In each of Problems 6 through 9, determine the longest interval in which the given initial value problem is certain to have a unique twice- differentiable solution. Do not attempt to find the solution. 6. ty" + 3y = 1, y(1) = 1, y'(1) = 2 7. t(t – 4)y" + 3ty' + 4y = 2, y(3) = 0, y'(3) = -1 8. y" + (cost)y' + 3( In \t]) y = 0, y(2) = 3, y'(2) = 1 9. (x - 2)y"+y' +(x - 2)(tan x) y = 0, y(3) = 1, y'(3) = 2 = ) y( = = = - =
(a) The interval (-∞, ∞).
(b) The interval (-∞, ∞).
(c) The interval (-∞, ∞).
(d) The interval (-π/2, π/2) \ {0}.
(a) The longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution is the interval where the coefficient function, 3t, is continuous and bounded. Since 3t is a continuous and bounded function for all t in the interval (-∞, ∞), the given initial value problem is certain to have a unique twice-differentiable solution for all t in (-∞, ∞).
(b) The longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution is the interval where the coefficient functions, t(t - 4), 3t, and 4, are continuous and bounded. Since t(t - 4), 3t, and 4 are continuous and bounded functions for all t in the interval (-∞, ∞), the given initial value problem is certain to have a unique twice-differentiable solution for all t in (-∞, ∞).
(c) The longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution is the interval where the coefficient functions, cost and In|t|, are continuous and bounded. Since cost and In|t| are continuous and bounded functions for all t in the interval (-∞, ∞), the given initial value problem is certain to have a unique twice-differentiable solution for all t in (-∞, ∞).
(d) The longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution is the interval where the coefficient functions, x - 2, 1, and (x - 2)tanx, are continuous and bounded. Since x - 2, 1, and (x - 2)tanx are continuous and bounded functions for all x in the interval (-π/2, π/2) \ {0} , the given initial value problem is certain to have a unique twice-differentiable solution for all x in (-π/2, π/2) \ {0}.
Learn more about twice-differentiable solution here
brainly.com/question/30320300
#SPJ4
The given question is incomplete, the complete question is:
determine the longest interval in which the given initial value problem is certain to have a unique twice- differentiable solution. Do not attempt to find the solution. (a) ty" + 3y = 1, y(1) = 1, y'(1) = 2 (b) t(t – 4)y" + 3ty' + 4y = 2, y(3) = 0, y'(3) = -1 (c) y" + (cost)y' + 3( In |t|) y = 0, y(2) = 3, y'(2) = 1 (d) (x - 2)y"+y' +(x - 2)(tan x) y = 0, y(3) = 1, y'(3) = 2
two cards are drawn at random from an ordinary deck of 52 cards what is the probability that thee are no sixes
there is an 85% chance that the two cards drawn at random from an ordinary deck of 52 cards will not be sixes.
The probability of drawing a card from an ordinary deck without replacement can be determined using the concept of conditional probability. Conditional probability is the probability of an event occurring, assuming that another event has already occurred.
In order to calculate the probability that the two cards drawn are not sixes, we can use the formula:
P(A and B) = P(A) x P(B|A)
Where A and B represent two independent events, P(A) is the probability of event A occurring, and P(B|A) is the conditional probability of event B occurring given that event A has already occurred.
The probability of drawing the first card that is not a six is:
P(A) = 48/52 = 0.9231
The probability of drawing the second card that is not a six, given that the first card drawn was not a six, is:
P(B|A) = 47/51 = 0.9216
Therefore, the probability of drawing two cards at random from an ordinary deck of 52 cards and having neither of them be a six is:
P(A and B) = P(A) x P(B|A) = 0.9231 x 0.9216 = 0.8503 or approximately 85%.
This means that there is an 85% chance that the two cards drawn at random from an ordinary deck of 52 cards will not be sixes.
To know more about probability click here:
brainly.com/question/11234923
#SPJ4
A country initially has a population of four million people and is increasing at a rate of 5% per year. If the country's annual food supply is initially adequate for eight million people and is increasing at a constant rate adequate for an additional 0.25 million people per year.
a. Based on these assumptions, in approximately what year will this country first experience shortages of food?
b. If the country doubled its initial food supply and maintained a constant rate of increase in the supply adequate for an additional 0.25 million people per year, would shortages still occur? In approximately which year?
c. If the country doubled the rate at which its food supply increases, in addition to doubling its initial food supply, would shortages still occur?
