Answer:
An aluminum bar 4 feet long weighs 24 pounds
Step-by-step explanation:
Are we adding all 4 sides ?
Answer:
Yes
Step-by-step explanation:
you would do 2(5x-10) + 2(8x+4)= 26x-12
Answer:
26x - 12
Step-by-step explanation:
The perimeter is the sum of all the exterior sides of a figure.
Here, we have a parallelogram, and its sides are 5x - 10, 8x + 4, 5x - 10, and 8x + 4. Adding these, we get:
(5x - 10) + (8x + 4) + (5x - 10) + (8x + 4) = 26x - 12
Thus, the answer is 26x - 12. Note that since the problem doesn't give a value for x, this cannot be simplified further.
~ an aesthetics lover
Calculate how many different sequences can be formed that use the letters of the given word. Leave your answer as a product of terms of the form C(n, r). HINT [Decide where, for example, all the s's will go, rather than what will go in each position.]
georgianna
A) C(10, 7)
B) C(2, 10)C(1, 8)C(1, 7)C(1, 6)C(1, 5)C(2, 4)C(2, 2)
C) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 1)C(3, 1)C(2, 1)C(1, 1)
D) 10 · C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
E) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
Answer: E) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
Step-by-step explanation:
According to the combinations: Number of ways to choose r things out of n things = C(n,r)
Given word: "georgianna"
It is a sequence of 10 letters with 2 a's , 2 g's , 2 n's , and one of each e, o,r, i.
If we think 10 blank spaces, then in a sequence we need 2 spaces for each of g.
Number of ways = C(10,2)
Similarly,
1 space for 'e' → C(8,1)
1 space for 'o' → C(7,1)
1 space for 'r' → C(6,1)
1 space for 'i' → C(5,1)
1 space for 'a' → C(4,2)
1 space for 'n' → C(2,2)
Required number of different sequences = C(10,2) ×C(8,1)× C(7,1)× C(6,1)×C(5,1)×C(2,2).
Hence, the correct option is E) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
-8 + (-15)
Evaluate this expression
Answer:
-23
Step-by-step explanation:
-8+(-15) means that you are subtracting 15 from -8. So you end up with -8-15=-23.
Look at the figure below. which ratio represents tan 0?
A -5/4, B -4/5, C -3/4, D 3/5.
The required value of the tanФ is given as -3/4. C option is correct.
What is simplification?The process in mathematics to operate and interpret the function to make the function or expression simple or more understandable is called simplifying and the process is called simplification.
What are trigonometric equations?These are the equation that contains trigonometric operators such as sin, cos.. etc. In algebraic operations.
here,
Tan(180 - Ф) = -tanФ = perpendicular / base
From figure, perpendicular= 12 and base = 16
-tanФ = 12 / 16
tanФ = -3/4
Thus, the required value of the tanФ is given as -3/4. C option is correct.
Learn more about trigonometry equations here:
brainly.com/question/22624805
#SPJ5
PLEASE HELP!! (1/5) -50 POINTS-
Answer:
[tex]X=\begin{bmatrix}5&3\\ -3&2\end{bmatrix}[/tex]
Step-by-step explanation:
We are given the following matrix equation, from which we have to isolate X and simplify this value.
[tex]\begin{bmatrix}2&4\\ \:\:\:5&4\end{bmatrix}X\:+\:\begin{bmatrix}-8&-8\\ \:\:\:12&1\end{bmatrix}=\:\begin{bmatrix}-10&6\\ \:\:\:25&24\end{bmatrix}[/tex]
To isolate X, let us first subtract the second matrix, as demonstrated below, from either side. Further simplifying this equation we can multiply either side by the inverse of the matrix being the co - efficient of X, isolating it in the doing.
