Answer:
Test the claim that the proportion of men who own cats is significantly different than the proportion of women who own cats at the 0.2 significance level.
The null and alternative hypothesis would be: H 0 : μ M = μ F H 1 : μ M < μ F H 0 : μ M = μ F H 1 : μ M > μ F H 0 : p M = p F H 1 : p M ≠ p F H 0 : p M = p F H 1 : p M < p F H 0 : p M = p F H 1 : p M > p F H 0 : μ M = μ F H 1 : μ M ≠ μ F
The test is:
right-tailed
left-tailed
two-tailed
Based on a sample of 40 men, 25%Based on a sample of 40 men, 25% owned cats
Based on a sample of 40 women, 40% owned cats
The test statistic is:
The p-value is:
Based on this we:
Reject the null hypothesis
Fail to reject the null hypothesis
if cosA=3√2/5,then show that cos2A=11/25
Answer:
Step-by-step explanation:
Cos 2A = 2Cos² A - 1
[tex]= 2*(\frac{3\sqrt{2}}{5})^{2}-1\\\\=2*(\frac{3^{2}*(\sqrt{2})^{2}}{5^{2}})-1\\\\=2*\frac{9*2}{25} - 1\\\\=\frac{36}{25}-1\\\\=\frac{36}{25}-\frac{25}{25}\\\\=\frac{11}{25}[/tex]
I didn't understand this to be honest I thought I had to find what jm and lm were together and then subtract from the whole total...but ended up being wrong. whats the correct answer?
Answer:
The correct answer is 3x-2
Step-by-step explanation:
It gives you the expression for JM and LM, and it asks for JL. Therefore, if you take away LM from JM, you are left with JL. You must subtract 2x-6 from 5x-8.
∴5x-8-(2x-6)
Do not forget to distribute the negative since you are subtracting, so instead of subtracting 6 from 8, you will be adding 6 to 8 because two negatives make a positive.
When P(x) is divided by (x - 1) and (x + 3), the remainders are 4 and 104 respectively. When P(x) is divided by x² - x + 1 the quotient is x² + x + 3 and the remainder is of the form ax + b. Find the remainder.
Answer:
The remainder is 3x - 4
Step-by-step explanation:
[Remember] [tex]\frac{Dividend}{Divisor} = Quotient + \frac{Remainder}{Divisor}[/tex]
So, [tex]Dividend = (Quotient)(Divisor) + Remainder[/tex]
In this case our dividend is always P(x).
Part 1
When the divisor is [tex](x - 1)[/tex], the remainder is [tex]4[/tex], so we can say [tex]P(x) = (Quotient)(x - 1) + 4[/tex]
In order to get rid of "Quotient" from our equation, we must multiply it by 0, so [tex](x - 1) = 0[/tex]
When solving for [tex]x[/tex], we get
[tex]x - 1 = 0\\x - 1 + 1 = 0 + 1\\x = 1[/tex]
When [tex]x = 1[/tex],
[tex]P(x) = (Quotient)(x - 1) + 4\\P(1) = (Quotient)(1 - 1) + 4\\P(1) = (Quotient)(0) + 4\\P(1) = 0 + 4\\P(1) = 4[/tex]
--------------------------------------------------------------------------------------------------------------
Part 2
When the divisor is [tex](x + 3)[/tex], the remainder is [tex]104[/tex], so we can say [tex]P(x) = (Quotient)(x + 3) + 104[/tex]
In order to get rid of "Quotient" from our equation, we must multiply it by 0, so [tex](x + 3) = 0[/tex]
When solving for [tex]x[/tex], we get
[tex]x + 3 = 0\\x + 3 - 3 = 0 - 3\\x = -3[/tex]
When [tex]x = -3[/tex],
[tex]P(x) = (Quotient)(x + 3) + 104\\P(-3) = (Quotient)(-3 + 3) + 104\\P(-3) = (Quotient)(0) + 104\\P(-3) = 0 + 104\\P(-3) = 104[/tex]
--------------------------------------------------------------------------------------------------------------
Part 3
When the divisor is [tex](x^2 - x + 1)[/tex], the quotient is [tex](x^2 + x + 3)[/tex], and the remainder is [tex](ax + b)[/tex], so we can say [tex]P(x) = (x^2 + x + 3)(x^2 - x + 1) + (ax + b)[/tex]
