Answer:
±5i
Step-by-step explanation:
sqrt(-25)
We know that sqrt(ab) = sqrt(a) sqrt(b)
sqrt(-1) sqrt(25)
±i 5
±5i
Javier jogs 3/4 of a mile in 8/1/2 minutes.
If he keeps the same pace, how many minutes will it take him to jog 1 mile?
Answer:
11 1/3 minutes per mile.
Step-by-step explanation:
3/4 miles jogged in 8 1/2 minutes.
So 1 mile jogged in: 8 1/2 divided by 3/4 = 8 1/2 x 4/3 = (17 x 4) / (2 x 3) = 11 1/3 minutes per mile
Answer:
x = 11 1/3 minutes
Step-by-step explanation:
We can write a ratio to solve
3/4 mile 1 mile
----------------- = --------------
8 1/2 minutes x minutes
Using cross products
3/4 *x = 8 1/2
Multiply each side by 4/3
4/3 * 3/4x = 8 1/2 * 4/3
x = 17/2 * 4/3
x = 34/3
x = 11 1/3
Danielle needs to walk 3 miles. If she wants to reach her destination in 45
minutes ( hour), how fast does she need to walk?
A. 135 miles
per hour
B. 2.25 miles per hour
C. 15 miles per hour
D. 4 miles per hour
Answer:
4 miles per hour
Step-by-step explanation:
3 miles
Change the 45 minutes to hours
45 minutes * 1 hour/60 minutes = 3/4 hour
3 miles ÷ 3/4 hour
Copy dot flip
3 * 4/3
4 miles per hour
It's camping season! Ernie and Bert set up their tents 15 m from
each other. Ernie has Tent 1 and Bert has Tent 2. The angle
between the line of sight from Bert's tent to the shower and the
line of sight from Bert's tent to Ernie's tent is 78 degrees. If
Ernie's tent is 19m away from the shower, is Bert 's tent closer or
further away from the shower and by how much? In your
calculations, round your angles to the nearest whole degree and
side measurements to the nearest tenth of a metre.
1
2
Answer:
The answer is "21.6".
Step-by-step explanation:
Let A stand for tent 1
Let B stand for tent 2
Let C be a shower
Using cosine formula:
[tex]c= \sqrt{b^2 +a^2 - 2ab\cdot \cos(C)}\\\\[/tex]
[tex]= \sqrt{(19)^2 + (15)^2 - 2\cdot 19 \cdot 15 \cdot \cos(78^{\circ})}\\\\= \sqrt{361 + 225 - 570\cdot \cos(78^{\circ})}\\\\ = \sqrt{586- 570\cdot \cos(78^{\circ})}\\\\= 21.6\\\\[/tex]
Therefore, you need to reduce the similarity from B to C which is the length from tent 2 to shower:
Tent 2 Distance to Dusk = 21.6m
Bert's tent is 21.6m away from the shower
pleas help
given parallelogram ABCD find m<ADB
Answer:
∠ ADB = 19°
Step-by-step explanation:
Consecutive angles in a parallelogram are supplementary, sum to 180° , so
∠ CDA = 180° - ∠ DAB = 180° - 138° = 42°
Then
∠ ADB + ∠ CDB = 42° , that is
∠ ADB + 23° = 42° ( subtract 23° from both sides )
∠ ADB = 19°
PLEASE HELP ME IM HAVING TROUBLE WITH IT
Answer:
True
False
Step-by-step explanation:
BC are on the same line so, the new [tex]B^{1}[/tex][tex]C^{1}[/tex] will also be on the same. Just a different line than the original. The both move the same distance when dilated.
CD and the new [tex]C^{1}[/tex][tex]D^{1}[/tex] cannot be the same length. The dilation will increase their length by 1[tex]\frac{2}{3}[/tex]
please help, it’s urgent !
Answer:
f(-10) = 2 times -10 + 1
= -19
f(2) = 2^2
= 4
f(-5) = 2 times -5 + 1
= -9
f(-1) = (-1)^2
= 1
f(8) = 3-8
= -5
Step-by-step explanation:
Which ratio represents the tangent of an angle?
a. adjacent/hypotenuse
b. opposite/hypotenuse
c. adjacent/opposite
d. opposite/adjacent
Answer:
option d.opposite / adjacent
Step-by-step explanation:
opposite /adjacent ratio represents the tangent of an angle .
hope it is helpful to you ☺️
Answer:
D.
