Answer:
-19
Step-by-step explanation:
By looking at the 2 numbers provided, -10 and -4, you can work out that there is a gap of 6 numbers as(-4) - (-10) = 6
There are 2 intervals between -10 and -4, so each interval is
6/2 = 3
a gap of 3
This means the number to the left of -4 is -7, then -10 which works.
From there, you count how many intervals there is between -10 and the ?
There are 3 intervals, so you have to decrease -10 by -3x3 or -9
Therefore the ? is -19
Another way is to just count it directly
The number directly left of -10 is going to be -13, then -16 and finally -19
88 feet/second = 60 miles/hour. How many feet per second is 1 mile/hour? (Hint: divide both sides of the equation
by the same amount.)
Round to the nearest thousandth.
One mile per hour is equivalent to
ao feet/second
According the the U.S. Department of Education, full-time graduate students receive an average salary of $15,000 with a standard deviation of $1,200. The dean of graduate studies at a large state university in PA claims that his graduate students earn more than this. He surveys 100 randomly selected students and finds their average salary is $16,000. Use a significance level of 0.05 to test if there is evidence that the dean's claim is correct. What are the hypotheses
Answer:
Step-by-step explanation:
Given that :
population Mean = 15000
standard deviation= 1200
sample size n = 100
sample mean = 16000
The null and the alternative hypothesis can be computed as follows:
[tex]\mathtt{H_o : \mu = 15000 }\\ \\ \mathtt{H_1 : \mu > 15000}[/tex]
Using the standard normal z statistics
[tex]z = \dfrac{\overline X - \mu}{\dfrac{\sigma }{\sqrt{n}}}[/tex]
[tex]z = \dfrac{16000 -15000}{\dfrac{1200 }{\sqrt{100}}}[/tex]
[tex]z = \dfrac{1000}{\dfrac{1200 }{10}}[/tex]
[tex]z = \dfrac{1000\times 10}{1200}[/tex]
z = 8.333
degree of freedom = n - 1 = 100 - 1 = 99
level of significance ∝ = 0.05
P - value from the z score = 0.00003
Decision Rule: since the p value is lesser than the level of significance, we reject the null hypothesis
Conclusion: There is sufficient evidence that the Dean claim for his graduate students earn more than average salary of $15,000
Dean's Claim of Average Salary = 16000, ie greater than 15000 : is correct
Null Hypothesis [ H0 ] : Average Salary = 15000
Alternate Hypothesis [ H1 ] : Average Salary > 15000
Hypothesis is tested using t statistic.
t = ( x - u ) / ( s / √ n ) ; where -
x = sample mean , u = population mean , s = standard deviation, n = sample size
t = ( 16000 - 15000 ) / ( 1200 / √100 )
= 1000 / 120
t {Calculated} = 8.33,
Degrees of Freedom = n - 1 = 100 = 1 = 99
Tabulated t 0.05 (one tail) , at degrees of freedom 99 = 1.664
As Calculated t value 8.33 > Tabulated t value 1.664 , So we reject the Null Hypothesis in favour of Alternate Hypothesis.
So, conclusion : Average Salary > 15000
To learn more, https://brainly.com/question/17099835?referrer=searchResults
The dot plot represents a sampling of ACT scores: dot plot titled ACT Scores with Score on the x axis and Number of Students on the y axis with 1 dot over 24, 3 dots over 26, 3 dots over 27, 5 dots over 28, 3 dots over 30, 3 dots over 32, 1 dot over 35 Which box plot represents the dot plot data? box plot titled ACT Score with a minimum of 24, quartile 1 of 25, median of 26, quartile 3 of 29, and maximum of 35 box plot titled ACT Score with a minimum of 23, quartile 1 of 25, median of 26, quartile 3 of 29, and maximum of 36 box plot titled ACT Score with a minimum of 23, quartile 1 of 27, median of 30, quartile 3 of 34, and maximum of 36 box plot titled ACT Score with a minimum of 24, quartile 1 of 27, median of 28, quartile 3 of 30, and maximum of 35
Answer:
box plot titled ACT Score with a minimum of 24, quartile 1 of 27, median of 28, quartile 3 of 30, and maximum of 35
Step-by-step explanation:
The scores of the students represented on the dot plot are:
1 dot => 24
3 dots => 26, 26, 26
3 dots => 27, 27, 27
5 dots => 28, 28, 28, 28, 28
3 dots => 30, 30, 30
3 dots => 32, 32, 32
1 dot => 35
Quickly, we can ascertain 3 values from these data points of which we can use to find out which box plot represents the dot plot data.
