Suppose a sample of 1453 new car buyers is drawn. Of those sampled, 363 preferred foreign over domestic cars. Using the data, estimate the proportion of new car buyers who prefer foreign cars. Enter your answer as a fraction or a decimal number rounded to three decimal places

Answers

Answer 1

Answer:

"0.250" is the appropriate answer.

Step-by-step explanation:

Given:

New car sample,

= 1453

Preferred foreign,

= 363

Now,

The amount of new automobile purchasers preferring foreign cars will be approximated as:

= [tex]\frac{363}{1453}[/tex]

= [tex]0.250[/tex]


Related Questions

why infinity ( ) can’t be included in an inequality?

Answers

Answer:

Step-by-step explanation:

Because then the value on the other side will be unbounded by the infinity sign while expressing the answers on a number line.

please click thanks and mark brainliest if you like :)

use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​

Answers

First check the characteristic solution: the characteristic equation for this DE is

r ² - 3r + 2 = (r - 2) (r - 1) = 0

with roots r = 2 and r = 1, so the characteristic solution is

y (char.) = C₁ exp(2x) + C₂ exp(x)

For the ansatz particular solution, we might first try

y (part.) = (ax + b) + (cx + d) exp(x) + e exp(3x)

where ax + b corresponds to the 2x term on the right side, (cx + d) exp(x) corresponds to (1 + 2x) exp(x), and e exp(3x) corresponds to 4 exp(3x).

However, exp(x) is already accounted for in the characteristic solution, we multiply the second group by x :

y (part.) = (ax + b) + (cx ² + dx) exp(x) + e exp(3x)

Now take the derivatives of y (part.), substitute them into the DE, and solve for the coefficients.

y' (part.) = a + (2cx + d) exp(x) + (cx ² + dx) exp(x) + 3e exp(3x)

… = a + (cx ² + (2c + d)x + d) exp(x) + 3e exp(3x)

y'' (part.) = (2cx + 2c + d) exp(x) + (cx ² + (2c + d)x + d) exp(x) + 9e exp(3x)

… = (cx ² + (4c + d)x + 2c + 2d) exp(x) + 9e exp(3x)

Substituting every relevant expression and simplifying reduces the equation to

(cx ² + (4c + d)x + 2c + 2d) exp(x) + 9e exp(3x)

… - 3 [a + (cx ² + (2c + d)x + d) exp(x) + 3e exp(3x)]

… +2 [(ax + b) + (cx ² + dx) exp(x) + e exp(3x)]

= 2x + (1 + 2x) exp(x) + 4 exp(3x)

… … …

2ax - 3a + 2b + (-2cx + 2c - d) exp(x) + 2e exp(3x)

= 2x + (1 + 2x) exp(x) + 4 exp(3x)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

x : 2a = 2

1 : -3a + 2b = 0

exp(x) : 2c - d = 1

x exp(x) : -2c = 2

exp(3x) : 2e = 4

Solving the system gives

a = 1, b = 3/2, c = -1, d = -3, e = 2

Then the general solution to the DE is

y(x) = C₁ exp(2x) + C₂ exp(x) + x + 3/2 - (x ² + 3x) exp(x) + 2 exp(3x)

If 8x+5(3+x)-a=15+5x, then a = ?

Answers

Answer:

a = 8x

if you want to find x also, then x = a/8

Step-by-step explanation:

help with 1 b please. using ln.​

Answers

Answer:

[tex]\displaystyle \frac{dy}{dx} = \frac{1}{(x - 2)^2\sqrt{\frac{x}{2 - x}}}[/tex]

General Formulas and Concepts:

Pre-Algebra

Equality Properties

Algebra I

Terms/CoefficientsFactoringExponential Rule [Root Rewrite]:                                                                 [tex]\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}[/tex]

Algebra II

Natural logarithms ln and Euler's number eLogarithmic Property [Exponential]:                                                             [tex]\displaystyle log(a^b) = b \cdot log(a)[/tex]

Calculus

Differentiation

DerivativesDerivative NotationImplicit Differentiation

Derivative Property [Multiplied Constant]:                                                           [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Derivative Property [Addition/Subtraction]:                                                         [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]

Basic Power Rule:

f(x) = cxⁿf’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:                                                                           [tex]\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]

Derivative Rule [Chain Rule]:                                                                                 [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]

Step-by-step explanation:

*Note:

You can simply just use the Quotient and Chain Rule to find the derivative instead of using ln.