[tex]\begin{bmatrix}2&4\\ 5&4\end{bmatrix}X=\begin{bmatrix}-10&6\\ 25&24\end{bmatrix}-\begin{bmatrix}-8&-8\\ 12&1\end{bmatrix}[/tex] (Simplify second side of equation)
[tex]\begin{bmatrix}-10&6\\ 25&24\end{bmatrix}-\begin{bmatrix}-8&-8\\ 12&1\end{bmatrix}=\begin{bmatrix}\left(-10\right)-\left(-8\right)&6-\left(-8\right)\\ 25-12&24-1\end{bmatrix}=\begin{bmatrix}-2&14\\ 13&23\end{bmatrix}[/tex] ,
[tex]\begin{bmatrix}2&4\\ 5&4\end{bmatrix}X=\begin{bmatrix}-2&14\\ 13&23\end{bmatrix}[/tex] (Multiply either side by inverse of matrix 1)
[tex]X=\begin{bmatrix}2&4\\ 5&4\end{bmatrix}^{-1}\begin{bmatrix}-2&14\\ 13&23\end{bmatrix}=\begin{bmatrix}5&3\\ -3&2\end{bmatrix}[/tex]
Our solution is hence option c
Ava placed the point of her pencil on the origin of a regular coordinate plane. She marked a point after moving her pencil 4 units to the left and 7 units up. Which ordered pair identifies where Ava marked her point?
[tex] \Large{ \boxed{ \bold{ \color{lightgreen}{Solution:}}}}[/tex]
So, Let's solve this question by using cartesian plane.
Here, Origin is shown by (0, 0)Ava moves 4 units left from origin. On the left side of origin, negative x axis begins. So, she reached (-4, 0) now.Then, from that point she moved 7 units upwards. On the upper side, there is positive y axis. So, Finally she will reach point (-4, 7).(-4, 7) is the coordinate of point which is 4 units left from y axis and 7 units up from x axis.It lies on the second quadrant.Well, What is cartesian plane?
A - A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a set of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in the same unit of length.
━━━━━━━━━━━━━━━━━━━━
g The intersection of events A and B is the event that occurs when: a. either A or B occurs but not both b. neither A nor B occur c. both A and B occur d. All of these choices are true. a. b. c. d.
Answer:
c. both A and B
Step-by-step explanation:
Given that there are two events A and B.
To find:
Intersection of the two sets represents which of the following events:
a. either A or B occurs but not both
b. neither A nor B occur
c. both A and B occur
d. All of these choices are true. a. b. c. d
Solution:
First of all, let us learn about the concept of intersection.
Intersection of two events means the common part in the two events.
Explanation using set theory:
Let set P contains the outcomes of roll of a dice.
P = {1, 2, 3, 4, 5, 6}
And set Q contains the set of even numbers less than 10.
Q = {2, 4, 6, 8}
Common elements are {2, 4, 6}
So, intersection of P and Q:
[tex]P \cap Q[/tex] = {2, 4, 6}
Explanation using Venn diagram:
Please refer to the image attached in the answer area.
The shaded region is the intersection of the two sets P and Q.
When we apply the above concept in events, we can clearly say from the above explanation that the intersection of two events A and B is the event that occurs when both A and B occur.
So, correct answer is:
c. both A and B
Answer:
C.
Step-by-step explanation:
Solve 2x+2y=6 and 3x-2y=11
Answer:
x = 17/5
y = -2/5
Step-by-step explanation:
2x + 2y = 6
3x - 2y = 11
sum both equations results
5x + 0 = 17
x = 17/5
2x + 2y = 6
2*17/5 + 2y = 6
34/5 + 2y = 6
2y = 6 - 34/5
2y = 30/5 - 34/5
2y = -4/5
y = (-4/5)/2
y = -2/5
verify:
3x - 2y = 11
3*17/5 - 2*-2/5 = 11
51/5 + 4/5 = 55/5
51 + 4 = 55
How many ways are there to choose 22 croissants with at least one plain croissant, at least two cherry croissants, at least three chocolate croissants, at least one almond croissant, at least two apple croissants, and no more than three broccoli croissants
Answer:
There are 6566 ways to choose 22 croissants with at least one plain croissant, at least two cherry croissants, at least three chocolate croissants, at least one almond croissant, at least two apple croissants, and no more than three broccoli croissants.
