Answer:
YES
Step-by-step explanation:
1 million minutes = 1.9 years
An average man can live upto 78 years.
So, an average man can easily live upto 1,000,000.
Answer:
There will be (365 x 24 x 60) minutes each year.
and that is 525600.
and 525600 x 78 is 40,996,800.
so, It is definitely more than 1 million minutes.
Hop it helps!
Bye!
PLEASE HELP !! (1/5) - 50 POINTS - no wrong answers please. A) y = 6x - [tex]\frac{11}{8}[/tex] B) y = -6x - 2 C) y = [tex]\frac{3}{2}[/tex] x - [tex]\frac{1}{8}[/tex] D) y = -3x + 9
Answer:
C) 3/2x-1/8
Step-by-step explanation:
We can see that it has a generally positive slope, which rules out B and D.
Plugging in a few numbers for x, we can quickly see that 6 is too high of a slope. (If we plug in 6 for x, the y value would be almost 35, not 10). This rules out A.
While it doesn’t fit perfectly, C is by far the closest.
Factor.
x2 – 5x - 36
(x - 9)(x + 4)
(x - 12)(x + 3)
(x + 9)(x - 4)
(x + 12)(x - 3)
Answer:
The answer is option AStep-by-step explanation:
x² - 5x - 36
To factor the expression rewrite -5x as a difference
That's
x² + 4x - 9x - 36
Factor out x from the expression
x( x + 4) - 9x - 36
Factor out -9 from the expression
x( x + 4) - 9( x+ 4)
Factor out x + 4 from the expression
The final answer is
( x - 9)( x + 4)Hope this helps you
Answer:
[tex] \boxed{(x - 9) \: (x + 4) }[/tex]
Option A is the correct option.-
Step-by-step explanation:
( See the attached picture )
Hope I helped!
Best regards!
Diana paints 150 fence posts and chuck paints 130 fence posts. Diana paints 10 more fence posts than chuck. How many fence posts does chuck paint per hour?
Complete Question
The complete question is shown on the first uploaded image
Answer:
Step-by-step explanation:
From the question we are told that
The relationship is [tex]\frac{150 }{d} = \frac{130}{c}[/tex]
The number of fence post painted by chuck is [tex]l = 130[/tex]
The number of fence post painted by Diana is [tex]k = 150[/tex]
can paint 10 fences more than chuck so let say the of fence painted in an hour by chuck is [tex]g[/tex]
Then the number of fence post painted by Diana in one hour is
[tex]f = g+ 10[/tex]
So
[tex]\frac{150 }{ g + 10 } = \frac{130}{g}[/tex]
[tex]130 g + 1300 = 150g[/tex]
[tex]g = 65 \ m[/tex]
A polling company reported that 53% of 1018 surveyed adults said that secondhand smoke issecondhand smoke is "very harmful.""very harmful." Complete parts (a) through (d) below.
a. What is the exact value that is 53% of 1018?
b. Could the result from part (a) be the actual number of adults who said that secondhand smoke issecondhand smoke is "very harmful" question mark "very harmful"? Why or why not?
c. What could be the actual number of adults who said that secondhand smoke issecondhand smoke is "very harmful" question mark "very harmful"?
d. Among the 10181018 respondents, 260260 said that secondhand smoke issecondhand smoke is "not at all harmful.""not at all harmful." What percentage of respondents said that secondhand smoke issecondhand smoke is "not at all harmful" question mark "not at all harmful"?
Answer:
a. 539.54
b. No, the result from part (a) could not be the actual number of adult who said that secondhand smoke are very harmful because a count of people must result into a whole number.
c. 540
d. 25.54%
Step-by-step explanation:
Given that:
A polling company reported that 53% of 1018 surveyed adults said that secondhand smoke is "very harmful."
Complete parts (a) through (d) below.
a. What is the exact value that is 53% of 1018?