The minimum score = 24
The maximum score = 35
The median score is the 10th value, which is the middle value of the data point = 28
Therefore, we can conclude that: "box plot titled ACT Score with a minimum of 24, quartile 1 of 27, median of 28, quartile 3 of 30, and maximum of 35".
Graph the following set of parametric equations on your calculator and select the matching graph.
Answer:
Graph 2
Step-by-step explanation:
As you can see the first equation is present with a negative slope, and none of the graphs have a line plotted with a negative slope, besides the second graph. That is your solution.
If the normality requirement is not satisfied (that is, np(1p) is not at least 10), then a 95% confidence interval about the population proportion will include the population proportion in ________ 95% of the intervals. (This is a reading assessment question. Be certain of your answer because you only get one attempt on this question.)
Answer:
less than
Step-by-step explanation:
If the normality requirement is not satisfied (that is, np(1 - p) is not at least 10), then a 95% confidence interval about the population proportion will include the population proportion in _less than__ 95% of the intervals.
The confidence interval consist of all reasonable values of a population mean. These are value for which the null hypothesis will not be rejected.
So, let assume that If the 95% confidence interval contains the value for the hypothesized mean, then the sample mean is reasonably close to the hypothesized mean. The effect of this is that the p- value is going to be greater than 0.05, so we fail to reject the null hypothesis.
On the other hand,
If the 95% confidence interval do not contains the value for the hypothesized mean, then the sample mean is far away from the hypothesized mean. The effect of this is that the p- value is going to be lesser than 0.05, so we reject the null hypothesis.
A population consists of 100 elements. We want to draw a simple, random sample of 20 elements from this population. On the first selection, the probability of any particular element being selected is ____.
Answer:
1/5Step-by-step explanation:
Probability is the likelihood or chance that an event will occur.
Probability = expected outcome of event /total outcome
Since the population consists of 100 elements, the total outcome of event = 100.
If random sample of 20 element is drawn from the population, the expected outcome = 20
On the first selection, the probability of any particular element being selected = 20/100 = 1/5
find the area of square whose side is 2.5 cm
Answer:
6.25
Step-by-step explanation:
2.5 *2.5=6.25
Answer:
6.25cm^2.
Step-by-step explanation:
To find the area of a square, you multiply the two sides, 2.5✖️2.5.
This gives the area of 6.25cm^2.
Hope this helped!
Have a nice day:)
|5x|=3 please help me
What is the domain of the set of ordered pairs?
(8, -13); ( 0,-5); (4, -9); (-3,2)
The domain is the input values, which are the x values.
The x values in the given pairs are: 8, 0,4,-3
The domain set is (-3, 0, 4, 8)
The required domain of the set of ordered pairs is [8, 0, 4, -3]
Given that,
Set of ordered pair; (8, -13); ( 0,-5); (4, -9); (-3,2).
We have to determine,
The domain of the set of ordered pair.
According to the question,
The domain refers to the set of possible input values.
The domain of a graph consists of all the input values shown on the x-axis.
A relation is a set of ordered pairs.
The domain is the set of all the first components of the ordered pairs.
Then,
Set of ordered pair; (8, -13); ( 0,-5); (4, -9); (-3,2).
Here, Set of all the input values on the x-axis.
Therefore,
The set of values of x is { 8,0,4,-3 }
Hence, The required domain of the set of ordered pairs is [8, 0, 4, -3]
To know more about Domain click the link given below.
https://brainly.com/question/19704059
two ratios equivalent to 27:9
Answer:
Those ratios could be 3:1
The value of y varies jointly with x and z. If y = 2 when z = 110 and x = 11, find the approximate value of y when x = 13 and z = 195.