Step-by-step explanation:
Given:
There are 5 types of croissants:
plain croissants
cherry croissants
chocolate croissants
almond croissant
apple croissants
broccoli croissants
To find:
to choose 22 croissants with:
at least one plain croissant
at least two cherry croissants
at least three chocolate croissants
at least one almond croissant
at least two apple croissants
no more than three broccoli croissants
Solution:
First we select
At least one plain croissant to lets say we first select 1 plain croissant, 2 cherry croissants, 3 chocolate croissants, 1 almond croissant, 2 apple croissants
So
1 + 2 + 3 + 1 + 2 = 9
Total croissants = 22
So 9 croissants are already selected and 13 remaining croissants are still needed to be selected as 22-9 = 13, without selecting more than three broccoli croissants.
n = 5
r = 13
C(n + r - 1, r)
= C(5 + 13 - 1, 13)
= C(17,13)
[tex]=\frac{17! }{13!(17-13)!}[/tex]
= 355687428096000 / 6227020800 ( 24 )
= 355687428096000 / 149448499200
= 2380
C(17,13) = 2380
C(n + r - 1, r)
= C(5 + 12 - 1, 12)
= C(16,12)
[tex]=\frac{16! }{12!(16-12)!}[/tex]
= 20922789888000 / 479001600 ( 24 )
= 20922789888000 / 11496038400
= 1820
C(16,12) = 1820
C(n + r - 1, r)
= C(5 + 11 - 1, 11)
= C(15,11)
[tex]=\frac{15! }{11!(15-11)!}[/tex]
= 1307674368000 / 39916800 (24)
= 1307674368000 / 958003200
= 1307674368000 / 958003200
= 1365
C(15,11) = 1365
C(n + r - 1, r)
= C(5 + 10 - 1, 10)
= C(14,10)
[tex]=\frac{14! }{10!(14-10)!}[/tex]
= 87178291200 / 3628800 ( 24 )
= 87178291200 / 87091200
= 1001
C(14,10) = 1001
Adding them:
2380 + 1820 + 1365 + 1001 = 6566 ways
10-
What is the equation of the line that is perpendicular to
the given line and passes through the point (2, 6)?
8-
(2,6)
-6
O x = 2
4
O x = 6
-2
-10 -3 -6 -22
2
4
B
8
10
X
O y = 2
O y = 6
(-34)
(814)
8
WO
Answer:
x = 2
Step-by-step explanation:
This blue line seems to be horizontal, and so a line perpendicular would have to be vertical. The only vertical line that passes through (2, 6) would be x = 2.
The equation of the line perpendicular to the given line and passes through the point (2, 6) is x = 2.
What is the Equation of line in Slope Intercept form?Equation of a line in slope intercept form is y = mx + b, where m is the slope of the line and b is the y intercept, which is the y coordinate of the point where it touches the Y axis.
Given is a line that passes through the points (-8, -4) and (8, -4).
This line is parallel to the X axis.
A line parallel to X axis has the equation y = b.
The y coordinate is -4 throughout the line.
So equation of the line is y = -4.
A line perpendicular to the given line will be parallel to Y axis.
Parallel lines to Y axis has the equation of the form x = a.
Line passes through the point (2, 6).
x coordinate will be 2 throughout.
So the equation of the perpendicular line is x = 2.
Hence the required equation is x = 2.
Learn more about Equations of Lines here :
https://brainly.com/question/21511618
#SPJ7
If the sample size is increased and the standard deviation and confidence level stay the same, then the margin of error will also be increased.
a. True
b. False
False!
The answer is: False.
Whomever stated the answer is "true" is wrong.
Multiple Choice The opposite of –4 is A. 4. B. –4. C. –(–(–4)). D. –|4|.
Answer:
a. 4
Step-by-step explanation:
-1(-4) = 4
Answer:
A 4
Step-by-step explanation:
opposite of –4 = 4
Find the value of the expression: −mb −m^2 for m=3.48 and b=96.52
Answer:
The value of the expression when [tex]m = 3.48[/tex] and [tex]b = 96.52[/tex] is 323.779.
Step-by-step explanation:
Let be [tex]f(m, b) = m\cdot b - m^{2}[/tex], if [tex]m = 3.48[/tex] and [tex]b = 96.52[/tex], the value of the expression:
[tex]f(3.48,96.52) = (3.48)\cdot (96.52)-3.48^{2}[/tex]
[tex]f(3.48,96.52) = 323.779[/tex]
The value of the expression when [tex]m = 3.48[/tex] and [tex]b = 96.52[/tex] is 323.779.
sorry to keep asking questions
Answer:
y = [tex]\sqrt[3]{x-5}[/tex]
Step-by-step explanation:
To find the inverse of any function you basically switch x and y.
function = y = x^3 + 5
Now we switch x and y
x = y^3 +5
Solve for y,
x - 5 = y^3
switch sides,
y^3 = x-5
y = [tex]\sqrt[3]{x-5}[/tex]
Answer:
[tex]\Large \boxed{{f^{-1}(x)=\sqrt[3]{x-5}}}[/tex]
Step-by-step explanation:
The function is given,
[tex]f(x)=x^3 +5[/tex]
The inverse of a function reverses the original function.