Step 1: Define

Identify

[tex]\displaystyle y = \sqrt{\frac{x}{2 - x}}[/tex]

Step 2: Rewrite

[Function] Exponential Rule [Root Rewrite]:                                               [tex]\displaystyle y = \bigg( \frac{x}{2 - x} \bigg)^\bigg{\frac{1}{2}}[/tex][Equality Property] ln both sides:                                                                 [tex]\displaystyle lny = ln \bigg[ \bigg( \frac{x}{2 - x} \bigg)^\bigg{\frac{1}{2}} \bigg][/tex]Logarithmic Property [Exponential]:                                                             [tex]\displaystyle lny = \frac{1}{2}ln \bigg( \frac{x}{2 - x} \bigg)[/tex]

Step 3: Differentiate

Implicit Differentiation:                                                                                 [tex]\displaystyle \frac{dy}{dx}[lny] = \frac{dy}{dx} \bigg[ \frac{1}{2}ln \bigg( \frac{x}{2 - x} \bigg) \bigg][/tex]Logarithmic Differentiation [Derivative Rule - Chain Rule]:                       [tex]\displaystyle \frac{1}{y} \ \frac{dy}{dx} = \frac{1}{2} \bigg( \frac{1}{\frac{x}{2 - x}} \bigg) \frac{dy}{dx} \bigg[ \frac{x}{2 - x} \bigg][/tex]Chain Rule [Basic Power Rule]:                                                                     [tex]\displaystyle \frac{1}{y} \ \frac{dy}{dx} = \frac{1}{2} \bigg( \frac{1}{\frac{x}{2 - x}} \bigg) \bigg[ \frac{2}{(x - 2)^2} \bigg][/tex]Simplify:                                                                                                         [tex]\displaystyle \frac{1}{y} \ \frac{dy}{dx} = \frac{-1}{x(x - 2)}[/tex]Isolate  [tex]\displaystyle \frac{dy}{dx}[/tex]:                                                                                                     [tex]\displaystyle \frac{dy}{dx} = \frac{-y}{x(x - 2)}[/tex]Substitute in y [Derivative]:                                                                           [tex]\displaystyle \frac{dy}{dx} = \frac{-\sqrt{\frac{x}{2 - x}}}{x(x - 2)}[/tex]Rationalize:                                                                                                     [tex]\displaystyle \frac{dy}{dx} = \frac{-\frac{x}{2 - x}}{x(x - 2)\sqrt{\frac{x}{2 - x}}}[/tex]Rewrite:                                                                                                         [tex]\displaystyle \frac{dy}{dx} = \frac{-x}{x(x - 2)(2 - x)\sqrt{\frac{x}{2 - x}}}[/tex]Factor:                                                                                                           [tex]\displaystyle \frac{dy}{dx} = \frac{-x}{-x(x - 2)^2\sqrt{\frac{x}{2 - x}}}[/tex]Simplify:                                                                                                         [tex]\displaystyle \frac{dy}{dx} = \frac{1}{(x - 2)^2\sqrt{\frac{x}{2 - x}}}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

Calls to a customer service center last on average 2.3 minutes with a standard deviation of 2 minutes. An operator in the call center is required to answer 76 calls each day. Assume the call times are independent.
What is the expected total amount of time in minutes the operator will spend on the calls each day?
What is the standard deviation of the total amount of time in minutes the operator will spend on the calls each day? Give your answer to four decimal places.
What is the approximate probability that the total time spent on the calls will be less than 166 minutes? Give your answer to four decimal places. Use the standard deviation as you entered it above to answer this question.
What is the value c such that the approximate probability that the total time spent on the calls each day is less than c is 0.95? Give your answer to four decimal places. Use the standard deviation as you entered it above to answer this question.

