Answer:
maybe 10000
Step-by-step explanation:
Answer:
9007.35
Step-by-step explanation:
First find the effective rate: .06/12= .005
let x= amount
[tex]x=100\frac{1-(1+.005)^{-12*10}}{.005}\\100*\frac{1-.549632733}{.005}\\9007.345333[/tex]
The product of -3x and (2x+5) is …
[tex]\huge{\boxed{\boxed{ Solution ⎇}}} \ [/tex]
[tex] - 3x \times (2x + 5) \\ = - 3x \times 2x + - 3x \times 5 \\ = - 6x ^{2} - 15x[/tex]
ʰᵒᵖᵉ ⁱᵗ ʰᵉˡᵖˢ ツ
꧁❣ ʀᴀɪɴʙᴏᴡˢᵃˡᵗ2²2² ࿐
[tex] \huge\boxed{\mathfrak{Answer}}[/tex]
[tex] - 3x \times (2x + 5) \\ = - 3x \times 2x + - 3x \times 5 \\ = - 6x ^{2} - 15x [/tex]
Answer ⟶ - 6x² - 15x
HELP ASAP PLS Select the correct answer.
A light bulb's brightness is reduced when placed behind a screen. The amount of visible light produced by the light bulb decreases by 25% with
each additional layer that is added to the screen. With no screen, the light bulb produces 750 lumens. The lumen is a unit for measuring the total
quantity of visible light emitted by a source,
Select the correct equation that can be used to represent the lumens, L, after x screen layers are added.
Answer:
D. 750(0.75)ˣ
Step-by-step explanation:
Let the new brightness be L'. Since our initial brightness L₀ reduces by 25 %, we have that L' = L₀ - 25% of L₀
L' = L₀ - 0.25L₀
L' = 0.75L₀
Adding the second screen, the new intensity is L" = L' - 25 % of L'
L" = L' - 0.25 L'
L" = 0.75L'.
Since L' = 0.75L₀,
L" = 0.75L' = 0.75(0.75L₀) = 0.75²L₀
Adding the third screen, the new intensity is L"' = L'' - 25 % of L''
L'" = L" - 0.25 L"
L"' = 0.75L".
Since L" = 0.75L' = 0.75²L₀
L"' = 0.75L" = 0.75(0.75²L₀) = 0.75³L₀
So, we see a pattern here.
The intensity after x screens is L = (0.75)ˣL₀
Since L₀ = 750 lumens,
L = 750(0.75)ˣ
Nine children are to be divided into an A team, a B team and a C team of 3 each. The A team will play in one league, the B team in another, the C team in a third league. How many different divisions are possible
Answer:
The answer is "840".
Step-by-step explanation:
Following are the number of ways in which selecting a team A by 9 children:
[tex]= ^{9_{C_{3}}\\\\\\[/tex]
[tex]=\frac{9!}{3! \times 6!} \\\\=\frac{9\times 8\times 7\times 6!}{3 \times 2\times 1\times 6!}\\\\=\frac{9\times 8\times 7}{3 \times 2\times 1}\\\\=\frac{3\times 4\times 7}{1}\\\\=\frac{84}{1}\\\\=84[/tex]
Following are the number of ways in which selecting a team B by remaining 6 children:
[tex]= ^{6}_{C_{3}}[/tex]
[tex]= \frac{6!}{(3! \times 3!)}\\\\= \frac{6!}{(3\times 2\times 1 \times 3!)}\\\\= \frac{6\times 5 \times 4 \times 3!}{(3\times 2\times 1 \times 3!)}\\\\= \frac{ 5 \times 4 \times 3!}{3!}\\\\= 5 \times 4 \\\\=20[/tex]
Following are the number of ways in which selecting a team C by remaining 3 children:
[tex]= ^{3}_{C_{3}}\\\\=\frac{3!}{3!}\\\\= 1[/tex]
Following are the number of ways in which making 3 teams by 9 children:
[tex]= \frac{(84 \times 20 \times 1)}{3!}\\\\= \frac{(84 \times 20 )}{6}\\\\= 14 \times 20\\\\= 280\\\\[/tex]
(Note: we've split by 3! Because it also is necessary to implement three teams between themselves)
Now 3 leagues have to be played. One is going to be run by each team.
