Answer:
0.6524 = 65.24% probability that the runner will average between 146 and 150 minutes in these 49 marathons.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Average of 147 minutes with a standard deviation of 12 minutes.
This means that [tex]\mu = 147, \sigma = 12[/tex]
Consider 49 of the races.
This means that [tex]n = 49, s = \frac{12}{\sqrt{49}} = \frac{12}{7} = 1.7143[/tex]
Find the probability that the runner will average between 146 and 150 minutes in these 49 marathons.
This is the p-value of Z when X = 150 subtracted by the p-value of Z when X = 146. So
X = 150
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{150 - 147}{1.7143}[/tex]
[tex]Z = 1.75[/tex]
[tex]Z = 1.75[/tex] has a p-value of 0.9599
X = 146
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{146 - 147}{1.7143}[/tex]
[tex]Z = -0.583[/tex]
[tex]Z = -0.583[/tex] has a p-value of 0.3075.
0.9599 - 0.3075 = 0.6524.
0.6524 = 65.24% probability that the runner will average between 146 and 150 minutes in these 49 marathons.
use the figure to find y
Answer:
y = 3
Step-by-step explanation:
6sin(30) = 3
Taree fourts of the 64 books were math books. determine the percent of the books that were math books.
Answer: 75% - these are books on mathematics.
Step-by-step explanation:
[tex]\dfrac{3}{4} \cdot 64 = 48\\[/tex]
64 - 100%
48 - x%
[tex]\dfrac{64}{100} =\dfrac{48}{x}\\\\x=\dfrac{48 \cdot 100}{64} \\\\x=75 \%[/tex]
Santos flipped a coin 300 times. The coin landed heads up 125 times. Find the ratio of heads to total number of coin flips. Express a simplified ratio
Answer:
5:12
Step-by-step explanation:
125:300 simplified = 5:12
I hope this helps
Select the correct answer.
Each statement describes a transformation of the graph of y=x. Which statement correctly describes the graph of y= x - 13?
OA. It is the graph of y= x translated 13 units to the right.
OB. It is the graph of y=xwhere the slope is decreased by 13.
It is the graph of y= x translated 13 units to the left.
OD. It is the graph of y= x translated 13 units up.
ОС.
minus sign ironically makes it go to the right
because the function crosses the y axis at -13
It is the graph of y = x translated 13 units down is the statement describes a transformation of the graph of y=x.
What is Graph?Graph is a mathematical representation of a network and it describes the relationship between lines and points.
The equation y = x - 13 represents a transformation of the graph of y = x. To find the type of transformation, we have to compare the two equations and look for changes.
In the equation y = x - 13, we subtract 13 from the value of x.
This means that the graph of y = x is shifted 13 units downwards,
since every point on the graph has 13 subtracted from its y-coordinate.
Hence, It is the graph of y = x translated 13 units down is the statement describes a transformation of the graph of y=x.
To learn more on Graph click:
https://brainly.com/question/17267403
#SPJ7
Which equation can be used to find 60 percent of 50
Answer:
x = 0.6 * 50
Step-by-step explanation:
x = 60% of 50
x = 60% * 50
x = 0.6 * 50
Answer:
60% of 50 = 60 / 100 × 50 = ⅗ × 50 = 150 / 5 = 30
________
x% of y = x / 100 × y = xy / 100
a+b=60000
[tex]\frac{a}{b}=\frac{4}{1}[/tex]
a=?
b=?
Answer: a = 25.67
Step-by-step explanation:
Two workers finished a job in 12 days. How long would it take each worker to do the job by himself if one of the workers needs 10 more days to finish the job than the other worker
Two workers finished a job in 7.5 days.