Replace f(x) with y.
[tex]y=x^3 +5[/tex]
Switch variables.
[tex]x=y^3 +5[/tex]
Solve for y to find the inverse.
Subtract 5 from both sides.
[tex]x-5=y^3[/tex]
Take the cube root of both sides.
[tex]\sqrt[3]{x-5} =y[/tex]
Let E and F be two events of an experiment with sample space S. Suppose P(E) = 0.6, P(F) = 0.3, and P(E ∩ F) = 0.1. Compute the values below.
(a) P(E ∪ F) =
(b) P(Ec) =
(c) P(Fc ) =
(d) P(Ec ∩ F) =
Answer:
(a) P(E∪F)= 0.8
(b) P(Ec)= 0.4
(c) P(Fc)= 0.7
(d) P(Ec∩F)= 0.8
Step-by-step explanation:
(a) It is called a union of two events A and B, and A ∪ B (read as "A union B") is designated to the event formed by all the elements of A and all of B. The event A∪B occurs when they do A or B or both.
If the events are not mutually exclusive, the union of A and B is the sum of the probabilities of the events together, from which the probability of the intersection of the events will be subtracted:
P(A∪B) = P(A) + P(B) - P(A∩B)
In this case:
P(E∪F)= P(E) + P(F) - P(E∩F)
Being P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.1
P(E∪F)= 0.6 + 0.3 - 0.1
P(E∪F)= 0.8
(b) The complement of an event A is defined as the set that contains all the elements of the sample space that do not belong to A. The Complementary Rule establishes that the sum of the probabilities of an event and its complement must be equal to 1. So, if P (A) is the probability that an event A occurs, then the probability that A does NOT occur is P (Ac) = 1- P (A)
In this case: P(Ec)= 1 - P(E)
Then: P(Ec)= 1 - 0.6
P(Ec)= 0.4
(c) In this case: P(Fc)= 1 - P(F)
Then: P(Fc)= 1 - 0.3
P(Fc)= 0.7
(d) The intersection of two events A and B, designated as A ∩ B (read as "A intersection B") is the event formed by the elements that belong simultaneously to A and B. The event A ∩ B occurs when A and B do at once.
As mentioned, the complementary rule states that the sum of the probabilities of an event and its complement must equal 1. Then:
P(Ec intersection F) + P(E intersection F) = P(F)
P(Ec intersection F) + 0.1 = 0.3
P(Ec intersection F)= 0.2
Being:
P(Ec∪F)= P(Ec) + P(F) - P(Ec∩F)
you get:
P(Ec∩F)= P(Ec) + P(F) - P(Ec∪F)
So:
P(Ec∩F)= 0.4 + 0.3 - 0.2
P(Ec∩F)= 0.8
Solve for W.
W/9 = g
Answer:
W = 9 * g
Step-by-step explanation:
W/9 = g
W = 9 * g
The expression W/9 = g can be written as W = 9g after cross multiplication.
What is an expression?It is defined as the combination of constants and variables with mathematical operators.
We have an expression:
W/9 = g
To solve for W
Make subject as W:
W = 9g
By cross multiplication.
Thus, the expression W/9 = g can be written as W = 9g after cross multiplication.