Step-by-step explanation:
From the trigonometry shortcuts we can use the acronyms:
SOH CAH TOA
for an arbitrary angle Ф, plug in the length of the sides:
sin(Ф) = opposite/hypotenuse
cos(Ф) = adjacent/hypotenuse
tan(Ф) = opposite/adjacent
A cone has a volume of 4000cm3
. Determine the height of the cone if the diameter of the cone
is 30 cm.
Answer:
17cm
Step-by-step explanation:
Given that the Volume of a cone is 4,000 cm³. And we need to determine the height of the cone , if the diameter is 30cm .
Diagram :-
[tex]\setlength{\unitlength}{1.2mm}\begin{picture}(5,5)\thicklines\put(0,0){\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\put(-0.5,-1){\line(1,2){13}}\put(25.5,-1){\line(-1,2){13}}\multiput(12.5,-1)(2,0){7}{\line(1,0){1}}\multiput(12.5,-1)(0,4){7}{\line(0,1){2}}\put(17.5,1.6){\sf{15cm }}\put(9.5,10){\sf{17\ cm }}\end{picture} [/tex]
Step 1: Using the formula of cone :-
The volume of cone is ,
[tex]\rm\implies Volume_{(cone)}=\dfrac{1}{3}\pi r^2h [/tex]
Step 2: Substitute the respective value :-
[tex]\rm\implies 4000cm^3 =\dfrac{1}{3}(3.14) ( h ) \bigg(\dfrac{30cm}{2}\bigg)^2 [/tex]
As Radius is half of diameter , therefore here r = 30cm/2 = 15cm .
Step 3: Simplify the RHS :-
[tex]\rm\implies 4000 cm^3 = \dfrac{1}{3}(3.14) ( h ) (15cm)^2\\ [/tex]
[tex]\rm\implies 4000 cm^3 = \dfrac{1}{3}(3.14) ( h ) 225cm^2\\ [/tex]
Step 4: Move all the constant nos. to one side
[tex]\rm\implies h =\dfrac{ 4000 \times 3}{ (3.14 )(225 )} cm \\[/tex]
[tex]\implies \boxed{\blue{\rm Height_{(cone)}= 16.98 \approx 17 cm }}[/tex]
Hence the height of the cone is 17cm .
What is the probability that the sample mean would differ from the true mean by greater than 1.9 dollars if a sample of 92 5-gallon pails is randomly selected
Answer:
The correct solution is "0.0226".
Step-by-step explanation:
The given question seems to be incomplete. Please find below the attachment of the complete query.
According to the question,
Mean
= 29
Standard deviation (s),
= 8
For sample size pf 92,
The standard error will be:
[tex]SE=\frac{s}{\sqrt{N} }[/tex]
[tex]=\frac{8}{\sqrt{92} }[/tex]
[tex]=0.834[/tex]
now,
⇒ [tex]1-P(\frac{-1.9}{0.834} < z < \frac{1.9}{0.834} )[/tex] = [tex]1-P(-2.28<z<2.28)[/tex]
or,
= [tex]1-(2\times P(z<2.28)-1)[/tex]
= [tex]2-2\times P(z<2.28)[/tex]
With the help of table, the normal distribution will be:
= [tex]2-2\times 0.9887[/tex]
= [tex]0.0226[/tex]
Devaughn is 10 years older than Sydney. The sum of their ages is 104. What is Sydney's age?
I
Answer:
Sydney's age = 42
Step-by-step explanation:
104 divided by 2 = 52
52 - 10 = 42
I am sorry if this is wrong. But this is what I learned at my school.
The duration of shoppers' time in Browse Wrld's new retail outlets is normally distributed with a mean of 27.8 minutes and a standard deviation of 11.4 minutes. How long must a visit be to put a shopper in the longest 10 percent
Answer:
A visit must be of at least 42.39 minutes to put a shopper in the longest 10 percent.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 27.8 minutes and a standard deviation of 11.4 minutes.
This means that [tex]\mu = 27.8, \sigma = 11.4[/tex]
How long must a visit be to put a shopper in the longest 10 percent?
