Answer:
I doubt it is not going to be a great day of school
f=((-1,1),(1,-2),(3,-4)) g=((5,0),(-3,4),(1,1),(-4,1)) find (f/g)(1)
9514 1404 393
Answer:
-2
Step-by-step explanation:
(f/g)(1) = f(1)/g(1) = -2/1 = -2
__
The value of f(1) is the second number in the ordered pair (1, -2) that is part of the definition of function f. Similarly, for g, we look for the ordered pair that has 1 as its first value. The second value is g(1).
help please! willing to give brainly and 5 stars
Answer:
The answer is 8
Step-by-step explanation:
Answer:
8
Step-by-step explanation:
2/5x-8/5y+x+½y
2/5(1)-8/5(-6)+1+½(-6)
2/5+48/5+1-3
10-2
8
what percent is 50cent of 50cent
what
Step-by-step explanation:
pretty sure its 25 percent
Answer:
25%
Step-by-step explanation:
if you take half of 50 it is 25 so all of it is used or 25%
Hope this helps <3 Comment if you want more thanks and be sure to give brainliest (4 left) <3
Determine what type of transformation is represented.
A. none of these
B. reflection
C. dilation
D. rotation
Answer:
The answer is "Option D"
Step-by-step explanation:
In a rotation, an item is rotated around with a known location. Clockwise or anticlockwise spinning is possible. Rotation centers are spherical geometry in space where rotation occurs. The direction of inclination is the indicator of the total rotation made. Rotary point refers to that part point of a figure around which it is revolved.
What is the difference between squaring and cubing a value?
Answer:
squaring a number is multiplying it by itself twice and cubing a number is multiplying the number three times itself
Step-by-step explanation:
for example 2²=2×2
=4
and 2³=2×2×2
=8
I NEED HELP THANK YOU!!
Answer:
rt3/2
Step-by-step explanation:
first off cosine is the x coordinate
now if you do't want to use a calculator, you can use use the unit circle.
360 - 330 = 30 (360 degrees is a whole circle)
a 30 60 90 triangle is made, then use the law for 30 60 90 triangles:
if the shortest leg is x, the other leg is x*rt3 and the hypotenuse is 2x.
Answer:
D
Step-by-step explanation:
cos 330 = cos (360-330)
= cos 30
= √3 /2
Ivan invests $5,000 into an account with a 3.5% interest that is compounded semi-annually.
How much money will he have in this account if he keeps it for 15 years?
9514 1404 393
Answer:
$8414
Step-by-step explanation:
The compound interest formula is useful for this.
A = P(1 +r/n)^(nt)
where P is the principal invested at annual rate r compounded n times per year for t years. A is the ending balance.
A = $5000(1 +0.035/2)^(2·15) = $5000·1.0175^30 ≈ $8414.00
Ivan will have $8414 in his account after 15 years.
A survey on Internet usage was conducted among a group of 200 students in the school cafeteria. It was found that 100 students spend at least two hours online every day. Which of these is an example of descriptive statistics? a.) 50% of the students in the cafeteria spend at least two hours online each day. b.) 50% of the students in the school spend at least two hours online each day. c.) 50% of the students in a class spend at least two hours online each day. d.) 50% of the students surveyed spend at least two hours online each day.
Answer:
D) 50% of the students surveyed spend at least two hours online each day.
50% of the students surveyed spend at least two hours online each day.
Hence option d is correct.
Given that,
Number of students who spend at least two hours online = 100
Total number of students surveyed = 200
To calculate the percentage of students who spend at least two hours online each day,
we can use the formula:
percentage = (number of students who spend at least two hours online / total number of students surveyed) x 100%
Plugging in the values from the problem, we get:
percentage = (100 / 200) x 100% = 50%
Therefore, we can conclude that 50% of the students surveyed spend at least two hours online each day.
Learn more about the percent visit:
https://brainly.com/question/24877689
#SPJ2
30 points!!!!!!!