(a) The country will first experience shortages of food in approximately 26.6 years
(b) If the country doubled its initial food supply and maintained a constant rate of increase in the supply, shortages would still occur in approximately 38 years.
(c) If the country doubled the rate at which its food supply increases, in addition to doubling its initial food supply, shortages would still occur in approximately 55.4 years.
What year will the country experience shortage?
a. Let P(t) be the population of the country at time t (in years), and F(t) be the food supply of the country at time t.
We know that P(0) = 4 million, and P'(t) = 0.05P(t), which means that the population is increasing by 5% per year.
We also know that F(0) = 8 million, and F'(t) = 0.25 million, which means that the food supply is increasing by 0.25 million people per year.
When the food supply is just enough to feed the population, we have P(t) = F(t), so we can solve for t as follows:
4 million x (1 + 0.05)^t = 8 million + 0.25 million x t
[tex]4(1 + 0.05)^t = 8 + 0.25t\\\\t \approx 26.6 \ years[/tex]
b. If the country doubled its initial food supply, then F(0) = 16 million. We can use the same equation as before and solve for t:
4 million x (1 + 0.05)^t = 16 million + 0.25 million x t
[tex]4(1 + 0.05)^t = 16 + 0.25t\\\\t \approx 38 \ years[/tex]
c. If the country doubled the rate at which its food supply increases and doubled its initial food supply, then we have F(0) = 16 million and F'(t) = 0.5 million. Using the same equation as before, we get:
4 million x (1 + 0.05)^t = 32 million + 0.5 million x t
[tex]4(1 + 0.05)^t = 32 + 0.5t\\\\t \approx 55.4 \ years[/tex]
Learn more about rate of food supply here: https://brainly.com/question/30848751
#SPJ1
cyryl hikes a distance of 0.75 kilomiters in going to school every day draw a number line to show the distance
Answer:
Step-by-step explanation:
Sure! Here's a number line showing the distance of 0.75 kilometers:
0 -------------|-------------|------------- 0.75 km
The "0" on the left represents the starting point (such as home), and the "|---|" in the middle represents the distance of 0.75 kilometers to the destination (such as school).
QUICK ANSWER THIS PLEASE What is the constant of proportionality between the corresponding areas of the two pieces of wood?
3
6
9
12
Answer:
Step-by-step explanation:
D
the simplest form of the expression sqr3-sqr6/sqr3+sqr6?
Answer:
1 - [tex]\frac{2\sqrt{2} }{3}[/tex]
Step-by-step explanation:
[tex]\frac{\sqrt{3}-\sqrt{6} }{\sqrt{3}+\sqrt{6} }[/tex]
rationalise the denominator by multiplying the numerator and denominator by the conjugate of the denominator.
the conjugate of [tex]\sqrt{3}[/tex] + [tex]\sqrt{6}[/tex] is [tex]\sqrt{3}[/tex] - [tex]\sqrt{6}[/tex]
= [tex]\frac{(\sqrt{3}-\sqrt{6})(\sqrt{3}-\sqrt{6}) }{(\sqrt{3}+\sqrt{6})(\sqrt{3}-\sqrt{6}) }[/tex] ← expand numerator/ denominator using FOIL
= [tex]\frac{3-\sqrt{18}-\sqrt{18}+6 }{3-\sqrt{18}+\sqrt{18}+6 }[/tex]
= [tex]\frac{9-2\sqrt{18} }{3+6}[/tex]
= [tex]\frac{9-2(3\sqrt{2}) }{9}[/tex]
= [tex]\frac{9-6\sqrt{2} }{9}[/tex]
= [tex]\frac{9}{9}[/tex] - [tex]\frac{6\sqrt{2} }{9}[/tex]
= 1 - [tex]\frac{2\sqrt{2} }{3}[/tex]
3) ____ is the expression,
which tells the nature of the roots of a quadratic equation of the form
3) ____ is the expression,
which tells the nature of the roots of a quadratic equation of the form
Shallow Drilling, Inc. has 76,650 shares of common stock outstanding with a beta of 1.47 and a market price of $50.00 per share. There are 14,250 shares of 6.40% preferred stock outstanding with a stated value of $100 per share and a market value of $80.00 per share. The company has 6,380 bonds outstanding that mature in 14 years. Each bond has a face value of $1,000, an 8.00% semiannual coupon rate, and is selling for 99.10% of par. The market risk premium is 9.79%, T-Bills are yielding 3.21%, and the tax rate is 26%. What discount rate should the firm apply to a new project's cash flows if the project has the same risk as the company's typical project?