The 100 - 10 = 90th percentile, which is X when Z has a p-value of 0.9, so X when Z = 1.28.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]1.28 = \frac{X - 27.8}{11.4}[/tex]
[tex]X - 27.8 = 1.28*11.4[/tex]
[tex]X = 42.39[/tex]
A visit must be of at least 42.39 minutes to put a shopper in the longest 10 percent.
The side length of an equilateral triangle is x + 3. Write an expression for the perimeter of the triangle. *
Answer:
Perimeter = (x+3) * 3 = 3x+9
Step-by-step explanation:
(x+3) would be multiplied by 3 in order to account for each of the three sides of the equilateral triangle-
The expression for the perimeter of the triangle is 3x+9.To find the expression for the perimeter of the triangle.
What is the perimeter?Perimeter is the distance around the edge of a shape. The continuous line forms the boundary of a closed geometrical figure.In an equilateral triangle, all 3 sides are the same length, so the equation would look something like this:
P=the perimeter of the triangle
(x+3)=length of each side
P=3(x+3)
To simplify further, distribute the 3 to both the x and the 3 inside of the parentheses, getting
P=3x+9.
So, the expression for the perimeter of the triangle is 3x+9.
Learn more about perimeter here:
https://brainly.com/question/6465134
#SPJ2
Given the function, calculate the following values:
Answer:
Step-by-step explanation:
Sixty out of every 100 pieces of candy is red. Which Indicates the
proportion of red candies? **
60
60/100
60/40
40/100
Answer:
The proportion of red candies is 60/100.
Step-by-step explanation:
Given that sixty out of every 100 pieces of candy is red, to determine which indicates the proportion of red candies, the following calculation must be performed:
60 red candies out of 100 total candies
60/100
Therefore, the ratio of red candies is 60/100.
PLZZZZZZ HELP WILL GIVE BRAIN THING AND EXTRA POINTS !What is the least common denominator of the rational expressions below?
Answer:
D is the least common denominator
I need help answering this question
Answer:
I'm pretty sure it's D, sorry if I'm wrong
Step-by-step explanation:
Answer:
I think D
Step-by-step explanation:
Because an experiment is defined as a scientific procedure undertaken to make a discovery, test a hypothesis, or demonstrate a known fact. This example is testing to see if the mouthwash is effective.
find all the missing measurement
Answer:
find all the missing measurementCamilla and Aisha are sisters and go to same school.Camilla bikes to school and Aisha walks. Camilla’s speed is 6.5 mph and Aisha’s is 2 mph. When Camilla reached school, Aisha was 1.5 miles behind. How far away from their house is the school?
Answer:
2 1/6
Step-by-step explanation:
6.5x=2x+1.6=1/3
1/3*6.5=2 1/6
which of the following is q point slope equation of a line that passes through the point (5,2)and (-1,-6)
Answer:y - y1 = m(x + x1)
m = (y2 - y1)/(x2 - x1) = (-6 - 2)/(-1 - 5) = -8/(-6) = 4/3
y - 2 = 4/3(x - 5) is a possible answer
y + 6 = 4/3(x + 1) is also a possible answer
Step-by-step explanation:
can i be brainliest
if the r-value, or correlation coefficient, of a data set is 0.941, what is the coefficient of determination
Answer:0.824
Step-by-step explanation:
The coefficient of determination is approximately 0.885 or 88.5%.
What is the correlation coefficient?A correlation coefficient (r) is a number between -1 and 1 that measures the strength and direction of a linear relationship between two variables.
The coefficient of determination (R-squared) is equal to the square of the correlation coefficient (r).
Therefore, to find the coefficient of determination with an r-value of 0.941, we can simply square it:
R-squared = r² = 0.941² = 0.885481
Thus, the coefficient of determination is approximately 0.885 or 88.5%.
This means that 88.5% of the variation in the dependent variable can be explained by the independent variable(s) in the data set.
Learn more about the correlation coefficient here:
https://brainly.com/question/15577278
#SPJ7
The figure below consists of a rectangle and a
semicircle. Find the perimeter of the figure. Use π =
3.14.