Answers

Answer:

The expected total amount of time in minutes the operator will spend on the calls each day is of 174.8 minutes.

The standard deviation of the total amount of time in minutes the operator will spend on the calls each day is of 17.4356 minutes.

0.3085 = 30.85% approximate probability that the total time spent on the calls will be less than 166 minutes.

The value c such that the approximate probability that the total time spent on the calls each day is less than c is 0.95 is [tex]c = 203.4816[/tex]

Step-by-step explanation:

Normal Probability Distribution

Problems of normal distributions can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

n instances of a normally distributed variable:

For n instances of a normally distributed variable, the mean is:

[tex]M = n\mu[/tex]

The standard deviation is:

[tex]s = \sigma\sqrt{n}[/tex]

Calls to a customer service center last on average 2.3 minutes with a standard deviation of 2 minutes.

This means that [tex]\mu = 2.3, \sigma = 2[/tex]

An operator in the call center is required to answer 76 calls each day.

This means that [tex]n = 76[/tex]

What is the expected total amount of time in minutes the operator will spend on the calls each day?

[tex]M = n\mu = 76*2.3 = 174.8[/tex]

The expected total amount of time in minutes the operator will spend on the calls each day is of 174.8 minutes.

What is the standard deviation of the total amount of time in minutes the operator will spend on the calls each day?

[tex]s = \sigma\sqrt{n} = 2\sqrt{76} = 17.4356[/tex]

The standard deviation of the total amount of time in minutes the operator will spend on the calls each day is of 17.4356 minutes.

What is the approximate probability that the total time spent on the calls will be less than 166 minutes?

This is the p-value of Z when X = 166.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

For this problem:

[tex]Z = \frac{X - M}{s}[/tex]

[tex]Z = \frac{166 - 174.8}{17.4356}[/tex]

[tex]Z = 0.5[/tex]

[tex]Z = 0.5[/tex] has a p-value of 0.6915.

1 - 0.6915 = 0.3085.

0.3085 = 30.85% approximate probability that the total time spent on the calls will be less than 166 minutes.

What is the value c such that the approximate probability that the total time spent on the calls each day is less than c is 0.95?

This is X = c for which Z has a p-value of 0.95, so X = c when Z = 1.645. Then

[tex]Z = \frac{X - M}{s}[/tex]

[tex]1.645 = \frac{c - 174.8}{17.4356}[/tex]

[tex]c - 174.8 = 1.645*17.4356[/tex]

[tex]c = 203.4816[/tex]

The value c such that the approximate probability that the total time spent on the calls each day is less than c is 0.95 is [tex]c = 203.4816[/tex]

Illustrate the 7th pattern of the sequence of square numbers. ​

Answers

1,4,9,16,25,36,49,........

7th pattern =49.....

Answer:

1, 4, 9, 16, 25, 36, 49…................the 7 the pattern is 49

Terrell loves to listen to music, so he buys a subscription to a music-streaming service. He pays $4.99 each month. How much does the streaming service cost per year?

Answers

Answer:
$59.88

Solving Steps:
So $4.99 each month. There are 12 months in a year so you have to times $4.99x12. This is $59.88 which is the answer.

What does si mean in temperature

Answers

Answer:

The kelvin (abbreviation K), also called the degree Kelvin (abbreviation, o K), is the SI unit of temperature. One Kelvin is 1/273.16 (3.6609 x 10 -3 ) of the thermodynamic temperature of the triple point of pure water (H 2 O). The ampere (abbreviation, A) is the SI unit of electric current.

Answer:

kelvin is si unit of tempreature

If per unit variable cost of a product is Rs.8 and fixed cost is Rs 5000 and it is sold for Rs 15 per unit, profit in 1000 units is.......
a.. rs 7000
b. rs 2000
c. rs 25000
d. rs 0​

Answers

Answer:

a.. rs 7000

Because 15×1000=15000 it is SP when selling 1000units in the rate of Rs 15/unit& 8×1000=8000 this is cp when buying 1000 units in the rate of Rs 8/unit.