How long would it take each worker to do the job by himself if one of the workers needs 8 more days to finish the job than the other worker?
let t = time required by one worker to complete the job alone
then
(t+8) = time required by the other worker (shirker)
let the completed job = 1
A typical shared work equation
7.5%2Ft + 7.5%2F%28%28t%2B8%29%29 = 1
multiply by t(t+8), cancel the denominators, and you have
7.5(t+8) + 7.5t = t(t+8)
7.5t + 60 + 7.5t = t^2 + 8t
15t + 60 = t^2 + 8t
form a quadratic equation on the right
0 = t^2 + 8t - 15t - 60
t^2 - 7t - 60 = 0
Factor easily to
(t-12) (t+5) = 0
the positive solution is all we want here
t = 12 days, the first guy working alone
then
the shirker would struggle thru the job in 20 days.
Answer:7 + 17 = 24÷2 (since there are 2 workers) =12. Also, ½(7) + ½17 = 3.5 + 8.5 = 12. So, we know that the faster worker will take 7 days and the slower worker will take 17 days. Hope this helps! jul15
Step-by-step explanation:
what is the average speed for the interval t=1 hour to t=3 hours
Step-by-step explanation:
2 hours
3+1 / 2 = 4/2 = 2 hours speed average
Please help!!! Find the domain of the function y = 2 cot(5∕8x).
A) All real numbers except odd integer multiples of 8π∕5
B) All real numbers except 0 and integer multiples of 8π∕5
C) All real numbers except 0 and integer multiples of 4π∕5
D) All real numbers except odd integer multiples of 4π∕5
Answer:
B) All real numbers except 0 and integer multiples of 8π∕5
Step-by-step explanation:
Cotangent function:
The cotangent function is given by:
[tex]y = \cot{ax} = \frac{\cos{ax}}{\sin{ax}}[/tex]
Domain:
All real values except those at which:
[tex]\sin{ax} = 0[/tex]
The sine is 0 for 0 and all integer multiples of [tex]\frac{1}{a}[/tex]
In this question:
[tex]a = \frac{5}{8}[/tex], so the values outside the domain are 0 and the integer multiples of [tex]\frac{8}{5}[/tex]. Then the correct answer is given by option b.
The function ƒ(x) = (x − 1)^2 + 5 is not one-to-one. Find a portion of the domain where the function is one-to-one and find an inverse function.
The restricted domain for ƒ is ?
Answer:
f(x)=(x-1)^2+5 with domain x>1 and range y>5 has inverse g(x)=sqrt(x-5)+1 with domain x>5 and range y>1.
Step-by-step explanation:
The function is a parabola when graphed. It is in vertex form f(x)=a(x-h)^2+k where (h,k) is vertex and a tells us if it's reflected or not or if it's stretched. The thing we need to notice is the vertex because if we cut the graph with a vertical line here the curve will be one to one. So the vertex is (1,5). Let's restrict the domain so x >1.
* if x>1, then x-1>0.
* Also since the parabola opens up, then y>5.
So let's solve y=(x-1)^2+5 for x.
Subtract 5 on both sides:
y-5=(x-1)^2
Take square root of both sides:
Plus/minus sqrt(y-5)=x-1
We want x-1>0:
Sqrt(y-5)=x-1
Add 1 on both sides:
Sqrt(y-5)+1=x
Swap x and y:
Sqrt(x-5)+1=y
x>5
y>1
The area of rectangle is 105cm².If it length is 21 cm,what is its length and perimeter.
Answer:
length of other side is 5cm and the perimeter is 52
Step-by-step explanation:
The area is side x times side y.
Knowing that the area A is 105cm2 and side x is 21cm
A= x*y
105cm2= 21 y /21
Arranging for y we get
y= 105/21
y= 5 cm
The perimeter is all sides added up
P= 21+21+5+5=52cm
Answer:
length 5cm and perimeter 52 cm
Step-by-step explanation:
length=area/breadth
=105/21
=5 cm
perimeter=2(length+breadth)
=2(5+21)
=52 cm
Verify that the indicated family of functions is a solution of the given differential equation. Assume an appropriate interval I of definition for each solution.