The 53% of 1018 is :
=[tex]\dfrac{53}{100} \times 1018[/tex]
= 0.53 × 1018
= 539.54
b. Could the result from part (a) be the actual number of adults who said that secondhand smoke is ''very harmful"? Why or why not?
No, the result from part (a) could not be the actual number of adult who said that secondhand smoke are very harmful because a count of people must result into a whole number.
c. What could be the actual number of adults who said that secondhand smoke is secondhand smoke "very harmful"?
Since, a count of people must result into a whole number, the actual number of adults who said that secondhand smoke is secondhand smoke "very harmful" can be determined from the approximation of the exact value into whole number which is 539.54 [tex]\approx[/tex] 540.
d. Among the 1018 respondents, 260 said that secondhand smoke is is "not at all harmful.'' What percentage of respondents said that secondhand smoke is "not at all harmful"?
Since 260 respondents out of 1018 respondents said that the second hand smoke is not harmful, then the percentage of the 260 respondents is :
= [tex]\dfrac{260}{1018} \times 100 \%[/tex]
= 25.54%
1. Transform the polar equation to a Cartesian (rectangular) equation: 2. Transform the Cartesian (rectangular) equation to a polar equation: y^2 = 4x
Answer:
Attachment 1 : 5x + 6y = 5, Attachment 2 : 4cotθcscθ
Step-by-step explanation:
Remember that we have three key points in solving these types of problems,
• x = r cos(θ)
• y = r sin(θ)
• x² + y² = r²
a ) For this first problem we need not apply the third equation.
( Multiply either side by 5 cos(θ) + 6 sin(θ) )
r [tex]*[/tex] ( 5 cos(θ) + 6 sin(θ) ) = 5,
( Distribute r )
5r cos(θ) + 6r sin(θ) = 5
( Substitute )
5x + 6y = 5 - the correct solution is option c
b ) We know that y² = 4x ⇒
r²sin²(θ) = 4r cos(θ),
r = 4cos(θ) / sin²(θ) = 4 cot(θ) csc(θ) = 4cotθcscθ - again the correct solution is option c
a is less than or equal to 10
Lmk
Answer:
[tex]a \leqslant 10[/tex]
Step-by-step explanation:
a is less than or equal to 10
less than: <
equal: =
less than or equal to: ≤
Hope this helps ;) ❤❤❤
hope it helps you
imp=draw dark shaded point in thqt line and point towards left
F
13
5
H
12
G
se
Find mZH to the nearest degree.
67
O 18
O 45
O 23
Answer:
∠ H ≈ 23°
Step-by-step explanation:
Using the tangent ratio in the right triangle
tan H = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{FG}{HG}[/tex] = [tex]\frac{5}{12}[/tex] , thus
∠ H = [tex]tan^{-1}[/tex] ( [tex]\frac{5}{12}[/tex] ) ≈ 23° ( to the nearest degree )
Complete the square to make a perfect square trinomial. Then, write the result as a binomial squared. n^2+5/2n
Answer: [tex]\bigg(n+\dfrac{5}{4}\bigg)^2[/tex]
Step-by-step explanation:
[tex]n^2+\dfrac{5}{2}n+\underline{\qquad}\\\\\\n^2+\dfrac{5}{2}n+\bigg(\dfrac{5}{2\cdot 2}\bigg)^2\\\\\\n^2+\dfrac{5}{2}n+\bigg(\dfrac{5}{4}\bigg)^2\\\\\\=\bigg(n+\dfrac{5}{4}\bigg)^2[/tex]
find the dimension of the swimming pool if the sum must be 50 feet and the length must be 3 times the depth.
Answer:
depth 5 8.3 ft, length 5 24.9 ft, width 5 16.8 ft
A diameter that is perpendicular to a chord bisects the chord. True False
Answer:
[tex]\Large \boxed{\sf True}[/tex]
Step-by-step explanation:
[tex]\sf A \ diameter \ that \ is \ perpendicular \ to \ a \ chord \ bisects \ the \ chord.[/tex]
Answer:
True!!