There are 6 red marbles, 9 blue marbles, and 10 green marbles in a bag.
Several trials are performed with the results shown in the table. What is the experimental probability of randomly drawing a red marble?
Red Blue Green
16 30 34
32%
25%
20%
16%
Answer:
C. 20%Step-by-step explanation:
Outcomes with red = 16Total trials = 16 + 30 + 34 = 80P(red) = 16/80 = 1/5 = 20%Correct choice is C
Answer:
20%
Step-by-step explanation:
80 x 20% = 16 red marbles
The distribution of SAT scores is approximately normal with a mean of 1500.
If 1628 is the 90th percentile, what is the standard deviation?
Answer:
Hello,
Answer
[tex]\sigma=457,95...[/tex]
Step-by-step explanation:
p(z<a)=0.9
p(z<1.29)=0.9015
p(z<1.28)=0.8997
using linear interpolation: with 4 decimals
p(z<1.282)<0.9
[tex]\dfrac{1628-1500}{\sigma} =1.282\\\\\sigma =\dfrac{1628-1500}{1.282}\\\\\sigma=457,95...\\[/tex]
What triangle is this
HOPE SO IT HELPS YOU
Answer:
Isosceles.
Step-by-step explanation:
It's an isosceles triangle because 2 sides are congruent ( 2 are 23 yds long).
A certain marathon has had a wheelchair division since 1977. An interested fan wondered who is faster: the men's marathon winner or the women's wheelchair marathon winner, on average. A paired t-test was performed on data from a random selection of 15 of the marathons to determine if there was evidence to indicate that the women's winning wheelchair time is faster than the men's winning running time, on average. What must be true about the population of differences in the women's wheelchair winning times and men's winning times at this marathon for conclusions from the paired t-test to be valid? Choose the correct answer below. A. The distribution of sample means of the differences will be approximately normal if there are at least 30 years of data in the sample and/or if the population of differences in winning times for all years is normal. B. Because there were at least 5 years of observations, the distribution of sample means of the differences will be approximately normal by the Central Limit Theorem. C. Because the sample size is large enough, the distribution of differences for all years will be normal. D. Because of the small sample size of differences in winning times between the women's wheelchair winner and the men's running winner, the distribution of sample means of the differences cannot be normal.
Answer:
A. The distribution of sample means of the differences will be approximately normal if there are at least 30 years of data in the sample and/or if the population of differences in winning times for all years is normal.
Step-by-step explanation:
In other to perform a valid paired test, one of the conditions required is that, data for both groups must be approximately normal. To attain normality, the population distribution for the groups must be normal or based on the central limit theorem, the sample size must be large enough, usually n > 30. Hence, once either of the two conditions are met, the paired sample will be valid.
Which word describes the relationship of the points (3, 1)
and (3, 6)?
OA) collinear
OB) parallel
C) perpendicular
OD) coincident
9514 1404 393
Answer:
A) collinear
Step-by-step explanation:
"Parallel" and "perpendicular" are descriptors of pairs of lines and planes. They do not apply to pairs of points.
The two points have different coordinates, so are distinct, rather than coincident.
Of these words, the only applicable choice is "collinear."
__
Additional comment
Any pair of distinct points is collinear. Two points define a line, and two points on the same line are collinear.