From Part 1, we know that [tex]P(1) = 4[/tex] , so we can substitute [tex]x = 1[/tex] and [tex]P(x) = 4[/tex] into [tex]P(x) = (x^2 + x + 3)(x^2 - x + 1) + (ax + b)[/tex]
When we do, we get:
[tex]4 = (1^2 + 1 + 3)(1^2 - 1 + 1) + a(1) + b\\4 = (1 + 1 + 3)(1 - 1 + 1) + a + b\\4 = (5)(1) + a + b\\4 = 5 + a + b\\4 - 5 = 5 - 5 + a + b\\-1 = a + b\\a + b = -1[/tex]
We will call [tex]a + b = -1[/tex] equation 1
From Part 2, we know that [tex]P(-3) = 104[/tex], so we can substitute [tex]x = -3[/tex] and [tex]P(x) = 104[/tex] into [tex]P(x) = (x^2 + x + 3)(x^2 - x + 1) + (ax + b)[/tex]
When we do, we get:
[tex]104 = ((-3)^2 + (-3) + 3)((-3)^2 - (-3) + 1) + a(-3) + b\\104 = (9 - 3 + 3)(9 + 3 + 1) - 3a + b\\104 = (9)(13) - 3a + b\\104 = 117 - 3a + b\\104 - 117 = 117 - 117 - 3a + b\\-13 = -3a + b\\(-13)(-1) = (-3a + b)(-1)\\13 = 3a - b\\3a - b = 13[/tex]
We will call [tex]3a - b = 13[/tex] equation 2
Now we can create a system of equations using equation 1 and equation 2
[tex]\left \{ {{a + b = -1} \atop {3a - b = 13}} \right.[/tex]
By adding both equations' right-hand sides together and both equations' left-hand sides together, we can eliminate [tex]b[/tex] and solve for [tex]a[/tex]
So equation 1 + equation 2:
[tex](a + b) + (3a - b) = -1 + 13\\a + b + 3a - b = -1 + 13\\a + 3a + b - b = -1 + 13\\4a = 12\\a = 3[/tex]
Now we can substitute [tex]a = 3[/tex] into either one of the equations, however, since equation 1 has less operations to deal with, we will use equation 1.
So substituting [tex]a = 3[/tex] into equation 1:
[tex]3 + b = -1\\3 - 3 + b = -1 - 3\\b = -4[/tex]
Now that we have both of the values for [tex]a[/tex] and [tex]b[/tex], we can substitute them into the expression for the remainder.
So substituting [tex]a = 3[/tex] and [tex]b = -4[/tex] into [tex]ax + b[/tex]:
[tex]ax + b\\= (3)x + (-4)\\= 3x - 4[/tex]
Therefore, the remainder is [tex]3x - 4[/tex].
if side of square is 4.05 find its area
Answer:
A
≈
16.4
please give brain listSolve the equation 2sin^2(x) = 1 for x ∈ [-π,π], expressing all solutions as exact values. please help its urgent !!
Answer:
2sin.2(x) sd s
Step-by-step explanation:
is y=3x^2-x-1 a function
Answer: Yes it is a function.
This is because any x input leads to exactly one y output.
The graph passes the vertical line test. It is impossible to draw a single vertical line through more than one point on the parabolic curve.
Create a circle such that its center is point A and B is a point on the circle.
Answer:
The center of a circle is the point in the circle which is equidistant to all the edges of thr circle. The point a is the center, while point b is an arbitrary point in the circle. Find attachment for the diagram.
Which expression is equivalent to…
Answer:
D
Step-by-step explanation:
from the given illustration at the right the law of sines cannot be used since
Answer:
D. No angle opposite the sides is given
Step-by-step explanation:
Given
See attachment for triangle
Required
Why the law of sines cannot be used
From the attached image of a triangle, we can see that all sides are given while none of the angles are given.
Since none of the angles are given, then law of sines doesn't apply
help I don't get it, help
Answer:
No, it is not possible.
Step-by-step explanation:
AB // CD and BC is transversal.
∠ABC = ∠BCD ---> Alternate interior angles are equal.
Here, it is different which is not possible.
I need help with this, please.