I just did the assignment and got it right
Which is the solution to the inequality?
2 3/5 <b-8/15
Answer:
3 2/15 <b
Step-by-step explanation:
2 3/5 <b-8/15
Add 8/ 15 to each side
2 3/5 + 8/ 15 <b-8/15 + 8/15
2 3/5 + 8 /15 <b
Get a common denominator
2 3/5 *3/3 + 8/15
2 9/15 + 8/15 < b
2 17/15 < b
2 + 15/15 + 2 /15 < b
3 2/15 <b
Answer:
B > 3 2/15
Step-by-step explanation:
Solving a word problem with three unknowns using a linear...
Rachel, Trey, and Deshaun sent a total of 98 text messages during the weekend. Trey sent 4 times as many messages as Deshaun. Rachel sent 10 fewer
messages than Deshaun. How many messages did they each send?
Number of text messages Rachel sent:
221
Х
?
Answer:If Rachel texted 221 text messages, then Deshaun texted 231 text messages, and Trey texted 924 text messages.
Step-by-step explanation:
221+10=231, 321 times 4 equal 924
Given v(x) = g(x) (3/2*x^4 + 4x – 1), find v'(2).
Answer:
Step-by-step explanation:
Given that v(x) = g(x)×(3/2*x^4+4x-1)
Let's find V'(2)
V(x) is a product of two functions
● V'(x) = g'(x)×(3/2*x^4+4x-1)+ g(x) ×(3/2*x^4+4x-1)
We are interested in V'(2) so we will replace x by 2 in the expression above.
g'(2) can be deduced from the graph.
● g'(2) is equal to the slope of the tangent line in 2.
● let m be that slope .
● g'(2) = m =>g'(2) = rise /run
● g'(2) = 2/1 =2
We've run 1 square to the right and rised 2 squares up to reach g(2)
g(2) is -1 as shown in the graph.
■■■■■■■■■■■■■■■■■■■■■■■■■■
Let's derivate the second function.
Let h(x) be that function
● h(x) = 3/2*x^4 +4x-1
● h'(x) = 3/2*4*x^3 + 4
● h'(x) = 6x^3 +4
Let's calculate h'(2)
● h'(2) = 6 × 2^3 + 4
● h'(2) = 52
Let's calculate h(2)
●h(2) = 3/2*2^4 + 4×2 -1
●h(2)= 31
■■■■■■■■■■■■■■■■■■■■■■■■■■
Replace now everything with its value to find V'(2)
● V'(2) = g'(2)×h(2) + g(2)× h'(2)
● V'(2)= 2×31 + (-1)×52
●V'(2) = 61 -52
●V'(2)= 9
In your own words, define Quadratic Equation. How many solutions does a Quadratic Equation have?
Answer: an equation that has one term which is nameless and squared also no term which gets raised to higher power.
Step-by-step explanation:
Manuel says that he can solve the equation 3n = 21 by multiplying both sides by ⅓. Explain why this is correct.