So,by formula of profit,

Rs (15000-8000)=Rs7000

PLEASE HELP

Solve the equation for y. Identify the slope and y-intercept then graph the equation.

-3y=3x-9

Y=
M=
B=

Please Include a picture of the graph and show your work if you can

Answers

9514 1404 393

Answer:

  y = -x +3

  m = -1

  b = 3

Step-by-step explanation:

To solve the given equation for y, divide by the coefficient of y.

  (-3y)/(-3) = (3x -9)/(-3)

  y = -x +3

__

The slope is the x-coefficient, M = -1.

__

The y-intercept is the added constant, B = 3.

__

Both equations are graphed in the attachment. Texture has been added to the original so you can see the graphs are the same line.

Addition prop of equality
subtraction prop of quality
multiplication prop of equality
Division prop of equality
simplifying
distrib prop

Answers

1 multiplication prop
2simplifying
3 Addition prop
4 simplifying

Help me please thanks guys

Answers

Answer:

B, D, F

Step-by-step explanation:

In a rational exponent, the numerator is an exponent, and the denominator becomes the index of the root.

[tex]a^{\frac{m}{n}} = \sqrt[n] {a^m}[/tex]

Answer: B, D, F

12) Find the angles between 0o and 360o where sec θ = −3.8637 . Round to the nearest 10th of a degree:

Please show all work

Answers

9514 1404 393

Answer:

  105.0°, 255.0°

Step-by-step explanation:

Many calculators do not have a secant function, so the cosine relation must be used.

  sec(θ) = -3.8637

  1/cos(θ) = -3.8637

  cos(θ) = -1/3.8637

  θ = arccos(-1/3.8637) ≈ 105.000013°

The secant and cosine functions are symmetrical about the line θ = 180°, so the other solution in the desired range is ...

  θ = 360° -105.0° = 255.0°

The angles of interest are θ = 105.0° and θ = 255.0°.

Find the sum of ∑3/k=0 k^2

Answers

Answer:

[tex]14[/tex]

Step-by-step explanation:

Given

[tex]\displaystyle \sum_{k=0}^3k^2[/tex]

Let's break down each part. The input at the bottom, in this case [tex]k=0[/tex], is assigning an index [tex]k[/tex] at a value of [tex]0[/tex]. This is the value we should start with when substituting into our equation.

The number at the top, in this case 3, indicates the index we should stop at, inclusive (meaning we finish substituting that index and then stop). The equation on the right, in this case [tex]k^2[/tex], is the equation we will substitute each value in. After we substitute our starting index, we'll continue substituting indexes until we reach the last index, then add up each of the outputs produced.

Since [tex]k=0[/tex] is our starting index, start by substituting this into [tex]k^2[/tex]:

[tex]0^2=0[/tex]

Now continue with [tex]k=1[/tex]:

[tex]1^1=1[/tex]

Repeat until we get to the ending index, [tex]k=3[/tex]. Remember to still use [tex]k=3[/tex] before stopping!

Substituting [tex]k=2[/tex]:

[tex]2^2=4[/tex]

Substituting [tex]k=3[/tex]:

[tex]3^2=9[/tex]

Since 3 is the index we end at, we stop here. Now we will add up each of the outputs:

[tex]0+1+4+9=\boxed{14}[/tex]

Therefore, our answer is:

[tex]\displaystyle \sum_{k=0}^3k^2=0+1+4+9=\boxed{14}[/tex]

Answer:

14

Step-by-step explanation:

∑3/k=0 k^2

Let k=0

0^2 =0

Let k = 1

1^2 =1

Let k =2

2^2 = 4

Let k = 3

3^2 = 9

0+1+4+9 = 14

Answer as soon as you can. a. 162 comes just after b. What comes just before 182. lies in between 99 and 101. c.​

Answers

Answer:

a. 161

b. 181

c. 100

Step-by-step explanation:

a. 162 comes just after 161 (160, 161, 162, 163...)

b. 181 comes just before 182 (180, 181, 182, 183...)

c. 100 is between 99 and 101 (98, 99, 100, 101, 102...)