Group of answer choices
The discount rate that should be applied to a new project's cash flows is the Weighted Average Cost of Capital (WACC). To calculate WACC, you need to first calculate the cost of debt. This is done by taking the face value of the bonds ($1000) multiplied by the coupon rate (8%) multiplied by (1 - the tax rate (26%)), which equals 5.92%. The cost of debt is then calculated by taking the market value of the debt (6,380 x $1,000 x 99.1%) and dividing this by the total market value of the debt plus the market value of the equity (6,380 x $1,000 x 99.1% + 76,650 x $50 + 14,250 x $80), which equals 5.22%.
Next, you need to calculate the cost of equity using the Capital Asset Pricing Model (CAPM). This is done by taking the risk-free rate (3.21%) plus the market risk premium (9.79%) multiplied by the firm's beta (1.47), which equals 17.18%.
The WACC is then calculated by taking the cost of equity multiplied by the proportion of equity (76,650 x $50 + 14,250 x $80 divided by the total market value of the debt plus the market value of the equity) plus the cost of debt multiplied by the proportion of debt (6,380 x $1,000
T
AD
View Instructions
Interpreting a Dot Plot
DAR
3 4 5
1 2
Number of pets at home
6
How many people have 2 pets at home?
How many people have at least 3 pets at home?
How many more people have 2 pets than 5 pets?
How many people have less than 3 pets at home?
11
10 HELP MEEE
If we total up the dots plot for 3, 4, and 5 pets, we find that 3 people have 2 pets at home, 10 individuals have at least 3 pets at home.
What is the 1 pet in the world?The fact that dogs are the most common pet in the world shouldn't be shocking. There is a reason why there are tens of millions of dogs living in the United States alone, which is why some people say that dogs are a man's greatest friend. Around the world, at least one dog is kept in one-third of all households.
What exactly is a house pet?A fully domesticated animal kept constitutes a "household pet." a pet kept by you for personal company, like a dog, cat, reptile, bird, or mouse. Any kind of horse, cow, pig, sheep, goat, chicken, turkey, other captive fur-bearing animal is not considered a household pet, nor is any animal that is typically kept for food or profit.
To know more about dots plot visit:-
https://brainly.com/question/22068145
#SPJ1
The total number of people with pets at home is 11, which is the sum of the heights of the columns.
What is equation?
A math equation is a method that links two claims and represents equivalence using the equals sign (=). An equation is a mathematical statement that establishes the equivalence of two mathematical expressions in algebra.
Based on the given dot plot, we can answer the following questions:
How many people have 2 pets at home?
Answer: Two people have 2 pets at home, as indicated by the two dots in the second column.
How many people have at least 3 pets at home?
Answer: Six people have at least 3 pets at home, as indicated by the dots in the third column and beyond.
How many more people have 2 pets than 5 pets?
Answer: There are no dots in the last column, which represents 5 pets. Therefore, the difference between the number of people with 2 pets and those with 5 pets is 2 - 0 = 2.
How many people have less than 3 pets at home?
Answer: Three people have less than 3 pets at home, as indicated by the dots in the first two columns.
Therefore, the total number of people with pets at home is 11, which is the sum of the heights of the columns.
To know more about equation fro the given link:
brainly.com/question/649785
#SPJ1
Let X and Y be independent random variables, uniformly distributed in the interval [0, 1 Find the CDF and the PDF of X-Y
Let X and Y be independent random variables, uniformly distributed in the interval [0, 1 ]. The CDF of X - Y is FZ(z) = (1/2)(1+z)^2 for -1 ≤ z ≤ 0, 1 - (1/2)(1-z)^2 for 0 ≤ z ≤ 1, 0 for z < -1 or z > 1. The PDF of X - Y is fZ(z) = z + 1 for -1 < z < 0, 1 - z for 0 < z < 1, 0 otherwise.