Step-by-step explanation:
はい、両側を削除して、3を掛けて7にします
Step-by-step explanation:
Given:
3n = 21
if we multiply both sides by 1/3, we will get:
3n = 21
3n x (1/3)= 21 x (1/3)
3n/3 = 21/3
n = 21/3
n = 7
Hence we can indeed solve for n by multiplying both sides by (1/3)
Find the sum of (5x3 + 3x2 - 5x + 4) and (8x3 -5x2 + 8x + 9)
You have found the following ages (in years) of all 666 lions at your local zoo: 13,2,1,5,2,7 What is the average age of the lions at your zoo? What is the standard deviation? Average age: _____ years old Standard deviation: ____ years
Answer:
[tex]Mean = 5[/tex]
[tex]S_x = 4.123[/tex]
Step-by-step explanation:
Given
Number of Lions, n: 6
Ages: 13, 2, 1, 5, 2, 7
Required
Determine the:
1. Mean
2. Standard Deviation
Mean is calculated as;
[tex]Mean = \frac{\sum x}{n}[/tex]
[tex]Mean = \frac{13+2+1+5+2+7}{6}[/tex]
[tex]Mean = \frac{30}{6}[/tex]
[tex]Mean = 5[/tex]
Standard Deviation is calculated as follows
[tex]S_x = \sqrt{\frac{\sum (x_i - Mx)^2}{N}}[/tex]
Where Mx represent mean
Substitute values for x, Mean and Land
[tex]S_x = \sqrt{\frac{(13 - 5)^2+(2 - 5)^2+(1 - 5)^2+(5 - 5)^2+(2 - 5)^2+(7 - 5)^2}{6}}[/tex]
[tex]S_x = \sqrt{\frac{(8)^2+(- 3)^2+(-4)^2+(0)^2+(-3)^2+(2)^2}{6}}[/tex]
[tex]S_x = \sqrt\frac{64+9+16+0+9+4}{6}}[/tex]
[tex]S_x = \sqrt\frac{102}{6}}[/tex]
[tex]S_x = \sqrt{17}[/tex]
[tex]S_x = 4.123[/tex]
The mean and standard deviation is 5 and 4.123 respectively
We want to find the mean or average and the standard deviation of the given set.
The average age is 5 years old and the standard deviation is 4.52 years old.
We know that for a general set of N elements {x₁, x₂, ..., xₙ} the average or mean is given by:
[tex]M = \frac{x_1 + x_2 + ... + x_n}{N}[/tex]
And the standard deviation is given by:
[tex]S = \sqrt{\frac{(x_1 - M)^2 + ... + (x_n - M)^2}{N - 1}[/tex]
The given set is:
{13, 2, 1, 5, 2, 7}
Now we just need to use the two given formulas for our set.
The mean is:
[tex]M = \frac{13 + 2 + 1+ 5 + 2 +7}{6} = 5[/tex]
And the standard deviation is:
[tex]S = \sqrt{\frac{(13 - 5)^2 + (2 - 5)^2 + (1 - 5)^2 + (5 - 5)^2 + (2 - 5)^2 + (7 - 5)^2}{6 - 1} } = 4.52[/tex]
So the average age is 5 years old and the standard deviation is 4.52 years old.
If you want to learn more you can read:
https://brainly.com/question/12402189
Un taxímetro inicia con 50 unidades y el banderazo o arranque es de $4500, las unidades comienzan a cambiar p0r cada kilometros recorrido. La función lineal que representa esta situación es y = 50x +4500 donde y representa el precio que cuesta la carrera y x la distancia recorrida en kilómetros. a) ¿ Cuanto cuesta una carrera si la distancia recorrida fue de 23 kilómetros?
Answer: $5650
Step-by-step explanation:
El precio de la carrera es:
y = ($50/km)*x + $4500.
Donde x representa la cantidad recorrida en Km.
Ahora se nos pregunta:
¿ Cuanto cuesta una carrera si la distancia recorrida fue de 23 kilómetros?
Para esto, debemos reemplazar la variable en la equacion por 23km:
x = 23km
y = ($50/km)*23km + $4500 = $5650
Michael records the height of 1000 people. This data is a normal distribution and the sample mean was 0.75. Identify the margin of error for this data set.
Answer:
0.0284Step-by-step explanation:
The formula for calculating the Margin of error of a dataset is expressed as;
Margin of error = [tex]Z*\sqrt{\frac{p(1-p)}{n} } \\\\[/tex] where;
Z is the z-score of 95% confidence interval = 1.96
p is the sample proportion/mean = 0.75
n is the sample size = total number of people = 1000
Note that when the confidence interval is not given, it is always safe to use 95% confidence.