For the given annual rate of change, find the corresponding growth or decay factor. + 300%​

Answers

Answer:

50% growth would would be (1 + .5)^ n

and 100% growth would be (1+ 1)^n

I assume that the answer would be (1+3)^n

for 300% growth the factor would be 3

Step-by-step explanation:

Which statement is true about the ratios of squares to
cicles in the tables? PLS HURRY!!!!

Answers

Answer:

show us a screenshot or image

or type it out, copy paste

Step-by-step explanation:

express 111 as a sum of two primes​

Answers

Answer:

2 + 109 = 111

Step-by-step explanation:

.............

Need the answer please, soon as possible

Answers

9514 1404 393

Answer:

  (d)  27.4%

Step-by-step explanation:

The desired percentage is ...

  (juniors for Kato)/(total juniors) × 100%

  =  129/(129 +194 +147) × 100%

  = (129/470) × 100% ≈ 27.4%

About 27.4% of juniors voted for Kato.

please help! 50 points!

Answers

Answer:

a) forming a bell

b) 5

c) 4.7

d) mean

is the correct answer

pls mark me as brainliest

What is the dimension of the null space Null (A) of A = ​

Answers

Answer:

the nullity of a matrix A is the demision of its null space:nullity A = dim (n(A).

What is the volume of the cylinder below?


Height 4
Radius 7

Answers

Answer:

V ≈ 615.75

r Radius 7

h Height 4

We are given a weighted coin (with one side heads, one side tails), and we want to estimate the unknown probability pp that it will land heads. We flip the coin 1000 times and it happens to land heads 406 times. Give answers in decimal form, rounded to four decimal places (or more). We estimate the chance this coin will land on heads to

Answers

Answer:

0.4060

Step-by-step explanation:

To calculate the sample proportion, phat, we take the ratio of the number of preferred outcome to the total number of trials ;

Phat = number of times coin lands on head (preferred outcome), x / total number of trials (total coin flips), n

x = 406

n = 1000

Phat = x / n = 406/ 1000 = 0.4060

The estimate of the chance that this coin will land on heads is 0.406

Probability is the likelihood or chance that an event will occur.

Probability = Expected outcome/Total outcome

If a coin is flipped 1000 times, the total outcomes will 1000

If it landed on the head 406 times, the expected outcome will be 406.

Pr(the coin lands on the head) = 406/1000

Pr(the coin lands on the head) = 0.406

Hence the estimate of the chance that this coin will land on heads is 0.406

Learn more on probability here: https://brainly.com/question/14192140

A.) V’ (-3,-5), K’ (-1,-2), B’ (3,-1), Z’(2,-5)

B.) V’(-4, 1), K’(-2, 4), B(2,5) Z’ (1, 1)

C.) V’ (-3,-4), K’(-1,-1) B’ (3,0), Z’(2,-4)

D.) V’ (-1,0), K’ (1, 3), B’(5,4), Z’(4,0)

Answers

Answer:

C

Step-by-step explanation:

this is a "translation" - a shift of the object without changing its shadow and size.

this shift is described by a "vector" - in 2D space by the x and y distances to move.

we have here (1, 0) - so, we move every point one unit to the right (positive x direction) and 0 units up/down.

therefore, C is the right answer (the x coordinates of the points are increased by 1, the y coordinate are unchanged).

A manufacturer of industrial solvent guarantees its customers that each drum of solvent they ship out contains at least 100 lbs of solvent. Suppose the amount of solvent in each drum is normally distributed with a mean of 101.8 pounds and a standard deviation of 3.76 pounds.

Required:
a. What is the probability that a drum meets the guarantee? Give your answer to four decimal places.
b. What would the standard deviation need to be so that the probability a drum meets the guarantee is 0.99?