d^2y/ dx^2 − 6 dy/dx + 9y = 0; y = c1e3x + c2xe3x When y = c1e3x + c2xe3x,
y'' - 6y' + 9y = 0
If y = C₁ exp(3x) + C₂ x exp(3x), then
y' = 3C₁ exp(3x) + C₂ (exp(3x) + 3x exp(3x))
y'' = 9C₁ exp(3x) + C₂ (6 exp(3x) + 9x exp(3x))
Substituting these into the DE gives
(9C₁ exp(3x) + C₂ (6 exp(3x) + 9x exp(3x)))
… … … - 6 (3C₁ exp(3x) + C₂ (exp(3x) + 3x exp(3x)))
… … … + 9 (C₁ exp(3x) + C₂ x exp(3x))
= 9C₁ exp(3x) + 6C₂ exp(3x) + 9C₂ x exp(3x))
… … … - 18C₁ exp(3x) - 6C₂ (exp(3x) - 18x exp(3x))
… … … + 9C₁ exp(3x) + 9C₂ x exp(3x)
= 0
so the provided solution does satisfy the DE.
Simplify to the extent possible
(logx16)(log2x)
Answer:
[tex]{ \tt{ = ( log_{x}16)( log_{2}x) }}[/tex]
Change base x to base 2:
[tex]{ \tt{ = (\frac{ log_{2}16}{ log_{2}x } )( log_{2}x)}} \\ \\ { \tt{ = log_{2}(16) }} \\ = { \tt{ log_{2}(2) }} {}^{4} \\ = { \tt{4 log_{2}(2) }} \\ = { \tt{4}}[/tex]
can someone help me with this question
9514 1404 393
Answer:
local minima: at x=-1, x=3local minimum values: -2 and -1 (respectively)Step-by-step explanation:
A local minimum is where the curve stops going down and starts going up. It is the bottom of any U-shaped spot. Here, those are identified with dots at the coordinates (-1, -2) and (3, -1).
(a) the x-values at which f has a local minimum are -1 and 3.
(b) the local minimum values of f are -2 and -1 at those x-values.
What is the answer to this? Is it d?
Answer:
Step-by-step explanation:
yeah of course..your answer is true.. it's part d and there is no solution for that system...w and v both of them remove in solution of system and we don't have any unknown variable for solving.
9514 1404 393
Answer:
D. no solutions
Step-by-step explanation:
The first equation can be simplified to standard form:
0.5(8w +2v) = 3
4w +v = 3 . . . . . . . eliminate parentheses
__
The second equation can also be simplified to a comparable standard form:
8w = 2 -v +4w
4w +v = 2 . . . . . . add v -4w
__
Comparing these two equations, we find the variable expressions to be the same, but the constants to be different. If any set of variable values were to satisfy one of these equations, it could not satisfy the other equation. There are no solutions to the system.
The elevation E, in meters, above sea level at which the boiling point of a certain liquid ist degrees Celsius is given by the function shown below. At what elevation is the boling point 99.5*7 100°?
E() - 1200(100-1) • 580(100 - 1)
At what elevation is the boiling point 99.5?
E (90.5*)=. meters
At what elevation is the boiling point 100"?
E(100*)-meters
Answer:
Given E(t)=1100(100-t)+580(100-t)^2
Put t = 99.5, we get
E(99.5)=1100(100-99.5)+580(100-99.5)^2
E(99.5)=1100(0.5)+580(0.5)^2
E(99.5)=1100(0.5)+580(0.25)
E(99.5)=550+145
E(99.5)=695m
Step-by-step explanation:
It can be concluded that -
E(99.5) = 695
E(100) = 0
What is expression?In mathematics, an expression or mathematical expression is a finite combination of symbols that is well-formed according to rules that depend on the context.
Mathematical symbols can designate numbers (constants), variables, operations, functions, brackets, punctuation, and grouping to help determine order of operations and other aspects of logical syntax.