That is the way it is
Different possible divisions
[tex]= 280 \times 3!\\\\= 280 \times (3 \times 2 \times 1)\\\\= 840[/tex]
Please explain the misleading
There are more compact cars (4*10 = 40) compared to trucks (2*10 = 20); however, the pictogram might make it appear that there are more trucks because the individual truck icon is larger compared to an individual compact car icon.
To anyone giving this image a quick glance, they may erroneously conclude that there are more trucks since their eye would notice the trucks first. Also, the person might think there are more trucks because bigger sizes tend to correspond to more proportion.
In real life, a truck is larger than a compact car, but the icons need to be the same size to have the figure not be misleading.
A very similar issue happens with the mid-size cars vs the compact cars as well. The three mid-size car icons span the same total width as the compact cars do, indicating that a reader might mistakenly conclude that there are the same number of mid-size cars compared to compact ones (when that's not true either).
A university found that 25% of its students withdraw without completing the introductory statistics course. Assume that 30 students registered for the course.Use Microsoft Excel whenever necessary and answer the following questions:Compute the probability that 2 or fewer will withdraw
Answer:
0.0106 = 1.06% probability that 2 or fewer will withdraw
Step-by-step explanation:
For each student, there are only two possible outcomes. Either they withdraw, or they do not. The probability of an student withdrawing is independent of any other student, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
25% of its students withdraw without completing the introductory statistics course.
This means that [tex]p = 0.25[/tex]
Assume that 30 students registered for the course.
This means that [tex]n = 30[/tex]
Compute the probability that 2 or fewer will withdraw:
This is:
[tex]P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2)[/tex]
In which
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{30,0}.(0.25)^{0}.(0.75)^{30} = 0.0002[/tex]
[tex]P(X = 1) = C_{30,1}.(0.25)^{1}.(0.75)^{29} = 0.0018[/tex]
[tex]P(X = 2) = C_{30,2}.(0.25)^{2}.(0.75)^{28} = 0.0086[/tex]
[tex]P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0.0002 + 0.0018 + 0.0086 = 0.0106[/tex]
0.0106 = 1.06% probability that 2 or fewer will withdraw
A system of equations is said to be redundant if one of the equations in the system is a linear combination of the other equations. Show by using the pivot operation that the following system is redundant. Is this system equivalent to a system of equations in canonical form?
a) x1 +x2 −3x3 = 7
b) −2x1 +x2 +5x3 = 2
c) 3x2 −x3 = 16
Answer:
prove that The given system of equations is redundant is attached below
Step-by-step explanation:
System of equations
x1 +x2 −3x3 = 7
−2x1 +x2 +5x3 = 2
3x2 −x3 = 16
To prove that the system is redundant we will apply the Gaussian elimination ( pivot operation )
attached below is the solution
PLEASE HELP!!! Which number is a solution of the inequality x less-than negative 4? Use the number line to help answer the question. A number line going from negative 9 to positive 1.
Answer:
is it going to be 10.5
Step-by-step explanation:
I do not have any explanation
Answer: 0 (zero)
Step-by-step explanation:
Start Learning & start growing! edge2023
*DROPS THE MIC*
If (3x − 2)(3x + 2) = ax2 − b, what is the value of a?
(3x-2)(3x+ 2)
Multiply each term in one set of parentheses by the other terms:
3x x 3x =9x^2
3x x 2 = 6x
-2 x 3x = -6x
-2 x 2 = -4
Combine to get:
9x^2 + 6x - 6x -4
Combine like terms:
9x^2 - 4
The value of a would be 9.
[tex]\sf{\bold{\blue{\underline{\underline{Given}}}}}[/tex]
(3x − 2)(3x + 2) = ax2 − b⠀⠀⠀⠀[tex]\sf{\bold{\red{\underline{\underline{To\:Find}}}}}[/tex]
⠀what is the value of a?⠀⠀⠀[tex]\sf{\bold{\purple{\underline{\underline{Solution}}}}}[/tex]
At first we have to solve the value of (3x-2)(3x+2)
[tex]\sf{(3x-2)(3x+2) }[/tex] [tex]\sf{3x(3x+2)-2(3x+2) }[/tex] [tex]\sf{9x^{2}+6x-6x-4 }[/tex] [tex]\sf{9x^{2}-4 }[/tex]According to the question,
[tex]\sf{ (3x − 2)(3x + 2) = ax^{2} − b }[/tex] [tex]\sf{9x^{2}-4=ax^{2}-b }[/tex] [tex]\sf{9x^{2}=ax^{2}~and~-4=-b }[/tex] [tex]\sf{a=9~and~b=4 }[/tex]⠀⠀⠀
[tex]\sf{\bold{\green{\underline{\underline{Answer}}}}}[/tex]
Hence,
The value of a is 9
Can someone help me please..