Answers

Answer:

The answer is "0.6368 and 0.773".

Step-by-step explanation:

The manufacturer of organic compounds guarantees that its clients have at least 100 lbs. of solvent in every fluid drum they deliver. [tex]X\ is\ N(101.8, 3.76)\\\\P(X>100) =P(Z> \frac{100-101.8}{3.76}=P(Z>-0.47))[/tex]

For point a:

Therefore the Probability =0.6368  

For point b:

[tex]P(Z\geq \frac{100-101.8}{\sigma})=0.99\\\\P(Z\geq \frac{-1.8}{\sigma})=0.99\\\\1-P(Z< \frac{-1.8}{\sigma})=0.99\\\\P(Z< \frac{-1.8}{\sigma})=0.01\\\\z-value =0.01\\\\area=-2.33\\\\ \frac{-1.8}{\sigma}=-2.33\\\\ \sigma= \frac{-1.8}{-2.33}=0.773[/tex]

PLEAZE HELPPPPPPPSPPSPAP

Answers

Answer:

Step-by-step explanation:

345ftyfthftyft.plk,k,

Answer:

Hello,

Anwser is C

Step-by-step explanation:

[tex]y=log_9(12x)\\\\9^y=12x\\\\9^x=12y\ inverting \ x \ and \ y \\\\y=\dfrac{9^x}{12} \\[/tex]

Use the information below to complete the problem: p(x)=1/x+1 and q(x)=1/x-1 Perform the operation and show that it results in another rational expression. p(x) + q(x)

Answers

Answer:

hope u will understand...if u like this answer plz mark as brainlist

Answer:

[tex]\displaystyle p(x) + q(x) = \frac{2x}{(x+1)(x-1)}[/tex]

The result is indeed another rational expression.

Step-by-step explanation:

We are given the two functions:

[tex]\displaystyle p(x) = \frac{1}{x+1}\text{ and } q(x) = \frac{1}{x-1}[/tex]

And we want to perform the operation:

[tex]\displaystyle p(x) + q(x)[/tex]

And show that the result is another rational expression.

Add:

[tex]\displaystyle = \frac{1}{x+1} + \frac{1}{x-1}[/tex]

To combine the fractions, we will need a common denominator. So, we can multiply the first fraction by (x - 1) and the second by (x + 1):

[tex]\displaystyle = \frac{1}{x+1}\left(\frac{x-1}{x-1}\right) + \frac{1}{x-1}\left(\frac{x+1}{x+1}\right)[/tex]

Simplify:

[tex]=\displaystyle \frac{x-1}{(x+1)(x-1)} + \frac{x+1}{(x+1)(x-1)}[/tex]

Add:

[tex]\displaystyle = \frac{(x-1)+(x+1)}{(x+1)(x-1)}[/tex]

Simplify. Hence:

[tex]\displaystyle p(x) + q(x) = \frac{2x}{(x+1)(x-1)}[/tex]

The result is indeed another rational expression.

Can someone please help me with this math problem

Answers

We have [tex]f\left(f^{-1}(x)\right) = x[/tex] for inverse functions [tex]f(x)[/tex] and [tex]f^{-1}(x)[/tex]. Then if [tex]f(x) = 2x+5[/tex], we have

[tex]f\left(f^{-1}(x)\right) = 2f^{-1}(x) + 5 = x \implies f^{-1}(x) = \dfrac{x-5}2[/tex]

Then

[tex]f^{-1}(8) = \dfrac{8-5}2 = \boxed{\dfrac32}[/tex]

Please help me to find out the answer

Answers

9514 1404 393

Answer:

  44.66 in

Step-by-step explanation:

The side opposite the marked angle is given, and the side adjacent to it is the one wanted. The relevant trig relation is ...

  Tan = Opposite/Adjacent

Solving for the Adjacent side, we find ...

  Adjacent = Opposite/Tan

  PQ = (29 in)/tan(33°) ≈ 44.66 in

WORTH 100 POINTS!
The function h(x) is quadratic and h(3) = h(-10) = 0. Which could represent h(x)?