Given is the function as follows -
E(t) = 1100(100 - t) + 580(100 - t)²
The given function is -
E(t) = 1100(100 - t) + 580(100 - t)²
At → E(99.5)
E(99.5) = 1100(100 - t) + 580(100 - t)²
E(99.5) = 1100(100 - 99.5) + 580(100 - 99.5)²
E(99.5) = 1100(0.5) + 580(0.5)²
E(99.5) = 550 + 145
E(99.5) = 695
At → E(100)
E(100) = 1100(100 - t) + 580(100 - t)²
E(100) = 1100(100 - 100) + 580(100 - 100)²
E(100) = 0
Therefore, it can be concluded that -
E(99.5) = 695
E(100) = 0
To solve more questions on expressions, visit the link below -
brainly.com/question/1041084
#SPJ2
Counting numbers are to be formed using only the digits 1, 3, 7,5,4,8, and 2. Determine the number of different possibilities for two-digit numbers.
Answer:
11699 numbers and 42 two-digit numbers
The number of typing errors made by a typist has a Poisson distribution with an average of three errors per page. If more than three errors appear on a given page, the typist must retype the whole page. What is the probability that a randomly selected page does not need to be retyped
Answer:
0.6472 = 64.72% probability that a randomly selected page does not need to be retyped.
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
In which
x is the number of sucesses
e = 2.71828 is the Euler number
[tex]\mu[/tex] is the mean in the given interval.
Poisson distribution with an average of three errors per page
This means that [tex]\mu = 3[/tex]
What is the probability that a randomly selected page does not need to be retyped?
Probability of at most 3 errors, so:
[tex]P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)[/tex]
In which
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-3}*3^{0}}{(0)!} = 0.0498[/tex]
[tex]P(X = 1) = \frac{e^{-3}*3^{1}}{(1)!} = 0.1494[/tex]
[tex]P(X = 2) = \frac{e^{-3}*3^{2}}{(2)!} = 0.2240[/tex]
[tex]P(X = 3) = \frac{e^{-3}*3^{3}}{(3)!} = 0.2240[/tex]
Then
[tex]P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.0498 + 0.1494 + 0.2240 + 0.2240 = 0.6472[/tex]
0.6472 = 64.72% probability that a randomly selected page does not need to be retyped.
please help, it’s urgent !!!
D
A
B
C
for more explanation please don't hesitate to just respond
graph a circle with General form.x^2 +y^2+8x-12y+24=0
Answer:
jhshejwjabsgsgshshsnsjs
Answer:
Step-by-step explanation:
Put the equation into center-radius form.
x² + y² + 8x - 12y + 24 = 0
x² + y² + 8x - 12y = -24
(x²+8x) + (y²-12y) = -24
(x²+8x+4²) + (y²-12y+6²) = 4²+6²-24
(x+4)² + (y-6)² = 28
Center: (-4,6)
radius: √28
Martinez' General Store is having a 45% off sale on men's clothing. John paid $70.95 for a jacket that was on sale. What was the original price of the jacket?
Answer:
$129
Step-by-step explanation:
We can use this equation:
x - 0.45x = 70.95
0.55x = 70.95
x = $129
10% of 360 is how much more than 5% of 360
10% of 360 is 18 more than 5% of 360.
What is the percentage?The percentage is defined as ratio expressed as a fraction of 100.
What are Arithmetic operations?
Arithmetic operations can also be specified by the subtract, divide, and multiply built-in functions.
Given data as :
10% of 360
5% of 360
Firstly, we have to determine 10% of 360,
⇒ 10% of 360
⇒ (10/100)360
⇒ (0.10)360
So, 10% of 360 is 36.
⇒ 5% of 360
⇒ (5/100)360
⇒ (0.05)360
So, 5% of 360 is 18.
Since 10% of 360 is more than 5% of 360
So, substract 18 from 36, and
⇒ 36 - 18
⇒ 18
Hence, 10% of 360 is 18 more than 5% of 360.
Learn more about percentage here :
brainly.com/question/24159063
#SPJ2
What is the endpoint of a line segment if the midpoint M( – 3, 4) and the other endpoint is E(7, – 2)?
Answers
(– 13, 10)
(10, – 13)
(– 1, 2)
(2, – 1)
9514 1404 393
Answer:
(-13, 10)
Step-by-step explanation:
If M is the midpoint of segment DE, then ...
D = 2M -E
D = 2(-3, 4) -(7, -2) = (2(-3)-7, 2(4)+2) = (-13, 10)
The other end point is (-13, 10).