Learn more about the expression here:
brainly.com/question/14083225
#SPJ2
Use A = -h(a + b) to find the area A of a
2
be trapezium when a = 15, b = 9 and h = 7
Step-by-step explanation:
Putting values
A = - 7(15 + 9)
A = - 7(24)
A = - 168
Change each of the following points from rectangular coordinates to spherical coordinates and to cylindrical coordinates.
a. (4,2,−4)
b. (0,8,15)
c. (√2,1,1)
d. (−2√3,−2,3)
Answer and Step-by-step explanation: Spherical coordinate describes a location of a point in space: one distance (ρ) and two angles (Ф,θ).To transform cartesian coordinates into spherical coordinates:
[tex]\rho = \sqrt{x^{2}+y^{2}+z^{2}}[/tex]
[tex]\phi = cos^{-1}\frac{z}{\rho}[/tex]
For angle θ:
If x > 0 and y > 0: [tex]\theta = tan^{-1}\frac{y}{x}[/tex];If x < 0: [tex]\theta = \pi + tan^{-1}\frac{y}{x}[/tex];If x > 0 and y < 0: [tex]\theta = 2\pi + tan^{-1}\frac{y}{x}[/tex];Calculating:
a) (4,2,-4)
[tex]\rho = \sqrt{4^{2}+2^{2}+(-4)^{2}}[/tex] = 6
[tex]\phi = cos^{-1}(\frac{-4}{6})[/tex]
[tex]\phi = cos^{-1}(\frac{-2}{3})[/tex]
For θ, choose 1st option:
[tex]\theta = tan^{-1}(\frac{2}{4})[/tex]
[tex]\theta = tan^{-1}(\frac{1}{2})[/tex]
b) (0,8,15)
[tex]\rho = \sqrt{0^{2}+8^{2}+(15)^{2}}[/tex] = 17
[tex]\phi = cos^{-1}(\frac{15}{17})[/tex]
[tex]\theta = tan^{-1}\frac{y}{x}[/tex]
The angle θ gives a tangent that doesn't exist. Analysing table of sine, cosine and tangent: θ = [tex]\frac{\pi}{2}[/tex]
c) (√2,1,1)
[tex]\rho = \sqrt{(\sqrt{2} )^{2}+1^{2}+1^{2}}[/tex] = 2
[tex]\phi = cos^{-1}(\frac{1}{2})[/tex]
[tex]\phi[/tex] = [tex]\frac{\pi}{3}[/tex]
[tex]\theta = tan^{-1}\frac{1}{\sqrt{2} }[/tex]
d) (−2√3,−2,3)
[tex]\rho = \sqrt{(-2\sqrt{3} )^{2}+(-2)^{2}+3^{2}}[/tex] = 5
[tex]\phi = cos^{-1}(\frac{3}{5})[/tex]
Since x < 0, use 2nd option:
[tex]\theta = \pi + tan^{-1}\frac{1}{\sqrt{3} }[/tex]
[tex]\theta = \pi + \frac{\pi}{6}[/tex]
[tex]\theta = \frac{7\pi}{6}[/tex]
Cilindrical coordinate describes a 3 dimension space: 2 distances (r and z) and 1 angle (θ). To express cartesian coordinates into cilindrical:
[tex]r=\sqrt{x^{2}+y^{2}}[/tex]
Angle θ is the same as spherical coordinate;
z = z
Calculating:
a) (4,2,-4)
[tex]r=\sqrt{4^{2}+2^{2}}[/tex] = [tex]\sqrt{20}[/tex]
[tex]\theta = tan^{-1}\frac{1}{2}[/tex]
z = -4
b) (0, 8, 15)
[tex]r=\sqrt{0^{2}+8^{2}}[/tex] = 8
[tex]\theta = \frac{\pi}{2}[/tex]
z = 15
c) (√2,1,1)
[tex]r=\sqrt{(\sqrt{2} )^{2}+1^{2}}[/tex] = [tex]\sqrt{3}[/tex]
[tex]\theta = \frac{\pi}{3}[/tex]
z = 1
d) (−2√3,−2,3)
[tex]r=\sqrt{(-2\sqrt{3} )^{2}+(-2)^{2}}[/tex] = 4
[tex]\theta = \frac{7\pi}{6}[/tex]
z = 3
From a group of 11 people, 4 are randomly selected. What is the probability the 4 oldest people in the group were selected
The probability that the 4 oldest people in the group were selected is based on combinatorics is 0.00303 or 0.303%.
Given that:
Find how many ways the 4 oldest people can be selected from the group.
Since the 4 oldest people are already determined, there is only 1 way to select them.
n = 11 (total number of people in the group) and k = 4 (number of people to be selected).To calculate the probability, to determine the total number of ways to select 4 people from the group of 11. This can be found using the combination formula:
Number of ways to choose k items from n items :
C(n,k) = n! / (k!(n-k)!)