what is 9/10 + 7/15
[tex]\huge\text{Hey there!}[/tex]
[tex]\mathsf{\dfrac{9}{10}+\dfrac{7}{15}}[/tex]
[tex]\large\textsf{FIRST: FIND the LCD (Lowest Common Denominator) then solve}\\\large\textsf{from there!}[/tex]
[tex]\large\textsf{If you have calculated it correctly, you should have came up with \underline{\bf 30}}\\\large\textsf{as your LCD (Lowest Common Denominator).}[/tex]
[tex]\mathsf{= \dfrac{9\times3}{10\times3}+ \dfrac{7\times2}{15\times2}}[/tex]
[tex]\mathsf{9\times3=\bf 27}\\\mathsf{10\times3=\bf 30}\\\\\mathsf{7\times2=\bf 14}\\\mathsf{15\times2=\bf 30}[/tex]
[tex]\mathsf{= \dfrac{27}{30}+\dfrac{14}{30}}[/tex]
[tex]\mathsf{= \dfrac{27+14}{30}}[/tex]
[tex]\mathsf{27+ 14=\bf 41}\\\\\mathsf{30+0=\bf 30}[/tex]
[tex]\mathsf{= \dfrac{41}{30}}\large\textsf{ which you could convert to }\mathsf{1 \dfrac{11}{30}}[/tex]
[tex]\boxed{\boxed{\large\textsf{ANSWER: }\bf \dfrac{41}{30} \large\textsf{ or }\mathsf{\bf 1 \dfrac{11}{30}\large\textsf{ because they both equal the same thing}}}}}\huge\checkmark[/tex]
[tex]\large\text{Good luck on your assignment and enjoy your day!}[/tex]
~[tex]\frak{Amphitrite1040:)}[/tex]
Given the triangle below, what is the length of the third side, rounded to the nearest whole number?
Answer:
Step-by-step explanation:
You need the Law of Cosines for this, namely:
[tex]x^2=21^2+14^2-2(21)(14)cos58[/tex] where x is the missing side.
[tex]x^2=441+196-311.5925[/tex] and
[tex]x^2=325.4075[/tex] so
x = 18.0 or just 18
Prove that if (c, f(c)) is a point of inflection of the graph of f and f'' exists in an open interval that contains c, then f''(c)=0 Hint: Apply the First Derivative Test and Fermat's Theorem to the function g=f'
We can conclude that if (c, f(c)) is a point of inflection of the graph of f and f'' exists in an open interval that contains c, then f''(c)=0.
What is the differentiation?The process of finding derivatives of a function is called differentiation in calculus. A derivative is the rate of change of a function with respect to another quantity.
We can prove this statement using the First Derivative Test and Fermat's Theorem.
First, we know from the First Derivative Test that at a point of inflection, the first derivative of the function (in this case, f') must equal 0. Therefore, at the point (c, f(c)), f'(c) = 0.
Next, we can apply Fermat's Theorem. This theorem states that if a function f has a local maximum or minimum at c, then f'(c) = 0. Since the point (c, f(c)) is a point of inflection, we can apply Fermat's Theorem to say that f'(c) = 0.
Now, since f'' exists in an open interval that contains c, we can use the fact that if f'(c) = 0, then f''(c) = 0.
Therefore, we can conclude that if (c, f(c)) is a point of inflection of the graph of f and f'' exists in an open interval that contains c, then f''(c)=0.
To learn more about the differentiation of an equations visit:
https://brainly.com/question/25731911.
#SPJ2
A survey is sent out to 500 people asking questions related to the link between religion and sexual behavior at a young age. The survey does not have any tracking device, and the results are sent to a database that gives no indication of who or where the results came from. However, the database is posted online for religion and human behavior researchers to freely conduct statistical analyses. The responses to this survey are
a. both confidential and anonymous.
b. confidential only.
c. anonymous only.
d. neither confidential nor anonymous.
Answer:
c
Step-by-step explanation:
Since the the identities of the survey takers were kept secret, it would be anonymous. If it wasn't anonymous, then people would know who took the survey.
Since the survey results were released online for analyses, it is not confidential. If it were to be confidential, then the survey distributors would have kept the results to themseles.
ko dung may tinh hay so sanh
3√7 vs 7√3
Answer:
what this makes bi sense haha
Step-by-step explanation:
but ok
Point A lies outside of plane P. How many planes can be drawn that pass through point A?
A. 0
B. an infinite number
C. 2
D. 1
Answer:
D.
Step-by-step explanation:
.
The number of planes that can be drawn that pass through point A is 1.
How to estimate the number of planes that can be drawn that pass through point A?