Answer:
y = 4Step-by-step explanation:
To find the approximate value of y when
x = 13 and z = 195 we must first find the relationship between them
The statement
y varies jointly with x and z is written as
y = kxzwhere k is the constant of proportionality
From the question
y = 2
x = 11
z = 110
We have
2 = 11(110)k
2 = 1210k
Divide both sides by 1210
[tex]k = \frac{1}{605} [/tex]
So the formula for the variation is
[tex]y = \frac{1}{605} xz[/tex]
When
x = 13
z = 195
y is
[tex]y = \frac{1}{605} (13)(195)[/tex]
[tex]y = \frac{507}{121} [/tex]
y = 4.1900
We have the final answer as
y = 4Hope this helps you
If tanA = 3
evaluate
CosA + sinA\
casA - SinA
Answer:
Hi, there!!!
I hope you mean to evaluate cosA+ sonA /cosA - sinA.
so, i hope the answer in pictures will help you.
Find (fºg)(2) and (f+g)(2) when f(x)= 1/x and g(x) = 4x +9
[tex](f\circ g)(2)=\dfrac{1}{4\cdot2+9}=\dfrac{1}{17}\\\\(f+g)(2)=\dfrac{1}{2}+4\cdot2+9=\dfrac{1}{2}+17=\dfrac{1}{2}+\dfrac{34}{2}=\dfrac{35}{2}[/tex]
A simple random sample of 28 Lego sets is obtained and the number of pieces in each set was counted.The sample has a standard deviation of 12.65. Use a 0.05 significance level to test the claim that the number of pieces in a set has a standard deviation different from 11.53.
Answer:
Step-by-step explanation:
Given that:
A simple random sample n = 28
sample standard deviation S = 12.65
standard deviation [tex]\sigma[/tex] = 11.53
Level of significance ∝ = 0.05
The objective is to test the claim that the number of pieces in a set has a standard deviation different from 11.53.
The null hypothesis and the alternative hypothesis can be computed as follows:
Null hypothesis:
[tex]H_0: \sigma^2 = \sigma_0^2[/tex]
Alternative hypothesis:
[tex]H_1: \sigma^2 \neq \sigma_0^2[/tex]
The test statistics can be determined by using the following formula in order to test if the claim is statistically significant or not.
[tex]X_0^2 = \dfrac{(n-1)S^2}{\sigma_0^2}[/tex]
[tex]X_0^2 = \dfrac{(28-1)(12.65)^2}{(11.53)^2}[/tex]
[tex]X_0^2 = \dfrac{(27)(160.0225)}{132.9409}[/tex]
[tex]X_0^2 = \dfrac{4320.6075}{132.9409}[/tex]
[tex]X_0^2 = 32.5002125[/tex]
[tex]X^2_{1- \alpha/2 , df} = X^2_{1- 0.05/2 , n-1}[/tex]
[tex]X^2_{1- \alpha/2 , df} = X^2_{1- 0.025 , 28-1}[/tex]
From the chi-square probabilities table at 0.975 and degree of freedom 27;
[tex]X^2_{0.975 , 27}[/tex] = 14.573
[tex]X^2_{\alpha/2 , df} = X^2_{ 0.05/2 , n-1}[/tex]
[tex]X^2_{\alpha/2 , df} = X^2_{0.025 , 28-1}[/tex]
From the chi-square probabilities table at 0.975 and degree of freedom 27;
[tex]X^2_{0.025 , 27}=[/tex] 43.195
Decision Rule: To reject the null hypothesis if [tex]X^2_0 \ > \ X^2_{\alpha/2 , df} \ \ \ or \ \ \ X^2_0 \ < \ X^2_{1- \alpha/2 , df}[/tex] ; otherwise , do not reject the null hypothesis:
The rejection region is [tex]X^2_0 \ > 43.195 \ \ \ or \ \ \ X^2_0 \ < \ 14.573[/tex]
Conclusion:
We fail to reject the null hypothesis since test statistic value 32.5002125 lies between 14.573 and 43.195.