To find the CDF of X - Y, we first note that the range of X - Y is [0, 1]. Let Z = X - Y, then:
FZ(z) = P(Z ≤ z) = P(X - Y ≤ z)
We can write this as an integral over the joint distribution of X and Y:
FZ(z) = ∫∫[X - Y ≤ z] fXY(x, y) dx dy
Since X and Y are independent, the joint distribution is simply the product of their marginal distributions:
fXY(x, y) = fX(x) fY(y) = 1 * 1 = 1
for 0 ≤ x, y ≤ 1.
Thus, we have:
FZ(z) = ∫∫[X - Y ≤ z] dx dy
= ∫∫[Y ≤ X - z] dx dy
= ∫0^1 ∫0^(x-z) 1 dy dx + ∫0^1 ∫(x-z)^1 1 dy dx
= ∫0^(1+z) (1-z) dx
= (1/2)(1+z)^2 for -1 ≤ z ≤ 0
= 1 - (1/2)(1-z)^2 for 0 ≤ z ≤ 1
Therefore, the CDF of X - Y is:
FZ(z) =
(1/2)(1+z)^2 for -1 ≤ z ≤ 0
1 - (1/2)(1-z)^2 for 0 ≤ z ≤ 1
0 for z < -1 or z > 1
To find the PDF of X - Y, we differentiate the CDF:
fZ(z) = dFZ(z)/dz =
z + 1 for -1 < z < 0
1 - z for 0 < z < 1
0 otherwise
Therefore, the PDF of X - Y is:
fZ(z) =
z + 1 for -1 < z < 0
1 - z for 0 < z < 1
0 otherwise
To know more about CDF and PDF:
https://brainly.com/question/31140093
#SPJ4
Can Anyone Help?
A poster is to have a total area of 245cm2. There is a margin round the edges of 6cm at the top and 4cm at the sides and bottom where nothing is printed.What width should the poster be in order to have the largest printed area?
The poster should have width ____ cm
Answer: The poster should have width 17.50 CM
Step-by-step explanation:
Given that boasted I have a total area 245 cm square area of a poster is 200 and 45 20 m square. And it is in the rectangle format. So we know that the poster is always in the rectangle format and the area of rectangular area is equal to L N T W. So 245 will be equal to Ln tW. From this. We need to find L. So L is equal to 245 divided by W. Now consider the diplomatic representation of the poster. So it has mentioned that there is a margin around the edges of six cm at the top. This is 6cm and four cm at the sites. All the four sides 3 sides are four cm. So from this we need to find land and the doctor posted area that is printed area. The first wine printed with www. Z. Quilter. Now let this be total birth will be W. And this will be four and this will be four. Therefore posted with will be we need to find this part alone. So W -4 -4 will give the this part with. So W -4 -4. So post printed with PW will be equal to W -8. Similarly printed lunch will be equal to The total length is already we have found 245 by W. And we need to find this part length. So we have to subtract six and four from the total length so that that will give them this part length, So -6 -4. So printed length will be equal there 245 Divided by W -10. And we know that formula for area of a rectangle. Urz D is equal to L W. Now substitute the printed with and printed length in the area formula. We have to find the printed area. So Printed area Zeke Walter W -8 into 245 Divided by W -10. To simplify this, we get 325 minus 10. W -100 and 30,960 W. to the power of -1. Now fine D A by D. T. Not D D. This is D. W. So this is equal to differentiation of constant alma zero, this is minus 10 plus 900 and 60 W. to the power of -2 and equate this to be equal to zero. We out to find the maximum width so D A by D W is equal to zero, therefore minus 10 1960 W. To the power of -2 will be equal to zero. To simplify this, we get them maximum with value the W is equal term I wrote off 196. Therefore the value of W. Z quilter plus or minus 14. We will neglect the negative values since we cannot be negative. So one we assume the positive values. So what will be equal to 14 and length will be equal to 245 divided by 14, So which will be equal to 17.50 centimeters. And they have concluded that At W is equal to 14 cm and lunch will be equal to 17.50 cm needed to print the largest area. I hope you found the answer to school. Thank you.
question 1 write an inequality and a word sentence that represent the graph. let x represent the unknown number.