A perpendicular line creates an angle of 90° with a line or a plane. If a line exists to be drawn from a point to a line or a plane it can only be one. In this case, a line exists to be drawn through a point A to a plane P. If the line stands to be perpendicular, then it exists only one.
Therefore, the correct answer is option D. 1.
To learn more about points on a plane refer to:
https://brainly.com/question/10680920
#SPJ2
Using your textbook, solve the problems below. Show your work.
Solve for y:
y + 8 = 2
Answer:
i dont know lol
Step-by-step explanation:
A local school board member randomly sampled private and public high school teachers in his district to compare the proportions of National Board Certified (NBC) teachers in the faculty. The results were:
Answer:
0.025 ;
(-0.7198 ; 0.7698)
Step-by-step explanation:
From the table :
_____________ private schls ___ public schls
Sample size, n _____ 80 __________ 520
P, NBC teachers ___ 0.175 ________ 0.150
P1 = P of private school teachers
P2 = P of public school teachers
Difference in proportion :
P1 - P12 = 0.175 - 0.150.= 0.025
The 90% confidence interval for 2 - sample proportion :
C.I = (p1-p2) ± [Zcritical * √(p1(1-p1)/n1 + (p2(1-p2)/n2)]
Zcritical at 90% = 1.645
C.I = 0.025 ± [1.645 * √((0.175*0.825)/80 + (0.150*0.850)/520)]
C.I = 0.025 ± [1.645 * √(0.0018046875 + 0.0002451)]
C.I = 0.025 ± 1.645 * 0.0452755
C.I = 0.025 ± 0.07448
C.I = (-0.7198 ; 0.7698)
7(a-1)=45 what is the answer to that equation????
Answer: a = 52/7
Step-by-step explanation:
remove the parentheses, move the constant to the right, calculate, then divide both sides
Answer:
The answer is, a = 52/7, or a = 7.42 in decimal form
Follow the steps below for better explanation:
Four students each ran 100 m in a 400-m relay race. The team’s total was 49.44 seconds. Find the average time of each runner.
the average time of each runner is 12.36
Answer:
12.36 seconds
Step-by-step explanation:
Total time = 49.44 seconds
Students = 4
Average = 49.44/4 = 12.36 seconds
Answered by GAUTHMATH
A plane traveled 4425 miles with the wind in 7.5 hours and 3675 miles against the wind in the same amount of time. Find the speed of the plane in still air and the speed of the wind
Answer:
540 miles/hr and 50 miles/hr respectively
Step-by-step explanation:
Let the speed of plane in still air be x and the speed of wind be y.
ATQ, (x+y)*7.5=4425 and (x-y)*7.5=3675. Solving it, we get x=540 and y=50
Consider the probability that greater than 26 out of 124 software users will call technical support. Assume the probability that a given software user will call technical support is 97%. Specify whether the normal curve can be used as an approximation to the binomial probability by verifying the necessary conditions.
Answer:
Since [tex]n(1-p) = 3.72 < 10[/tex], the normal curve cannot be used as an approximation to the binomial probability.
100% probability that greater than 26 out of 124 software users will call technical support.
Step-by-step explanation:
Test if the normal curve can be used as an approximation to the binomial probability by verifying the necessary conditions.
It is needed that:
[tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex]
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
Can be approximated to a normal distribution, using the expected value and the standard deviation.
The expected value of the binomial distribution is:
[tex]E(X) = np[/tex]
The standard deviation of the binomial distribution is:
[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]
Normal probability distribution
Problems of normally distributed distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
When we are approximating a binomial distribution to a normal one, we have that [tex]\mu = E(X)[/tex], [tex]\sigma = \sqrt{V(X)}[/tex].
Out of 124 software users
This means that [tex]n = 124[/tex]
Assume the probability that a given software user will call technical support is 97%.