Answer:
Quadratic formula
Step-by-step explanation:
The function is quadratic because it is a parabola. Exponential functions shoot either upwards or downwards rapidly, and it is clearly not linear due to it's curve. It also isn't piecewise because the function never stops or starts irregularly.
For a confidence level of 88%, find the critical value for a normally distributed variable. The sample mean is normally distributed if the population standard deviation is known.
Answer:
z = ± 0.772193214
Step-by-step explanation:
Hence, the critical value for a [tex]88[/tex]% confidence level is [tex]z=1.56[/tex].
What is the standard deviation?
Standard deviation is the degree of dispersion or the scatter of the data points relative to its mean, in descriptive statistics.
It tells how the values are spread across the data sample and it is the measure of the variation of the data points from the mean.
Here given that,
For a confidence level of [tex]88[/tex]%, find the critical value for a normally distributed variable.
Let us assume that the standard normal distribution having a mean is [tex]0[/tex] and the standard deviation is [tex]1[/tex].
As the significance level is [tex]1[/tex] - confidence interval
Confidence interval is [tex]\frac{80}{100}=0.88[/tex]
i.e., [tex]1-0.88=0.12[/tex]
For the two sided confidence interval the confidence level is [tex]0.44[/tex].
Now, the standard normal probability table the critical value for the [tex]88[/tex]% confidence level is [tex]1.56[/tex].
Hence, the critical value for a [tex]88[/tex]% confidence level is [tex]z=1.56[/tex].
To know more about the standard deviation
https://brainly.com/question/13905583
#SPJ5
There is enough grass to feed six cows for three days. How long would the same amount of grass feed nine cows
Answer:
2 days
Step-by-step explanation:
Lets say that in one day, one cow eats 1 block of grass. So, six cows in three days would eat 18 blocks of grass in total. So 18 blocks of grass is how much we have. that means nine cows would eat that much in 2 days.
Instructions: Drag and drop the correct name for each angle. Each angle has more than one name so be sure to identity all the correct names
Answer/Step-by-step explanation:
Recall: an angle can be named in three different ways:
i. Using one letter which is the vertex of the angle. i.e. if the vertex of the angle is A we can name the angle as <A.
ii. Using the number of the labelled angle. i.e. is the angle is labelled 2, we can name it <2
iii. Using the three letters of the angles with the vertex angle in the middle. i.e. if the three points that form an angle are A, B, C and the vertex is B, we can name the angle as <ABC.
✔️Let's name the each angle given according:
1. <G, <3, and <FGH
2. <D, <4, and <CDE
3. <S and <TSR (the number seems blur and difficult to read. Whatever number is used to label the angle is what you'd use in naming the angle)
For this problem what I did was add all the measurements and I got 48 m. However, it is wrong. How do I go about solving the perimeter then?
9514 1404 393
Answer:
66 m
Step-by-step explanation:
The perimeter is the sum of the measures of all of the sides. There are two side measures that are missing from the diagram.
The missing horizontal measure is ...
17 m - 8 m = 9 m
The missing vertical measure is ...
16m -7 m = 9 m.
If you add these to the sum you already calculated, you will get the correct answer:
48 m + 9 m + 9 m = 66 m . . . perimeter of the figure
_____
If you're paying attention, you see that the sum of the measures of the two shorter horizontal segments is the same as the measure of the longer horizontal segment. Likewise, the sum of the measurements of the two shorter vertical segments is the same as that of the longer vertical segment.
In other words, the perimeter of this (and any) L-shaped figure is the same as the perimeter of a rectangle having the same horizontal and vertical dimensions as the long sides of the figure.