Substituting this values into the formula we have;
[tex]ME = 1.96*\sqrt{\frac{0.7(1-0.7)}{1000} } \\\\ME = 1.96*\sqrt{\frac{0.7(0.3)}{1000} } \\\\ME = 1.96*\sqrt{0.00021} } \\\\ME = 1.96*0.01449\\\\ME = 0.0284[/tex]
Hence the margin error for the dataset is 0.0284
i need help thank u so much in advance !
Answer:
Questions .(1) 2/m. (2). m-1 . (3) 2 . (4) m
Answer:
(2m²-4m)/2(m-2)=2m(m-2)/2(m-2)= m
the answer is mm²-2m+1/m-1 ⇒ (factorize the nominator)(m-1)(m-1)/m-1 ⇒ ( m-1/m-1)=1
then answer is m-1(m²-3m+2)/(m²-m)=the answer is (m-2)/mm²-m-2/m²-1=(m-2)(m+1)/(m-1)(m+1)=the answer is m-2/m-1Write the equation of the line that passes through (−2, 6) and (2, 14) in slope-intercept form. (2 points)
Answer:
[tex]y = 4x + 14[/tex]
Step-by-step explanation:
Equation of a line is y = mx + c
where
m is the slope
c is the y intercept
To find the equation we must first find the slope of the line
Slope of the line using points (−2, 6) and (2, 14) is
[tex]m = \frac{14 - 6}{2 + 2} = \frac{8}{2} = 4[/tex]
Now we use the slope and any of the points to find the equation of the line.
Equation of the line using point ( - 2, 6) and slope 4 is
[tex]y - 6 = 4(x + 2) \\ y - 6 = 4x + 8 \\ y = 4x + 8 + 6[/tex]
We have the final answer as
[tex]y = 4x + 14[/tex]
Hope this helps you
x = 4 7 9 I dont mind for a step by step
Answer:
[tex]\boxed{\sf x = 9}[/tex]
Step-by-step explanation:
According to chord-chord theorem:
=> [tex]x* 2 = 3 * 6[/tex]
=> [tex]2x = 18[/tex]
Dividing both sides by 2
=> x = 18/2
=> x = 9
The paper usage at a small copy center is normally distributed with a mean of 5 boxes of paper per week, and a standard deviation of 0.5 boxes. It takes 2 weeks for an order of paper to be filled by its supplier. What is the safety stock to maintain a 99% service level?
Answer:
1.649 approximately 2
Step-by-step explanation:
S.d = standard deviation = 0.5
Time taken = lead time = 2 weeks
Mean = demand for week = 5 boxes
We are required to find the safety stock to maintain at 99% service level.
At 99% level, the Z value is equal to 2.326.
Therefore,
Safety stock = z × s.d × √Lt
= 2.326 × 0.5 x √2
= 1.649
Which is approximately 2.
There are $400$ pages in Sheila's favorite book. The average number of words per page in the book is $300$. If she types at an average rate of $40$ words per minute, how many hours will it take to type the $400$ pages of the book?
Answer:
50hours
Step-by-step explanation:
Given that there are 400 pages in Sheila's favorite book.
The average number of words per page in the book is 300
She types an average rate of 40words per minute.
So to type 400pages of the book
Total number of words in the pages = 400×300 = 120000 words
Typing rate : 40words ------- 1minute
120000 words ----------- x minutes
Hence we have 40 × X mins = 120000 × 1min
Make X the subject
40X = 120000minutes
X = 120000/40
X = 3000minutes
Since 60minutes = 1hour
3000minutes = 3000minutes/60
= 50hours
Hence it took her 50hours to type 400pages
Solution:
The total number of words in the book is 400 x 300. Sheila types at a rate of 40 words per minute, or 40 x 60 words per hour. The number of hours it takes her is equal to the number of words divided by her rate of typing, or 400x300/40x60 = 50 hours.