The inequality is X > 0 and a word sentence represent the graph is X the graph of a number line with an open circle on zero and an arrow pointing to the right.
The inequality X > 0 represents the graph of a number line with an open circle on zero to left and an arrow pointing to the right. This means that any value of X that is greater than zero is a valid solution for the inequality.
In other words, X can be any positive number, such as 1, 2, 3, and so on. However, X cannot be zero or any negative number, as those values do not satisfy the inequality. Therefore, the word sentence that represents this inequality is "X is greater than zero."
This means that X must be a positive number, and it can be any value that is greater than zero.
To know more about inequality:
https://brainly.com/question/30228778
#SPJ4
a plumber can do a job in 5 hours, and his apprentice can do the same job in 8 hours. What part of the job is left if they start the job and work together for 2 hours.
Find a vector x orthogonal to the row space of A, and a vector y orthogonal to column space, and a vector z orthogonal to the nullspace: A = [1 2 1 2 4 3 3 6 4].
A vector x orthogonal to the row space of A, and a vector y orthogonal to column space, and a vector z orthogonal to the null space. The orthogonal vector is :
A = [tex]\left[\begin{array}{ccc}1&2&1\\2&1&0\\1&-2&2\end{array}\right][/tex]
The orthogonal complement of the subspace V contains any vector perpendicular to V. This orthogonal subspace is denoted V⊥. (pronounced "V perp").
By this definition, null space is the orthogonal complement of row space. Every x perpendicular to the line satisfies Ax = 0 and lies in null space.
vice versa. If v is orthogonal to null space, it must be in row space. Otherwise, we can add this v as an extra row of the matrix without changing its null space. The rice space will become larger, breaking the rule of r+(n−r) = n.
The column space extent of A. These two vectors are the basis of col(A) , but they are not normalized.
In this case, the columns of A are already orthonormal, so you don't need to use the Gram-Schmidt procedure. To normalize a vector and then divide it by its norm:
[tex]\left[\begin{array}{ccc}1&2&1\\2&4&3\\3&6&4\end{array}\right][/tex]
and the vector after orthogonal process is:
[tex]\left[\begin{array}{ccc}1&2&1\\2&1&0\\1&-2&2\end{array}\right][/tex]
Learn more about Vector:
https://brainly.com/question/24256726
#SPJ4
PLEASE HELPPPP 30 POINTS!
Answer:
56
90
56
Step-by-step explanation:
easy easy lol.
aaaaa
One month Maya rented 5 movies and 3 video games for a total of $34. The next month she rented 2 movies and 12 video games for a total of $73. Find the rental cost for each movie and each video game. Rental cost for each movie: s Rental cost for each video game: s 3 Es
The rental cost for each movie and each video game is $3.5 and $5.5 respectively.
What is the the rental cost for each movie and each video game?Let
cost of each movie = x
Cost of each video game = y
5x + 3y = 34
2x + 12y = 73
Multiply (1) by 4
20x + 12y = 136
2x + 12y = 73
subtract the equations to eliminate y
18x = 63
divide both sides by 18
x = 63/18
x = 3.5
Substitute x = 3.5 into (1)
5x + 3y = 34
5(3.5) + 3y = 34
17.5 + 3y = 34
3y = 34 - 17.5
3y = 16.5
y = 16.5/3
y = 5.5
Therefore, $3.5 and $5.5 is the rental cost of each movie and video game respectively.
Read more on rental cost:
https://brainly.com/question/11959610
#SPJ1
For all values of x f(x) = 2x-3 and g(x) = x² + 2 (c) Solve fg(x) = gf(x)
Answer: x = 5 and x = 1.
Step-by-step explanation:
To solve fg(x) = gf(x), we need to find the expressions for fg(x) and gf(x) and then set them equal to each other.
fg(x) = f(g(x)) = f(x² + 2) = 2(x² + 2) - 3 = 2x² + 1
gf(x) = g(f(x)) = g(2x - 3) = (2x - 3)² + 2 = 4x² - 12x + 11
Now we set fg(x) equal to gf(x) and solve for x:
2x² + 1 = 4x² - 12x + 11
2x² - 12x + 10 = 0
Dividing both sides by 2 gives:
x² - 6x + 5 = 0
This quadratic equation factors as:
(x - 5)(x - 1) = 0
So the solutions are x = 5 and x = 1.