Answer:
it can not cleared clear but it can not cleared
The amount of snowfall falling in a certain mountain range is normally distributed with a average of 170 inches, and a standard deviation of 20 inches. What is the probability a randomly selected year will have an average snofall above 200 inches
Answer:
0.0668 = 6.68% probability a randomly selected year will have an average snowfall above 200 inches.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Normally distributed with a average of 170 inches, and a standard deviation of 20 inches.
This means that [tex]\mu = 170, \sigma = 20[/tex]
What is the probability a randomly selected year will have an average snowfall above 200 inches?
This is 1 subtracted by the p-value of Z when X = 200. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{200 - 170}{20}[/tex]
[tex]Z = 1.5[/tex]
[tex]Z = 1.5[/tex] has a p-value of 0.9332.
1 - 0.9332 = 0.0668
0.0668 = 6.68% probability a randomly selected year will have an average snowfall above 200 inches.
Please answer & number. Thank you! <33
Answer:
2)=2
4)=3
5)=5
8)=-1
Step-by-step explanation:
just divide the number by the number with variable
Given: triangle ABC with side lengths a, b, and c, and height h
Prove: Area = 1/2absin C
Answer:
Step-by-step explanation:
Statements Reasons
1). ΔABC with side lengths a, b, c, and h 1). Given
2). Area = [tex]\frac{1}{2}bh[/tex] 2). Triangle area formula
3). [tex]\text{sin}C=\frac{h}{a}[/tex] 3). Definition of sine
4). asin(C) = h 4). Multiplication property of
equality.
5). Area = [tex]\frac{1}{2}ba\text{sin}C[/tex] 5). Substitution property
6). Area = [tex]\frac{1}{2}ab\text{sin}C[/tex] 6). Commutative property of
multiplication.
Hence, proved.
M H To determine the number of deer in a game preserve, a conservationist catches 412 deer, tags them and lets them loose. Later, 316 deer are caught, 158 of them are tagged. How many deer are in the preserve?
Answer:
There are 824 deer in the preserve.
Step-by-step explanation:
Since to determine the number of deer in a game preserve, a conservationist catches 412 deer, tags them and lets them loose, and later, 316 deer are caught, 158 of them are tagged, to determine how many deer are in the preserve you must perform the following calculation:
316 = 100
158 = X
158 x 100/316 = X
50 = X
50 = 412
100 = X
824 = X
Therefore, there are 824 deer in the preserve.
Jamie left home on a bike traveling at 24 mph. Five hours later her brother realized Jamie had forgotten her wallet and decided to take it to her. He took his car and traveled at 64 mph. How many hours must the brother drive to catch Jamie?
Answer:
3 hrs
Step-by-step explanation:
5 * 24 = 120 miles
64x = 120 + 24x
40x = 120
x = 3 hrs
Translate the following into an algebraic expression: If it would take Mark m hours to clean the house alone and with his brother Sam they can clean the house together in t hours. How many hours would it have taken Sam if he was working alone
The club will use the majority criterion method to determine the final winner. However, while finalizing the votes, a member of the club discovers that Mason did not meet the original criteria to be considered for the vacation package, because he is a county deputy, not a city police person, so Mason is eliminated from the votes. Who actually will win the tickets? Is the irrelevant alternative criterion supported in this case?
Answer and Explanation:
The irrelevant alternative criterion states that if two candidates A and B contest for an election and candidate B is preferred to candidate A then any other candidate X should not cause candidate A to win the election.
In this case if Mason was candidate A, then candidate B should still win by the majority criterion method and the irrelevant alternative criterion would still be supported. However if he is candidate B then the irrelevant alternative criterion is not supported.
In a family of 3 children, what is the probability that there will be exactly 2 boys assuming that the sexes are equally likely to occur in each birth
Answer:
There is a 60.00 percent probability of a particular outcome and 40.00 percent probability of another outcome.
Write an expression for the sequence of operations described below.
divide s by q, add r to the result, then triple what you have
Do not simplify any part of the expression.