Combine like terms to simplify the expression: 2/5k - 3/5 +1/10k
━━━━━━━☆☆━━━━━━━
▹ Answer
1/2k - 3/5
▹ Step-by-Step Explanation
2/5k - 3/5 + 1/10k
Collect like terms:
2/5k + 1/10k = 1/2
Final Answer:
1/2k - 3/5
Hope this helps!
CloutAnswers ❁
━━━━━━━☆☆━━━━━━━
Answer:
1/2k - 3/5
Step-by-step explanation:
Hey there!
Well the only fraction needed to combine are,
2/5 and 1/10.
To add them we need to make 2/5 have a denominator of 10.
To do that we multiply 5 by 2.
5*2 = 10
What happens to the denominator happens to the denominator.
2*2 = 4
Fraction - 4/10
4/10 + 1/10 = 5/10
5/10
simplified
1/2
1/2k - 3/5
Hope this helps :)
The residents of a city voted on whether to raise property taxes. The ratio of yes votes to no votes was 6 to 5 . If there were 4545 no votes, what was the total number of votes?
Answer:
The total number of votes= 9999
Step-by-step explanation:
The ratio of vote specifically the ratio of yes to no vote in a city vote is 6 to 5.
There is a total of 4545 no votes.
Yes/no = 6/5
Yes= no(6/5)
Yes= 4545(6/5)
Yes= 5454
The total number of yes votes are 5454.
The total number of votes= yes votes+ no votes
The total number of votes= 5454+4545
The total number of votes= 9999
logx - logx-1^2=2log(x-1)
Answer:
x is approximately 2.220744
Step-by-step explanation:
This can be simplified a little using properties of logarithms, and then solve it by graphing:
[tex]log(x)-log(x-1)^2=2\,log(x-1)\\log(x)-2\,log(x-1)=2\,log(x-1)\\log(x)=4\,log(x-1)[/tex]
So we use a graphing tool to find the intersection point of the graph of [tex]log(x)[/tex], and the graph of [tex]4\,log(x-1)[/tex]
Please see attached image for the graph and solution.
The value of x is approximately 2.220744
Answer:
x = 2.32011574011
Step-by-step explanation:
The problem with your original equation is that it is a long way of saying ...
log(x) -log(x) -1 = 2log(x-1)
0 -1 = 2log(x-1)
which has the solution ...
-1/2 = log(x -1)
1/√10 = x -1
x = 1 + 1/√10 ≈ 1.3162278
__
We have asked for clarification, and what we got was ...
[tex]\log{(x)}-\log{(x-1^2)}=2\log{(x-1)}[/tex]
which, again, is a long way of saying ...
[tex]\log{(x)}-\log{(x-1)}=2\log{(x-1)}[/tex]
The other reasonable interpretation of your 'clarified' equation is ...
[tex]\log{(x)}-\log{((x-1)^2)}=2\log{(x-1)}[/tex]
which you already have an answer to. You have declared that a "misconception."
So, we are left with the interpretation that the equation you want a solution to is ...
[tex]\log{(x)}-\log{(x-1)}=2\log{(x-1)}[/tex]
_____
When solving these graphically, I like to write the equation as a function whose zero(s) we're trying to find. For this, when we subtract the right side, we get ...
[tex]f(x)=\log{(x)}-3\log{(x-1)}[/tex]
A graphing calculator shows that f(x) = 0 when ...
x ≈ 2.32011574011
__
If you don't like my interpretation, check out the second attachment. It has your x-1² as the argument of the middle term. You can see that the calculator interpreted that the same way I did (as required by the order of operations).
Is the quotient of two rational numbers always a rational number? Explain.
Answer:
Yes,
Step-by-step explananation
The quotient of two rational numbers is always rational, and the reason for this lies in the fact that the product of two integers is always an rational number.
The Quotient of two Rational Numbers is a Rational Number if and only if Numerator and Denominator are Multiples.