I need the answer to this
Answer:
[tex]A)\:x<12[/tex]
[tex]5(x+5)<85\\5x+25<85\\5x<85-25\\5x<60\\x<12[/tex]
OAmalOHopeO
Answer:
x < 12.................................
How many tens are in 6 hundreds
Answer:
60
Step-by-step explanation:
10 x 6 = 60
Hope this helped! :)
A bank records deposits as positive numbers and withdrawals as negative numbers.
Mike withdrew $60 from his bank account 3 times.
what is the change in mikes account balance after all 3 withdrawals?
The length of a rectangle is 4 meters and the width is 4 meters. What is the perimeter of the rectangle? Do not include units in your answer.
Help please!!!!!A student needs to select 3 books from 3 different mathematics, 3 different physics and 1 history book. what is the probability that one of them is mathematics and the other 2 are either physics or history books ? A. 3/15 B.9/25 C. 15/35 D. 18/35
===========================================
Explanation:
There are 3 ways to select the single math book and 4*3/2 = 12/2 = 6 ways to pick the two other books that are either physics or history (order doesn't matter). This is effectively because we have 3+1 = 4 books that are either physics or history, and we're using the nCr combination formula.
Overall, there are 3*6 = 18 ways to select the three books such that one is math, and the other two are either physics or history.
-------------------
There are 3+3+1 = 7 books total. Since we're selecting 3 of them, we use the nCr formula again and you should get 35.
Or you could note how (7*6*5)/(3*2*1) = 210/6 = 35
This says there are 35 ways to select any three books where we can tell the difference between any subject (ie we can tell the difference between the math books for instance).
-------------------
We found there are 18 ways to get what we want out of 35 ways to do the three selections. Therefore, the answer as a fraction is 18/35
he ride a bike for 15 miles oer hour how many miles did he ride
Hi, help with question 18 please. thanks
Answer:
See Below.
Step-by-step explanation:
We are given the equation:
[tex]\displaystyle y^2 = 1 + \sin x[/tex]
And we want to prove that:
[tex]\displaystyle 2y\frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right) ^2 + y^2 = 1[/tex]
Find the first derivative by taking the derivative of both sides with respect to x:
[tex]\displaystyle 2y \frac{dy}{dx} = \cos x[/tex]
Divide both sides by 2y:
[tex]\displaystyle \frac{dy}{dx} = \frac{\cos x}{2y}[/tex]Find the second derivative using the quotient rule:
[tex]\displaystyle \begin{aligned} \frac{d^2y}{dx^2} &= \frac{(\cos x)'(2y) - (\cos x)(2y)'}{(2y)^2}\\ \\ &= \frac{-2y\sin x-2\cos x \dfrac{dy}{dx}}{4y^2} \\ \\ &= -\frac{y\sin x + \cos x\left(\dfrac{\cos x}{2y}\right)}{2y^2} \\ \\ &= -\frac{2y^2\sin x+\cos ^2 x}{4y^3}\end{aligned}[/tex]
Substitute:
[tex]\displaystyle 2y\left(-\frac{2y^2\sin x+\cos ^2 x}{4y^3}\right) + 2\left(\frac{\cos x}{2y}\right)^2 +y^2 = 1[/tex]
Simplify:
[tex]\displaystyle \frac{-2y^2\sin x-\cos ^2x}{2y^2} + \frac{\cos ^2 x}{2y^2} + y^2 = 1[/tex]
Combine fractions:
[tex]\displaystyle \frac{\left(-2y^2\sin x -\cos^2 x\right)+\left(\cos ^2 x\right)}{2y^2} + y^2 = 1[/tex]
Simplify:
[tex]\displaystyle \frac{-2y^2\sin x }{2y^2} + y^2 = 1[/tex]
Cancel:
[tex]\displaystyle -\sin x + y^2 = 1[/tex]
Substitute:
[tex]-\sin x + \left( 1 + \sin x\right) =1[/tex]
Simplify. Hence:
[tex]1\stackrel{\checkmark}{=}1[/tex]
Q.E.D.