Answer:
3( [tex]\frac{s}{q}[/tex] + r)
F(x) =-2x-4 find x if f(x)=14
Answer:
14=-2x-4
18=-2x
x=-9
Hope This Helps!!!
divide 64.050÷0.12. need whole process
Answer:
533.75
Step-by-step explanation:
Given the expression;
64.050÷0.12
Express first as a fraction
64.050 = 64050/1000
0.12 = 12/100
Divide both fractions
= 64050/1000÷12/100
= 64050/1000 *100/12
= 64050/10 * 1/12
= 64050/120
= 533.75
Hence the required answer is 533.75
Many fast-food restaurants have soft drink dispensers with preset amounts, so that when the operator merely pushes a button for the desired rink the cup is automatically filled. This method apparently saves time and seems to increase worker productivity. A researcher randomly selects 9 workers from a restaurant with automatic dispensers and 9 works from a restaurant with manual dispensers. At a 1% significance level, use the Mann-Whitney U Test to test whether workers with automatic dispensers are significantly more productive.
Automatic (Group 1): 153, 128, 143, 110, 152, 168, 144, 137, 118
Manual (Group 2): 105, 118, 129, 114, 125, 117, 106, 92, 126
1. What is the alternative hypothesis for this study?
i. Worker productivity is higher with automatic dispensers.
ii. Automatic dispensers fill cups faster than manual dispensers.
iii. Worker productivity is lower with automatic dispensers.
iv. There is no difference in worker productivity between restaurants with automatic and manual dispensers.
2. What rank will be given to the observation value, 118 that is in both the automatic and manual groups? (Round answer to 1 decimal).
3. When rounding the U test statistic up to the next value, what is the p-value from the Mann Whitney Table of p-values? (Round to 4 decimal places)
4. What can be concluded from this study at a 1% significance level?
Answer:
ii
Step-by-step explanation:
you have to look and read it it comes simple
Find the domain.
p(x) = x^2+ 2
Answer:
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Interval Notation:
( − ∞ , ∞ )
Set-Builder Notation:
{ x | x ∈ R }
Step-by-step explanation:
hope that helps bigger terms
How do you complete the other two?
I know how to complete the first one but 3D Pythag confuses me so much
For now, I'll focus on the figure in the bottom left.
Mark the point E at the base of the dashed line. So point E is on segment AB.
If you apply the pythagorean theorem for triangle ABC, you'll find that the hypotenuse is
a^2+b^2 = c^2
c = sqrt(a^2+b^2)
c = sqrt((8.4)^2+(8.4)^2)
c = 11.879393923934
which is approximate. Squaring both sides gets us to
c^2 = 141.12
So we know that AB = 11.879393923934 approximately which leads to (AB)^2 = 141.12
------------------------------------
Now focus on triangle CEB. This is a right triangle with legs CE and EB, and hypotenuse CB.
EB is half that of AB, so EB is roughly AB/2 = (11.879393923934)/2 = 5.939696961967 units long. This squares to 35.28
In short, (EB)^2 = 35.28 exactly. Also, (CB)^2 = (8.4)^2 = 70.56
Applying another round of pythagorean theorem gets us
a^2+b^2 = c^2
b = sqrt(c^2 - a^2)
CE = sqrt( (CB)^2 - (EB)^2 )
CE = sqrt( 70.56 - 35.28 )
CE = 5.939696961967
It turns out that CE and EB are the same length, ie triangle CEB is isosceles. This is because triangle ABC isosceles as well.
Notice how CB = CE*sqrt(2) and how CB = EB*sqrt(2)
------------------------------------
Now let's focus on triangle CED
We just found that CE = 5.939696961967 is one of the legs. We know that CD = 8.4 based on what the diagram says.
We'll use the pythagorean theorem once more
c = sqrt(a^2 + b^2)
ED = sqrt( (CE)^2 + (CD)^2 )
ED = sqrt( 35.28 + 70.56 )
ED = 10.2878569196893
This rounds to 10.3 when rounding to one decimal place (aka nearest tenth).
Answer: 10.3==============================================================
Now I'm moving onto the figure in the bottom right corner.
Draw a segment connecting B to D. Focus on triangle BCD.
We have the two legs BC = 3.7 and CD = 3.7, and we need to find the length of the hypotenuse BD.