From Algebra, we know that a Rational Number is a Real Number of the form:
[tex]x = \frac{a}{b}[/tex], [tex]a, b\in \mathbb{N}[/tex], [tex]x \in \mathbb{R}[/tex] (1)
Where:
[tex]a[/tex] - Numerator.[tex]b[/tex] - Denominator.[tex]x[/tex] - Quotient.The Quotient can be an Integer or not. In the first case, all Quotients have their equivalent Rational Numbers.
Now, if we divide a Rational Number by another Rational Number, then we have the following expression:
[tex]x' = \frac{x_{1}}{x_{2}}[/tex]
If [tex]x'[/tex] is a Rational Number, then it must also an Integer and if [tex]x'[/tex] is an Integer, then [tex]x_{1}[/tex] and [tex]x_{2}[/tex] must be Multiples of each other.
The Quotient of two Rational Numbers is a Rational Number if and only if Numerator and Denominator are Multiples.
Please see this question related to Rational Numbers: https://brainly.com/question/24398433
Given that
[tex]\sqrt{2p-7}=3[/tex]
and
[tex]7\sqrt{3q-1}=2[/tex]
Evaluate
[tex]p + {q}^{2} [/tex]
Answer:
Below
Step-by-step explanation:
The two given expressions are:
● √(2p-7) = 3
● 7√(3q-1) = 2
We are told to evaluate p+q^2
To do that let's find the values of p and q^2
■■■■■■■■■■■■■■■■■■■■■■■■■■
Let's start with p.
● √(2p-7) = 3
Square both sides
● (2p-7) = 3^2
● 2p-7 = 9
Add 7 to both sides
● 2p-7+7 = 9+7
● 2p = 16
Divide both sides by 2
● 2p/2 = 16/2
● p = 8
So the value of p is 8
■■■■■■■■■■■■■■■■■■■■■■■■■■
Let's find the value of q^2
● 7√(3q-1) = 2
Square both sides
● 7^2 × (3q-1) = 2^2
● 49 × (3q-1) = 4
● 49 × 3q - 49 × 1 = 4
● 147q - 49 = 4
Add 49 to both sides
● 147q -49 +49 = 4+49
● 147q = 53
Divide both sides by 147
● 147q/147 = 53/147
● q = 53/ 147
Square both sides
● q^2 = 53^2 / 147^2
● q^2 = 2809/21609
■■■■■■■■■■■■■■■■■■■■■■■■■
● p+q^2 = 8 +(2809/21609)
● p+q^2 = (2809 + 8×21609)/21609
● p+q^2 = 175681 / 21609
● p + q^2 = 8.129
Round it to the nearest unit
● p+ q^2 = 8
What are the solution(s) of the quadratic equation 98 - x2 = 0?
x = +27
Ox= +63
x = +7/2
no real solution
Answer:
±7 sqrt(2) = x
Step-by-step explanation:
98 - x^2 = 0
Add x^2 to each side
98 =x^2
Take the square root of each side
±sqrt(98) = sqrt(x^2)
±sqrt(49*2) = x
±7 sqrt(2) = x
Answer:
[tex]\huge \boxed{{x = \pm 7\sqrt{2} }}[/tex]
Step-by-step explanation:
[tex]98-x^2 =0[/tex]
[tex]\sf Add \ x^2 \ to \ both \ sides.[/tex]
[tex]98=x^2[/tex]
[tex]\sf Take \ the \ square \ root \ of \ both \ sides.[/tex]
[tex]\pm \sqrt{98} =x[/tex]
[tex]\sf Simplify \ radical.[/tex]
[tex]\pm \sqrt{49} \sqrt{2} =x[/tex]
[tex]\pm 7\sqrt{2} =x[/tex]
[tex]\sf Switch \ sides.[/tex]
[tex]x= \pm 7\sqrt{2}[/tex]