Therefore, the solutions to fg(x) = gf(x) are x = 5 and x = 1.
A screen has a zoom of 140%, which means that images on the screen are 140% as long and 140% as wide as when they are printed on a sheet of paper. An image of a house is 17 cm tall when printed on a sheet of paper. How tall would the image of the house be on the screen? Give your answer in centimetres (cm).
Answer:
23.8 cm
Step-by-step explanation:
17 * 140% = 17 * 1.4 = 23.8 cm
The image of the house would be 23.8 cm tall on the screen.
To calculate the height of the image of the house on the screen, we can use the given zoom factor of 140%.
The zoom factor of 140% means that the images on the screen are 140% as long and 140% as wide compared to when they are printed on a sheet of paper.
To calculate the height of the image on the screen, we need to multiply the printed height by the zoom factor (140% or 1.4).
Height on the screen = Printed height * Zoom factor
Height on the screen = 17 cm * 1.4
Height on the screen = 23.8 cm
Therefore, the image of the house would be 23.8 cm tall on the screen.
To know more about variable visit:
brainly.com/question/2466865
#SPJ2
Mr. James is enlarging a logo for printing
on the back of a T-shirt. He wants to enlarge a logo that is 3 inches by
5 inches so that the dimensions are 3 times larger than the original. How
many times as large as the original logo will the area of the printing be?
The area of the enlarged logo will be 9 times larger than the original logo.
When an object is enlarged or scaled up how does it area change ?
When an object is enlarged or scaled up by a factor of [tex]k[/tex], both its length and width are multiplied by [tex]k[/tex]. Therefore, the new length is [tex]k[/tex] times the original length, and the new width is [tex]k[/tex] times the original width.
The area of the new object is the product of the new length and width, which is ([tex]k[/tex] times the original length) multiplied by ([tex]k[/tex] times the original width), or [tex]k^2[/tex] times the original area.
Therefore, the area of an object increases by a factor of [tex]k^2[/tex] when the object is enlarged or scaled up by a factor of [tex]k[/tex].
Calculating how many times larger the area of the enlarged logo will be :
The original logo has dimensions of 3 inches by 5 inches, so its area is 3 x 5 = 15 square inches.
Mr. James wants to enlarge the logo so that the dimensions are 3 times larger than the original. This means the new dimensions will be 9 inches by 15 inches.
To determine how many times larger the area of the enlarged logo will be, we need to compare the areas of the original logo and the enlarged logo. The area of the enlarged logo is 9 x 15 = 135 square inches.
To find out how many times larger the area of the enlarged logo is compared to the original logo, we divide the area of the enlarged logo by the area of the original logo:
135 square inches ÷ 15 square inches = 9
Therefore, the area of the enlarged logo will be 9 times larger than the area of the original logo.
To know more about area visit :
brainly.com/question/27683633
#SPJ1
A store purchased a stylus for $22.00 and sold it to a customer for 20% more than the purchase price. The customer was charged a 6% tax when the stylus was sold. What was the customer’s total cost for the stylus?
Answer: $27.98
Step-by-step explanation:
22.00 × .2= 4.40
22 + 4.40 = 26.40
26.40 × .06 = 1.584
26.40 + 1.584 = 27.984
Round to the nearest hundred so the total paid by the customer would be 27.98
what is the Taylor's series for 1+3e^(x)+x^2 at x=0
The Taylor's series for [tex]1 + 3e^x + x^2[/tex] at [tex]x=0[/tex] is :
[tex]1 + 3e^x+ x^2 = 5 + 3x + (3/2)x^2 + (1/3)x^3 + ...[/tex]
What do you mean by Taylor's series ?
The Taylor's series is a way to represent a function as a power series, which is a sum of terms involving the variable raised to increasing powers. The series is centered around a specific point, called the center of the series. The Taylor's series approximates the function within a certain interval around the center point.