Like before, we'll turn to the pythagorean theorem.
a^2 + b^2 = c^2
c = sqrt( a^2 + b^2 )
BD = sqrt( (BC)^2 + (CD)^2 )
BD = sqrt( (3.7)^2 + (3.7)^2 )
BD = 5.23259018078046
Which is approximate. If we squared both sides, then we would get (BD)^2 = 27.38 which will be useful in the next round of pythagorean theorem as discussed below. This time however, we'll focus on triangle BDE
a^2 + b^2 = c^2
b = sqrt( c^2 - a^2 )
ED = sqrt( (EB)^2 - (BD)^2 )
x = sqrt( (5.9)^2 - (5.23259018078046)^2 )
x = sqrt( 34.81 - 27.38 )
x = sqrt( 7.43 )
x = 2.7258026340878
x = 2.7
--------------------------
As an alternative, we could use the 3D version of the pythagorean theorem (similar to what you did in the first problem in the upper left corner)
The 3D version of the pythagorean theorem is
a^2 + b^2 + c^2 = d^2
where a,b,c are the sides of the 3D block and d is the length of the diagonal. In this case, a = 3.7, b = 3.7, c = x, d = 5.9
So we get the following
a^2 + b^2 + c^2 = d^2
c = sqrt( d^2 - a^2 - b^2 )
x = sqrt( (5.9)^2 - (3.7)^2 - (3.7)^2 )
x = 2.7258026340878
x = 2.7
Either way, we get the same result as before. While this method is shorter, I think it's not as convincing to see why it works compared to breaking it down as done in the previous section.
Answer: 2.7Answer:
Qu 2 = 10.3 cm
Qu 3. = 2.7cm
Step-by-step explanation:
Qu 2. Shape corner of a cube
We naturally look at sides for slant, but with corner f cubes we also need the base of x and same answer is found as it is the same multiple of 8.4^2+8/4^2 for hypotenuse.
8.4 ^2 + 8.4^2 = sq rt 141.42 = 11.8920141 = 11.9cm
BD = AB = 11.9 cm Base of cube.
To find height x we split into right angles
formula slant (base/2 )^2 x slope^2 = 11.8920141^2 - 5.94600705^2 = sq rt 106.065
= 10.2987863
height therefore is x = 10.3 cm
EB = 5.9cm
BC = 3.7cm
CE^2 = 5.9^2 - 3.7^2 = sqrt 21.12 = 4.59565012 = 4.6cm
2nd triangle ED = EC- CD
= 4.59565012^2- 3.7^2 = sq rt 7.43000003 =2.72580264
ED = 2.7cm
x = 2.7cm
A cardboard box without a lid is to have a volume of 4,000 cm3. Find the dimensions that minimize the amount of cardboard used. (Let x, y, and z be the dimensions of the cardboard box.)
Where does the graph of f(x)=2√-x+2 start?
A. (−2,0)
B. (2,0)
C. (0,2)
D. (0,−2)
convert the fraction 3/8 to a decimal WITHOUT the use of a calculator. Show your method clearly. SHOW ALL STEPS!
here you go it's too easy
Step-by-step explanation:
Explanation is in the attachment .
Hope it is helpful to you ❣️☪️❇️
Find the volume (in cubic feet) of a cylindrical column with a diameter of 6 feet and a height of 28 feet. (Round your answer to one decimal place.)
Answer:
[tex]791.7\:\mathrm{ft^3}[/tex]
Step-by-step explanation:
The volume of a cylinder with radius [tex]r[/tex] and height [tex]h[/tex] is given by [tex]A_{cyl}=r^2h\pi[/tex].
By definition, all radii of a circle are exactly half of all diameters of the circle. Therefore, if the diameter of the circular base of the cylinder is 6 feet, the radius of it must be [tex]6\div 2=3\text{ feet}[/tex].
Now we can substitute [tex]r=3[/tex] and [tex]h=28[/tex] into our formula [tex]A_{cyl}=r^2h\pi[/tex]:
[tex]A=3^2\cdot 28\cdot \pi,\\A=9\cdot28\cdot \pi,\\A=791.681348705\approx \boxed{791.7\:\mathrm{ft^3}}[/tex]
x °
68°
26 °
Find the measure of x (Hint: The sum of the measures
of the angles in a triangle is 180°
Answers:
6 °
86 °
90 °
180 °
Answer:
86°
Step-by-step explanation:
180° is the sum of all angles in a triangle
The two angles given are 68° and 26°
The equation is : 180° - 68° - 26° = x°
180° - 68° - 26° = 86°
x° = 86°
If my answer is incorrect, pls correct me!
If you like my answer and explanation, mark me as brainliest!
-Chetan K