Calculate the total number of ways to select 4 people from the group:
Plugging n and k value from given data:
C(11,4 )= 11! / (4!(11-4)!)
On simplifications gives:
C(11, 4) = 330.
Calculate the probability:
Probability = Number of ways 4 oldest people selected / Total number of ways to select 4 people
Plugging the given data:
Probability = 1 / 330
Probability ≈ 0.00303 or 0.303%.
Therefore, the probability that the 4 oldest people in the group were selected is based on combinatorics is 0.00303 or 0.303%.
Learn more about probabilities here:
https://brainly.com/question/23846068
#SPJ4
can anyone show me this in verbal form?
Answer:
2 * (x + 2) = 50
Step-by-step explanation:
Let's call the unknown number x. "A number and 2" means that we need to add the numbers, therefore it would be x + 2. "Twice" means 2 times a quantity so "twice a number and 2" would be 2 * (x + 2). "Is" denotes that we need to use the "=" sign and because 50 comes after "is", we know that 50 goes on the right side of the "=" so the final answer is 2 * (x + 2) = 50.
Transform the given parametric equations into rectangular form. Then identify the conic. x= -3cos(t) y= 4sin(t)
Answer:
Solution : Option D
Step-by-step explanation:
The first thing we want to do here is isolate the cos(t) and sin(t) for both the equations --- ( 1 )
x = - 3cos(t) ⇒ x / - 3 = cos(t)
y = 4sin(t) ⇒ y / 4 = sin(t)
Let's square both equations now. Remember that cos²t + sin²t = 1. Therefore, we can now add both equations after squaring them --- ( 2 )
( x / - 3 )² = cos²(t)
+ ( y / 4 )² = sin²(t)
_____________
x² / 9 + y² / 16 = 1
Remember that addition indicates that the conic will be an ellipse. Therefore your solution is option d.
Find the length of GV¯¯¯¯¯¯¯¯ A. 43.92 B. 33.1 C. 41.45 D. 68.87
Answer:
The answer is option AStep-by-step explanation:
Since the figure above is a right angled triangle we can use trigonometric ratios to find GV
To find GV we use cosine
cos∅ = adjacent / hypotenuse
From the question
GV is the adjacent
GC is the hypotenuse
So we have
[tex] \cos(37) = \frac{GV}{GC} [/tex]GC = 55°
GV[tex] \cos(37) = \frac{GV}{55} [/tex]GV = 55 cos 37
GV = 43.92495
We have the final answer as
GV = 43.92Hope this helps you
Could anyone help me with this question please? Thank you.
Answer:
C) 549 km²
Step-by-step explanation:
The area of the regular pentagon is given by ...
A = (1/2)Pa
where P represents the perimeter, and 'a' represents the apothem (6.2 km). Of course, the perimeter is 5 times the side length.
The lateral area is the product of the perimeter and the height:
LA = Ph
Using these formulas, and recognizing the total area includes two (2) pentagons, we have ...
total area = (LA) +2(A) = Ph +2(1/2)Pa = P(h +a)
= (45 km)(6 km +6.2 km) = 549 km^2
When you enter the Texas Turnpike, they give you a ticket showing the time and place of your entry. When you exit, you turn in this ticket and they use it to figure your toll. Because they know the distance between toll stations, they can also use it to check your average speed against the turnpike limit of 65 mph. On your trip, heavy snow limits your speed to 40 mph for the first 120 mi. At what average speed can you drive for the remaining 300 mi without having your ticket prove that you broke the speed limit?
Answer:
87 mph
Step-by-step explanation:
Total distance needed is 120 mi + 300 mi and that is 420 mi.
Driving at 65 mph means that it would take
420 / 65 hours to reach his destination.
6.46 hours .
at the first phase, he drove at 40 mph for 120 mi, this means that it took him
120 / 40 hours to complete the journey.
3 hours.
the total time needed for the whole journey is 6.46 hours, and he already spent 3 hours in the first phase. To keep up with the 6.46 hours required, in the second phase, he has to drive at a speed of
6.46 - 3 hours = 3.46 hours.
