They are all tied for the title of "mode". It's possible to have more than one mode, so we say the mode is the set {68,69,77,78}.
Due to the nature of multiple modes, the mode is often not a good measure of center (but it's still a possibility; especially for categorical data).
In this case, I think the mean or median is a better measure of center.
Since there aren't any outliers, the mean is the best measure of center in this case. Luckily, the mean and median (74 and 74.5 respectively) are fairly close to one another.
-------------
To summarize everything, the term "average" is too vague and it could refer to the mean, median or mode. In this problem, the mean is possibly the best measure of center since there aren't any outliers and the mode isn't one single value.
We found the following:
mean = 74median = 74.5mode = {68,69,77,78}It's very likely your teacher is wanting the mean.
The table shows the relationship between the number of faculty members and the number of students at a local school. What is the missing value?
Faculty
Students
1
17
2
34
3
51
4
?
17
68
85
102
Answer:
68
Step-by-step explanation:
I did it on my test
The missing value in the table is 68. The correct answer would be option (B).
What is the linear relationship?A linear relationship is a connection that takes the shape of a straight line on a graph between two distinct variables - x and y. When displaying a linear connection using an equation, the value of y is derived from the value of x, indicating their relationship.
The table shows the relationship between the number of faculty members and the number of students at a local school.
Faculty Students
1 17
2 34
3 51
4 ?
The relationship between the number of faculty members and the number of students at the local school is that for every faculty member, there are 17 students.
Therefore, if there are 4 faculty members, we can find the number of students by multiplying 4 by 17, which gives us 68.
Thus, the missing value in the table is B. 68.
Learn about the linear relationship here :
https://brainly.com/question/11663530
#SPJ6
Please help me there’s a image above.
Answer:
4,-1 that is the answer so
the first term of an arithmetic sequence is -5, and the tenth term is 13. find the common difference
Answer:
2
Step-by-step explanation:
Answer:
2
Step-by-step explanation:
Equivalent question: Find the slope of line going through points (1,-5) and (10,13).
Line points up vertically and subtract. Then put 2nd difference on top of first difference.
(1,-5)
(10,13)
---------'subtracting
-9, -18
So the slope of the line gong through point's (1,-5) and (10,13) is -18/-9=2.
The common difference of an arithmetic sequence whose first term is -5 and whose tenth term is 13 is 2.
A file that is 266 megabytes is being downloaded . 14.4 % is completed , how many megabytes have been downloaded round to the tenth
Answer:
38.3 megabytes
Step-by-step explanation:
Find how many megabytes have been downloaded by multiplying 266 by 0.144:
266(0.144)
= 38.304
Round this to the nearest tenth:
= 38.3
So, 38.3 megabytes have been downloaded
Without third-party reimbursement, inclusive of private insurance carriers, healthcare finance and delivery systems that it supports would take on a very different complexion one that would not be sustainable. What does the author mean when she makes this statement?
Answer:
sorry dko alm hahahahahahahahajshaja
Help asap! Lia can rent a van for either $90 per day with unlimited mileage or $50 per day with 250 free miles and an extra 25¢ for each mile over 250. For what number of miles traveled in one day would the unlimited mileage plan save Lia money? (Show work)
Answer:
The unlimited mileage plan would save money for Lia from 410 miles onwards.
Step-by-step explanation:
Since Lia can rent a van for either $ 90 per day with unlimited mileage or $ 50 per day with 250 free miles and an extra 25 ¢ for each mile over 250, to determine for what number of miles traveled in one day would the unlimited mileage plan save Lia money, the following calculation must be performed:
90.25 - 50 = 40.25
40.25 / 0.25 = 161
161 + 250 = 411
Therefore, the unlimited mileage plan would save money for Lia from 410 miles onwards.
4 pts
>
Question 2
The total number of students enrolled in MATH 123 this semester is 5,780.
If it increases by 0.28% for the next semester, what will be the enrollment
next semester? Round to a whole person.
4 pts
Question 3
Answer:
17
Step-by-step explanation:
So, this is a percentage problem.
Start off by finding how many students 0.28% is:
If 100% = 5780
0.01% = 0.578
Now:
0.01% = 0.578
0.28% = 16.184
The exercise tells you to round for a whole person, so 16.184 turns 17
And that's the answer!
is there a formula for this?
help asap!!
Answer:
yes
Step-by-step explanation:
the answer is c well thats what my teacher said
Answer:
B
Step-by-step explanation:
using sine rule
[tex] \frac{y}{sin \: 45} = \frac{5}{sin \: 45} \\ y = 5[/tex]
using sin rule
[tex] \frac{x}{sin \: 90} = \frac{5}{sin \: 45} \\ \\ 5sin90 = xsin45 \\ \\ x = \frac{5 \: sin \: 90}{sin \: 45} \\ x = \frac{5}{0.7071} \\ x = 7.071[/tex]
x=5√2
Solve the formula for t
Answer:
Step-by-step explanation:
S - 4πc^2 = 6πct
t = (S - 4πc^2)/6πc
t = S/(6πc) - 2/3 c
assuming c ≠ 0
Z varies directly as Square x and inversely as y. If z = 187 when x = 64 and y = 6, find z if and 9. (Round off your answer to the nearest hundredth.)
Answer:
Z = 50
Step-by-step explanation:
Given the following data;
Z = 187
x = 64
y = 6
Translating the word problem into an algebraic expression, we have;
Z = k√x/y
First of all, we would find the constant of proportionality, k;
187 = k√64/6
187 * 6 = k√64
1122 = 8k
k = 1122/8
k = 140.25
To find z, when x and y = 9
Z = 140.25√9/9
Z = (140.25 * 3)/9
Z = 420.75/9
Z = 46.75 ≈ 50
Note: The values in the latter part of the question isn't explicitly stated, so I assumed a value of 9 for both x and y.
The original price of a set lunch was 30 dollars. It is now sold at a 20%
discount. There is an extra discount of 10% for students. How much
should a student pay to order a set lunch?