P = 2(17 m +16 m) = 2(33 m) = 66 m
Peter organizes morning hikes for his friends every Saturday. When the hiking trail is 3 km long, 19 friends join him and when the trail is 5 km long, only 7 friends tag along. There exists a linear relationship between the distance of the hiking trail (in km) and the number of friends who tag along. The number of friends depend on the distance of the trail. Determine how many friends will tag along to a hiking trail of 2 km.
Answer:
25
Step-by-step explanation:
x = distance of the hike
y = number of friends coming along
so, we are looking for a linear relationship between these two.
y = ax + b
we need to find the factor a and the constant offset b.
19 = a×3 + b
7 = a×5 + b
7 - b = a×5
a = (7-b)/5
19 = (7-b)×3/5 + b
19 = (21 - 3b)/5 + b
95 = 21 - 3b + 5b
74 = 2b
b = 37
a= (7-37)/5 = -30/5 = -6
so, the relationship is
y = -6x + 37
for 2km hiking
y = -6×2 + 37 = -12 + 37 = 25 friends
Determine the mean and variance of the random variable with the following probability mass function. f(x)=(216/43)(1/6)x, x=1,2,3 Round your answers to three decimal places (e.g. 98.765).
Mean:
E[X] = ∑ x f(x) = 1 × f (1) + 2 × f (2) + 3 × f (3) = 51/43 ≈ 1.186
Variance:
Recall that for a random variable X, its variance is defined as
Var[X] = E[(X - E[X])²] = E[X ²] - E[X]²
Now,
E[X ²] = ∑ x ² f(x) = 1² × f (1) + 2² × f (2) + 3² × f (3) = 69/43
Then
Var[X] = 69/43 - (51/43)² = 366/1849 ≈ 0.198
(each sum is taken over x in the set {1, 2, 3})
two trains leave the station at the same time, one traveling due east, the other due west. After 46 minutes, they are 140 miles apart. if one trains speed is 20 mph more than the other trains, what are the speeds of the two trains?
Answer:
Train A speed = x + 20
Train B = x
We know the 46 minutes is 23/30 of an hour.
Use D = rt
Take it from it, hope its helped, have a great day!
Keith used the following steps to find the inverse of f, but he thinks he made an error.
Anyone know this question?
Answer:
[tex](f + g)(4) = 191[/tex]
Step-by-step explanation:
Given
[tex]f(x) = 5x^2 - 5x + 15[/tex]
[tex]g(x) = 6x^2 + 7x - 8[/tex]
Required
[tex](f + g)(4)[/tex]
First, calculate [tex](f + g)(x)[/tex]
This is calculated as:
[tex](f + g)(x) = f(x) + g(x)[/tex]
So, we have:
[tex](f + g)(x) = 5x^2 - 5x + 15+6x^2 + 7x - 8[/tex]
Collect like terms
[tex](f + g)(x) = 5x^2 +6x^2 - 5x+ 7x + 15 - 8[/tex]
[tex](f + g)(x) = 11x^2 + 2x + 7[/tex]
Substitute 4 for x
[tex](f + g)(4) = 11*4^2 + 2*4 + 7[/tex]
[tex](f + g)(4) = 191[/tex]
A professor creates a histogram of test scores for 26 students in a statistics course. What is the probability of a student having scored between 65 and 100
Complete Question
Complete is Attached Below
Answer:
Option D
Step-by-step explanation:
From the question we are told that:
Sample size [tex]n=26[/tex]
Student scoring [tex]65-100 n'=12[/tex]
Generally the equation for probability of a student having score between 65 and 100 is mathematically given by
[tex]P(65-100)=\frac{12}{26}[/tex]
[tex]P(65-100)=12/26[/tex]
[tex]P(65-100)=0.462[/tex]
Option D
NEED ANSWER QUICK WITH STEP BY STEP!!!
Find the perimeter of a football field which measures 90m by 60m
Hello!
[tex]\large\boxed{P = 300m}[/tex]
Use the following formula for the perimeter:
P = 2l + 2w, where:
l = length
w = width
Therefore:
P = 2(90) + 2(60)
Simplify:
P = 180 + 120 = 300 m
Answer:
well how about you use common sense 100 yards long on each side 200 yards then add 5o yards since the the that is how wide it is then add another 50 and you get 300 yards then convert that to meters
In how many ways can a sample of 6 keyboards be selected so that exactly two have an electrical defect
Answer:
15ways
Step-by-step explanation:
This is a combination question since combination has to do with selection. Hence the number of ways sample of 6 keyboards can be selected so that exactly two have an electrical defect is expressed as;
6C2 = 6!/(6-2)!2!