This means that [tex]p = 0.97[/tex]
Conditions:
[tex]np = 124*0.97 = 120.28 \geq 10[/tex]
[tex]n(1-p) = 124*0.03 = 3.72 < 10[/tex]
Since [tex]n(1-p) = 3.72 < 10[/tex], the normal curve cannot be used as an approximation to the binomial probability.
Consider the probability that greater than 26 out of 124 software users will call technical support.
The lowest possible probability of those is 27, so, if it is 0, since it is considerably below the mean, 100% probability of being greater. We have that:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 27) = C_{124,27}.(0.97)^{27}.(0.03)^{97} = 0[/tex]
1 - 0 = 1
100% probability that greater than 26 out of 124 software users will call technical support.
16)dry air is trapped in a narrow uniform glass tube by a mercury pellet of length 25cm .when the tube is placed vertical with the open end um long.what is the external pressure if the column of air becomes 40 cm in length when inverted ? . ( required answer = 74cm hg )
Step-by-step explanation:
Ru Tu yulyryosuyyyhlsgjpcbmb kvjvlcykxnlvdlbvhck
chgkbhlxyovk m.
chchhlzixhvkh
What is force? How is it measured? Write any two effects of force
Answer: Please refer to:
- A force is a push or pull upon an object resulting from the object's interaction with another object. Whenever there is an interaction between two objects, there is a force upon each of the objects. ... Forces only exist as a result of an interaction.
- Force is a vector quantity, with both direction and magnitude. It is defined as Mass x Acceleration = Force.
+ The SI unit of force is the newton (N); defined as the unit of force which would give to a mass of one kilogram an acceleration of 1 meter per second squared.
- two effects of force:
+ It can change the state of movement of the body on which force is applied, i.e. it can move a stationary object or stop a moving object.
+ It can change the shape and size of an object.
Step-by-step explanation:
I'm not sure but hope it helps.
Tay–Sachs Disease Tay–Sachs disease is a genetic disorder that is usually fatal in young children. If both parents are carriers of the disease, the probability that their offspring will develop the disease is approximately .25. Suppose a husband and wife are both carriers of the disease and the wife is pregnant on three different occasions. If the occurrence of Tay–Sachs in any one offspring is independent of the occurrence in any other, what are the probabilities ofthese events?
a. All three children will develop Tay–Sachs disease.
b. Only one child will develop Tay–Sachs disease.
c. The third child will develop Tay–Sachs disease, given that the first two did not.
Answer:
a) 0.0156 = 1.56% probability that all children will develop the disease.
b) 0.4219 = 42.19% probability that only one child will develop the disease.
c) 0.1406 = 14.06% probability that the third children will develop the disease, given that the first two did not.
Step-by-step explanation:
For each children, there are only two possible outcomes. Either they carry the disease, or they do not. The probability of a children carrying the disease is independent of any other children, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
The probability that their offspring will develop the disease is approximately .25.
This means that [tex]p = 0.25[/tex]
Three children:
This means that [tex]n = 3[/tex]
Question a:
This is P(X = 3). So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 3) = C_{3,3}.(0.25)^{3}.(0.75)^{0} = 0.0156[/tex]
0.0156 = 1.56% probability that all children will develop the disease.
Question b:
This is P(X = 1). So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 1) = C_{3,1}.(0.25)^{1}.(0.75)^{2} = 0.4219[/tex]
0.4219 = 42.19% probability that only one child will develop the disease.
c. The third child will develop Tay–Sachs disease, given that the first two did not.
Third independent of the first two, so just multiply the probabilities.
First two do not develop, each with 0.75 probability.
Third develops, which 0.25 probability. So
[tex]p = 0.75*0.75*0.25 = 0.1406[/tex]
0.1406 = 14.06% probability that the third children will develop the disease, given that the first two did not.
letter A represents the decimal
Answer:
answer is 0.4
Step-by-step explanation:
7. Write the new function, h(x), given the mapping statement: f(X)->-4f(X)
f(X) =(x+3)^2+3
Answer:
hshdhdhdshejiwiwiwiwiwi