300 mi / 3.46 hours => 86.71 mph approximately 87 mph
Therefore, he needs to drive at not more than 87 mph to keep up with the journey while not breaking his speed limit
The angles of a quadrilateral are (3x + 2), (x-3), (2x+1), and 2(2x+5). Find x.
Answer:
3x+2+x-3+2x+1+2(2x+5)=360
10x+10=360
x=35
Chen is bringing fruit and veggies to serve at an afternoon meeting. He spends a total of $28.70 on 5 pints of cut veggies and 7 pints of cut fruit. The food cost is modeled by the equation 5 v plus 7 f equals 28.70, where v represents the cost of one pint of cut veggies and f represents the cost of one pint of cut fruit. If the cost of each pint of fruit is $2.85, what is the approximate price of a pint of veggies?
Answer:
(7 x 2.85) + 5v = 28.70. 19.95 + 5v = 28.70. 5v = 28.70 - 19.95. 5v = 8.75. v = 8.75/5. v = 1.75. A pint of veggies costs $1.75.
Given the number of trials and the probability of success, determine the probability indicated: a. n = 15, p = 0.4, find P(4 successes) b. n = 12, p = 0.2, find P(2 failures) c. n = 20, p = 0.05, find P(at least 3 successes)
Answer:
A)0.126775 B)0.000004325376 C) 0.07548
Step-by-step explanation:
Given the following :
A.) a. n = 15, p = 0.4, find P(4 successes)
a = number of trials p=probability of success
P(4 successes) = P(x = 4)
USING:
nCx * p^x * (1-p)^(n-x)
15C4 * 0.4^4 * (1-0.4)^(15-4)
1365 * 0.0256 * 0.00362797056
= 0.126775
B)
b. n = 12, p = 0.2, find P(2 failures),
P(2 failures) = P(12 - 2) = p(10 success)
USING:
nCx * p^x * (1-p)^(n-x)
12C10 * 0.2^10 * (1-0.2)^(12-10)
66 * 0.0000001024 * 0.64
= 0.000004325376
C) n = 20, p = 0.05, find P(at least 3 successes)
P(X≥ 3) = p(3) + p(4) + p(5) +.... p(20)
To avoid complicated calculations, we can use the online binomial probability distribution calculator :
P(X≥ 3) = 0.07548
Which choice shows the product of 22 and 49 ?
Answer:
1078
Step-by-step explanation:
The product of 22 and 49 is 1078.
Answer:
1078 is the product
Step-by-step explanation:
There are 30 colored marbles inside a bag. Six marbles are yellow, 9 are red, 7 are white, and 8 are blue. One is drawn at random. Which color is most likely to be chosen? A. white B. red C. blue D. yellow Include ALL work please!
Answer:
red
Step-by-step explanation:
Since the bag contains more red marbles than any other color, you are most likely to pick a red marble
Identifying the Property of Equality
Quick
Check
Identify the correct property of equality to solve each equation.
3+x= 27
X/6 = 5
Answer:
a) Compatibility of Equality with Addition, b) Compatibility of Equality with Multiplication
Step-by-step explanation:
a) This expression can be solved by using the Compatibility of Equality with Addition, that is:
1) [tex]3+x = 27[/tex] Given
2) [tex]x+3 = 27[/tex] Commutative property
3) [tex](x + 3)+(-3) = 27 +(-3)[/tex] Compatibility of Equality with Addition
4) [tex]x + [3+(-3)] = 27+(-3)[/tex] Associative property
5) [tex]x + 0 = 27-3[/tex] Existence of Additive Inverse/Definition of subtraction
6) [tex]x=24[/tex] Modulative property/Subtraction/Result.
b) This expression can be solved by using the Compatibility of Equality with Multiplication, that is:
1) [tex]\frac{x}{6} = 5[/tex] Given
2) [tex](6)^{-1}\cdot x = 5[/tex] Definition of division
3) [tex]6\cdot [(6)^{-1}\cdot x] = 5 \cdot 6[/tex] Compatibility of Equality with Multiplication
4) [tex][6\cdot (6)^{-1}]\cdot x = 30[/tex] Associative property
5) [tex]1\cdot x = 30[/tex] Existence of multiplicative inverse
6) [tex]x = 30[/tex] Modulative property/Result
Answer:
3 + x = 27
✔ subtraction property of equality with 3
x over 6 = 5
✔ multiplication property of equality with 6