1) h(x) = x2 - 13x - 30
2) h(x) = x2 - 7x - 30
3) h(x) = 2x2 + 26x - 60
4) h(x) = 2x2 + 14x - 60

Answers

Answer:

h(x) = 2x^2 +14x -60

Step-by-step explanation:

A quadratic is of the form

h(x) = ax^2 + bx +c

h(3) = h(-10) = 0

This tells us that the zeros are at x=3 and x = -10

We can write the equation in the form

h(x) = a( x-z1)(x-z2) where z1 and z2 are the zeros

h(x) = a(x-3) (x- -10)

h(x) = a(x-3) (x+10)

FOIL

h(x) = a( x^2 -3x+10x-30)

h(x) = a(x^2 +7x -30)

Let a = 2

h(x) = 2x^2 +14x -60

It means

zeros are 3 and -10

Form equation

y=x²-(3-10)x+(-10)(3)y=x²+7x-30

Multi ply by 2

y=2x²+14x-60

Option D

Other Questions
dgar quiere escribirle una carta a Cori para expresarle asertivamente lo que siente, piensa y desea. Si t estuvieras en el lugar de dgar, qu le diras a Cori? Complete this item.For the following figure, can you conclude that / | | m? Select true or false. A compound, C20H28O, produces a 1H NMR spectrum with 11 distinct signals. The steps made by the integral trace measure 52, 17, 17, 26, 17, 25, 26, 9, 9, 35, and 8 mm. Complete the following table.Integral # Products52 mm 17 mm 17 mm 26 mm 17 mm 25 mm 26 mm35 mm 8 mm meaning of Dentology An amino acid analyzer is an instrument used to determine a. the sequence of amino acids in a polypeptide chain b. the presence of modified amino acids in a protein c. the identity of N-terminal and C-terminal amino acids in a protein d. the identities and relative amounts of amino acids in a protein 1. How do JT and JTA help in farming? Write in your own words and present in the class. What is the y-intercept of this quadratic function f(x) = x2 + 2x + 3 A line passes through the points (0,0) and (4,4). What is the equation of the line? If three times a number added to 8 is divided by the number plus 7, the result is four thirds. Find the number. When Dr. Philip tierno conducted his experiment on the pillows , he wanted to know the connection between pillows and the allergy-causing germs. He was trying to answer the question, Do these pillows contain germs that contribute to the family allergies? In this activity, you will write directions in Spanish from your home to someplace nearby, such as your school, a beach, an amusement park, a zoo, or any other spot that you frequent. Use verbs in the informal imperative and include direction words learned in this lesson in your response. Submit the response to your teacher. __________________ moves the respiratory medium over the respiratory surface.Group of answer choicesperfusionpercolationventilationdiffusion Tech A says that proper footwear may include both leather and steel-toed shoes. Tech B says that when working in the shop, you only need to wear safety glasses if you are doing something dangerous. Who is correct? Using Target Heart Rate during your workout is important because itA. manages your reaction time B. manages the safety and effectiveness of your workoutC. evaluates your breathingD. evaluates your muscular strength The excerpt from the Lewis W. Hine letter most clearly demonstrates acorrelation between which of the following phenomena?A. Internal migration and the breakdown of traditional familystructuresB. Immigration and the emergence of ethnic enclaves within citiesC. Industrialization and the rising number of children in the workforceD. Urbanization and the diversification of labor among industries Manuel lvarez Bravo captured hundreds of jarring scenes in photos that heshot in his native Mexico, showing strange juxtapositions and unusual events.If you were to try to imitate lvarez Bravo's style, what would you photographtoday? Are such strange scenes as easy to find these days? Write the structure of methanamine Financial statement forecasts rely on additivity within financial statements and articulation across financial statements. Given this information sales growth forecasts will most likely affect growth in: Chloe was given a gift of a conical bird feeder that has a volume of 785.4 cubic centimeters. What is the area of the lid she will need to cover the bird feeder? How many moles in 3.30g of iron