The general formula for the Taylor's series of a function f(x) centered at [tex]x = a[/tex] is:
[tex]f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ...[/tex]
where [tex]f'(a), f''(a), f'''(a),[/tex] etc. are the derivatives of f(x) evaluated at [tex]x = a[/tex].
Finding the Taylor's series for [tex]1 + 3e^x + x^2[/tex] at [tex]x=0[/tex] :
We need to find the derivatives of the function at [tex]x=0[/tex]. We have:
[tex]f(x) = 1 + 3e^x + x^2[/tex]
[tex]f(0) = 1 + 3e^0 + 0^2 = 4[/tex]
[tex]f'(x) = 3e^x+ 2x[/tex]
[tex]f'(0) = 3e^0 + 2(0) = 3[/tex]
[tex]f''(x) = 3e^x + 2[/tex]
[tex]f''(0) = 3e^0 + 2 = 5[/tex]
[tex]f'''(x) = 3e^x[/tex]
[tex]f'''(0) = 3e^0 = 3[/tex]
Substituting these values into the general formula for the Taylor's series, we get:
[tex]f(x) = f(0) + f'(0)x + f''(0)x^2/2! + f'''(0)x^3/3! + ...[/tex]
[tex]f(x) = 4 + 3x + 5x^2/2 + 3x^3/6 + ...[/tex]
Simplifying, we get:
[tex]f(x) = 5 + 3x + (3/2)x^2 + (1/3)x^3 + ...[/tex]
Therefore, the Taylor's series for [tex]1 + 3e^x + x^2[/tex] at [tex]x=0[/tex] is :
[tex]1 + 3e^x+ x^2 = 5 + 3x + (3/2)x^2 + (1/3)x^3 + ...[/tex]
To know more about Taylor's series visit :
brainly.com/question/29733106
#SPJ1
What is tangent and how do you calculate it from the unit circle?
Answer:
The unit circle has many different angles that each have a corresponding point on the circle. The coordinates of each point give us a way to find the tangent of each angle. The tangent of an angle is equal to the y-coordinate divided by the x-coordinate.
Imagine
X
in the below is a missing value. If I were to run a median imputer on this set of data what would the returned value be?
50,60,70,80,100,60,5000,x
(It's okay to have to look up how to do this!) An. error 80 100 70 The features in a model.... None of these answers are correct Are always functions of each other Kecp the model validation process stable Are used as proxics for y-hatfy (that is yhat divided by y) Which of the below were discussed as being problems with the hold out method for validation? Outliers can skew the result Validation is sometimes too challenging
K=3
is not sufficiently large cnough Data is not available for test and control differences. The modefis not trained on all of the day
The returned value would be 70 which is the missing value in the data set. Hence, option D is correct. We have some X values; we called these numeric inputs and some Y value that we are trying to predict.
This set of data would yield a result of 70 if a median imputer were run on it. In regression, we have some X values that are referred to as independent variables and some Y values that are referred to as dependent variables (this is the variable we are trying to predict). Several Y values are possible, but they are uncommon.
Learning a function that can predict Y given X is the fundamental concept behind a regression. Depending on the data, the function may be linear or non-linear.
To know more about data set, refer:
https://brainly.com/question/11284607
#SPJ4
Complete question is:
Imagine X in the below is a missing value. If I were to run a median imputer on this set of data. What would the returned value be? 50 , 60 , 70 , 80 , 100 , 60 , 5000 , x (It's okay to have to look up how to do this!)
50
An error
80
70
100
The basic idea of a regression is very simple. We have some X values, we called these ______ and some Y value (this is the variable we are trying to _______.
We could have multiple Y values, but that is not but that is not re-ordered ordinals intercepts features numeric inputs.
find the following answer
The cardinality of set from the given vein diagram is found as 2.
Explain about the cardinality of set?Think about set A. The set A is said to be finite and so its cardinality is same to the amount of elements n if it includes precisely n items, where n ≥ 0. |A| stands for the cardinality of such a set A.
It turns out that there are two kinds of infinite sets that we need to determine between since one form is much "bigger" than the other. Particularly, one type is referred to as countable and the other as uncountable.