6C2 = 6!/4!2!
6C2 = 6×5×4!/4!×2
6C2 = 6×5/2
6C2 = 30/2
6C2 = 15
Hence this can be done in 15ways
PLESE HELP WITH ANSWER. rewrite the function in the given form
s hard and too long I'm only of class 13
According to the Venn Diagram below and given that P(A) = .4 as well as
P(B) = .3 what is P(AUB)?
Hello,
P(A)=0.4
P(B)=0.3
P(AUB)+P(A∩B)=P(A)+P(B)
P(AUB)=0.4+0.3-0.1=0.6
Answer C
The correct answer is option (C).
P(A ∪ B) = 0.6
Formula to find P(A ∪ B):If A, B are two different events then P(A U B) = P(A) + P(B) - P(A ∩ B)
We have been given, P(A) = 0.4, P(B) = 0.3
From given Venn diagram,
P(A ∩ B) = 0.10
Now, P(A U B) = P(A) + P(B) - P(A ∩ B)
⇒ P(A U B) = 0.4 + 0.3 - 0.10
⇒ P(A ∪ B) = 0.6
Therefore, the correct answer is option (C) .6
Learn more about here:
https://brainly.com/question/1605100
#SPJ2
2.7.2 : Checkup - Practice Problems
Which parabola opens upward?
y = 2x – 4x^2 – 5
y = 4 – 2x^2 –5x
y = 2 + 4x – 5x^2
y = –5x + 4x^2 + 2
Answer:
D) y = –5x + 4x^2 + 2
Step-by-step explanation:
You can tell by the first number being positive or negative. To check use Desmo graphing calculator and enter your equation for next time.
I WILL MARK BRAINLIEST PLEASE HELP! This graph represents f(x), and g(x) = -7x + 8.
Which statement about these functions is true?
A.
Function f(x) is increasing, and g(x) is decreasing.
B.
Function f(x) is decreasing, and g(x) is increasing.
C.
Functions f(x) and g(x) are both decreasing.
D.
Functions f(x) and g(x) are both increasing.
Answer:
A
Step-by-step explanation:
ITS OPTION (A)
PLZ MARK ME BRAINLIEST..
Algebraically show that each of the given combinations are equivalent to the given functions. f(x) – g() is
equivalent to m(x) given:
f(0)
= - 3x + 5; g(x)
- 5x – 7; m(x) = 2x + 12
f(x) – g(x) = (
=
Is f(x) – g(x) equivalent to m(x)? yes
Answer:
[tex]f(x) - g(x) = 2x + 12[/tex]
[tex]m(x) = f(x) - g(x)[/tex] --- True
Step-by-step explanation:
Given
[tex]f(x) = -3x + 5[/tex]
[tex]g(x) = -5x - 7[/tex]
[tex]m(x) = 2x + 12[/tex]
Solving (a): [tex]f(x) - g(x)[/tex]
From the given parameters, we have:
[tex]f(x) = -3x + 5[/tex]
[tex]g(x) = -5x - 7[/tex]
So:
[tex]f(x) - g(x)=-3x+5 + 5x + 7[/tex]
Collect like terms
[tex]f(x) - g(x) = 2x + 12[/tex]
Solving (b) m(x) = f(x) = g(x)?
In (a), we have:
[tex]f(x) - g(x) = 2x + 12[/tex]
And
[tex]m(x) = 2x + 12[/tex] --- given
By comparison:
[tex]m(x) = f(x) - g(x)[/tex]
hlw guys plz help me which set is this.for examples: A u B , A u B u C...like that..plz help me
Answer:
answer is;AnBnC ( common place for all)
HAVE A NİCE DAY
Jose bought a piece of fabric that was 5.6 meters long. From that, he cut 0.4
meter. How much fabric is left?
Answer:
Jose has 5.2 meters of fabric left.
Step-by-step explanation:
5.6 - 0.4 = 5.2