Step 1: Find the perimeter of the rectangle
The rectangle has two lengths and one width that we need to add together. The width of the rectangle is equal to 2 times the radius (or the diameter) of the circle, which is 16.
25 + 25 + 16 = 66
Step 2: Find the perimeter of the semicircle
The perimeter of a semicircle is equal to half of the circumference.
C = pi x diameter
1/2 (3.14) x (16) = 25.12
Step 3: Find the perimeter of the figure
All that's left to do is add the two perimeters together.
66 + 25.12 = 91.12 m
Hope this helps!
4.8 yd
6 yd
1
4.5 yd
5 yd
7 yd
Find the volume of the composite solid. Round your answer to the nearest hundredth.
A. 244.36 B. 264.79 C. 304.51 D. 330.84
Answer:
A
Step-by-step explanation:
The composite solid is made up of a cone and a rectangular prism.
Volume of the composite solid = volume of the cone + volume of the rectangular prism
✔️Volume of Cone = ⅓*π*r²*h
Where,
r = 4.8 yd
h = √(6² - 4.8²) = √12.96 = 3.6 yd
Substitute
Volume of cone = ⅓*π*4.8²*3.6
= 86.86 yd²
✔️Volume of rectangular prism = l*b*h
Where,
l = 7 yd
w = 5 yd
h = 4.5 yd
Substitute
Volume of prism = 7*5*4.5 = 157.5 yd²
✔️Volume of composite solid = 86.86 + 157.6 = 244.4 yd² (which is close to 244.36 yd²)
Triangle plz help me find B,b and c
Answer:
B = 55°
b = 17.1 (rounded to the nearest tenth)
c = 20.9 (rounded to the nearest tenth)
Write a linear equation in point slope form with the given slope of 1/4 and passing through the point (8,-3)
Answer:
The equation is
y=1/4x-3
Answer:
y = 1/4x - 5
Step-by-step explanation:
If gradient or slope (m) equal to 1/4
then y - y¹ = m( x - x¹) ..........(1)
where the line happen to be passing through the point given above
therefore let x¹ be 8.........(2)
and y¹ be -3...............(3)
substitute (3) and (2) into (1)
we have y -(-3) = 1/4 (x - 8)
so 4(y+3)= (x-8)
4y = x - 8 - 12
therefore y = 1/4x - 5
Which of these statements is true for f(x) = 2 · 3x?
Answer:
the statement number D okay!
The y-intercept of the function will be at (0, 2). Then the correct option is A.
What is an exponent?Let b is the base and x is the power of the exponent function and a is the leading coefficient. The exponent is given as
y = a(b)ˣ
The function is given below.
y = 2·(3)ˣ
The value of y at x = 0, we have
y = 2·3⁰
y = 2·1
y = 2
The y-intercept of the function will be at (0, 2).
Then the correct option is A.
More about the exponent link is given below.
https://brainly.com/question/5497425
#SPJ5
Find the missing length indicatedOk
Answer:
x = 135
Step-by-step explanation:
Which expressions are equivalent to -7+3(-4e-3)
Choose all answers that apply:
A. -4(3e+4)
B. 12e
C. None of the above
Answer: A
-4(3e+4)=
-12e-16
Step-by-step explanation:
-7+3(-4e-3)=
-7-12e-9=
-12e-16
Does anyone know this?
Answer:
C
Step-by-step explanation:
Rationalize the denominator by multiplying [tex]\frac{\sqrt{5}}{\sqrt{5} }[/tex]. The denominator will become 5, while the numerator will be 3[tex]\sqrt{100}[/tex]. This is equal to 30/5, which is 6.
Hope this helps!
1. One half of a number added to a second
number equals 4. One half of the first
number decreased by the second number
equals zero. Find the two numbers.
Answer:
(4, 2)
Step-by-step explanation:
½x + y = 4
y = 4 - ½x
½x - y = 0
½x - (4 - ½x) = 0
½x - 4 + ½x = 0
x = 4
y = 4 - ½(4)
y = 2
If you have a right triangle with legs a =6 and b= 8, what is the value of the hypotenuse? show work.
Answer:
10
Step-by-step explanation:
1. [tex]6^{2} + 8^{2} = c^{2}[/tex]
2 [tex]100 = c^{2}[/tex]
3. c = 10