From the given figure
Set A = {8 , 8, 3, 6}
Compliment of Set B (elements not present in set B):
Set [tex]B^{c}[/tex] = {8, 8, 6(pink), 3(white)}
Thus,
(A∩ [tex]B^{c}[/tex] ) = {8, 8} (present in both set)
n (A∩ [tex]B^{c}[/tex] ) = 2 (cardinal number)
Thus, the cardinality of the set from the given vein diagram is found as 2.
know more about the cardinality of set
https://brainly.com/question/23976339
#SPJ1
How many degrees are there in 5/8 of a circle
Answer:
Step-by-step explanation:
First the max degree is 360
Then multiply by 5/8
360 x 5/8 = 1800/8
1800/8 = 225
Answer: 225
calculate the are of given figure
2. write how many degrees are angle between.
a) North and East _______
Answer:
N and E is 90 degrees
N and S is 180 degrees
N and W is 90 degrees
determine the factor of the shape, needed in a fraction or whole number please help
Therefore, the scale factor of the dilation of the shape is 2.
What is scale factor?A scale factor is a ratio that describes the proportional relationship between two similar figures. It represents how much larger or smaller one figure is compared to the other, and it is calculated by dividing a corresponding measurement (such as side length, perimeter, or area) of the larger figure by the corresponding measurement of the smaller figure. Scale factor is used in mathematics, particularly in geometry and measurement, to describe the transformation of one figure into another through dilation or resizing. It is represented by a number or a ratio, such as 2:1 or 1/2, which indicates how many times larger or smaller the new figure is compared to the original.
Here,
In the given picture, it appears that the distance from the center of dilation (the origin) to the pre-image (the original figure) is 4 units, and the distance from the center of dilation to the image (the transformed figure) is 8 units. The scale factor of the dilation is equal to the ratio of the distance from the center of dilation to the image and the distance from the center of dilation to the pre-image.
So, the scale factor of the dilation is:
8 units ÷ 4 units = 2
Therefore, the scale factor of the dilation is 2.
To know more about scale factor,
https://brainly.com/question/30215119
#SPJ1
Select the description of the graph created by the equation 3x2 – 6x + 4y – 9 = 0. Parabola with a vertex at (1, 3) opening left. Parabola with a vertex at (–1, –3) opening left. Parabola with a vertex at (1, 3) opening downward. Parabola with a vertex at (–1, –3) opening downward.
A parabola with a vertex at (1,3) and an opening downhill is depicted by the equation.
Describe a curve.A parabola is an equation of a curve with a spot on it that is equally spaced from a fixed point and a fixed line.
In mathematics, a parabola is a roughly U-shaped, mirror-symmetrical plane circle. The same curves can be defined by a number of apparently unrelated mathematical descriptions, which all correspond to it. A point and a line can be used to depict a parabola.
Equation given: 3x² - 6x + 4y - 9 = 0. When the given equation's graph is plotted, it is discovered that the parabola that is created is opened downward and has a vertex at the spot. ( 1,3). The graph and the following response are attached.
The equation that depicts a parabola with a vertex at (1,3) opening downward is option C, making it the right choice.
To know more about parabola follow
brainly.com/question/4061870
#SPJ1
Answer:
Parabola with a vertex at (1, 3) opening downward.
Step-by-step explanation:
Find the area of a semicircle whose diameter is 28cm
Answer:
The area of a semicircle with diameter 28 cm is 98π cm², or 307.88 cm² to the nearest tenth.
Step-by-step explanation:
A semicircle is a two-dimensional shape that is exactly half of a circle.
The area of a circle is given by the formula:
[tex]\sf A=\pi r^2[/tex]
where A is the area of the circle, and r is the radius of the circle.
The diameter of a circle is twice its radius.
Given the diameter of the semicircle is 28 cm, the radius is:
[tex]\sf r = \dfrac{28}{2} = 14 \; cm[/tex]
Substituting this into the formula for the area of a circle, we get:
[tex]\sf A = \pi(14)^2[/tex]
[tex]\sf A = 196 \pi[/tex]
Finally, divide this by two to get the area of the semicircle:
[tex]\sf Area\;of\;semicircle = \dfrac{1}{2} \cdot 196 \pi[/tex]
[tex]\sf Area\;of\;semicircle = 98 \pi\; cm^2[/tex]
So the area of a semicircle with diameter 28 cm is 98π cm², or 307.88 cm² to the nearest tenth.