What is the simplified form of the following expression? 2 StartRoot 18 EndRoot + 3 StartRoot 2 EndRoot + StartRoot 162 EndRoot 6 StartRoot 2 EndRoot 18 StartRoot 2 EndRoot 30 StartRoot 2 EndRoot 36 StartRoot 2 EndRoot
Answer:
[tex]18\sqrt2[/tex]
Step-by-step explanation:
To simplify:
[tex]2 \sqrt{18}+ 3 \sqrt2+ \sqrt{162 }[/tex]
First of all, let us write 18 and 162 as product of prime factors:
[tex]18 = 2 \times \underline{3 \times 3}\\162 = 2 \times \underline{3 \times 3} \times \underline{3 \times 3}[/tex]
The pairs are underlined as above.
While taking roots, only one of the numbers from the pairs will be chosen.
Now, taking square roots.
[tex]\sqrt{18} =3 \sqrt2[/tex]
[tex]162 = 3 \times 3 \times \sqrt 2 = 9 \sqrt2[/tex]
So, the given expression becomes:
[tex]2 \sqrt{18}+ 3 \sqrt2+ \sqrt{162 } = 2 \times 3\sqrt2 + 3\sqrt2 +9\sqrt2\\\Rightarrow 6\sqrt2 + 3\sqrt2 +9\sqrt2\\\Rightarrow \sqrt2(6+3+9)\\\Rightarrow \bold{18\sqrt2}[/tex]
So, the answer is:
[tex]18\sqrt2[/tex] or 18 StartRoot 2 EndRoot
Answer:
its B. 18 sqrt(2)
Step-by-step explanation:
just took test
Find the interest on a Principal Balance of $10,000 over the course of eight years with an interest rate of 5.5%. Do this for: Simple Interest.
Answer:
Simple Interest : $ 4400
Step-by-step explanation:
We want to calculate the interest on $ 10,000, at 5.5% interest rate per year, over a course of 8 years.
We can use the simple interest formula here, or :
I = P × r × t,
Where P is the principle amount, $ 10,000, r is the interest rate, 5.5% each year, or in decimal form 5.5 / 100 = 0.055. t is the time, 8 years.
Simple Interest : 10000 × 0.055 × 8 = $4400.00
Then again the interest can be added to the principal amount ( $10,000 ) to receive some new amount after 8 years, which is $ 14,000. However the simple interest earned in 8 years at a rate of 5.5% should be $4400.
The simple interest earned on the amount is $4,400
Interest is the total amount that would be paid or earned from making an investment or taking a loan over a period of time.
Simple Interest = principal x time x interest rate
principal = amount borrowed = $10,000
time = 8 years
Interest rate = 5.5%
10,000 x 0.055 x 8 = $4,400
To learn more about simple interest, please check: https://brainly.com/question/9352088?referrer=searchResults
Bianca took a job that paid $150 the first week. She was guaranteed a raise of 6% each week. How much money will she make in all over 8 weeks? Round the answer to the nearest cent. please answer with the reasoning, I want to learn how to solve this and not just get the answer. Thank you.
Answer:
$225.54 (hope it help)
Step-by-step explanation:
for 2nd week
$150 for the first week and a raise of 6% each week
which means 150+6%
6% of 150 is 9 (150x0.06)
150+9=159
and it repeats
for 3rd week
6% of 159 is 9.54 (159x0.06)
159+9.54=168.54
for 4th week
6% of 168.54 is 10.1124 (168.54x0.06)
168.54+10.1124=178.652
for 5th week
6% of 178.652 is 10.71912 (178.652x0.06)
178.652+10.71912=189.37112
an easier to do it is to just do 178.652 + 6% on your calculater
and I'll skip all the way to the 8th since you know the formula
212.777390432+6%=225.544033858
225.544033858≈225.54
The average person lives for about 78 years. Does the average person live for at least 1,000,000 days? (Hint: There are 367 days in each year.)
what i
Answer:
[tex]\large \boxed{\sf No}[/tex]
Step-by-step explanation:
There are 365 days in 1 year.
The average person lives for about 78 years.
Multiply 78 by 365 to find the value in days.
[tex]78 \times 365= 28470[/tex]
The average person lives for about 28470 days.
It takes amy 8 minutes to mow 1/6 of her backyard. At that rate how many more minutes will it take her to finish mowing her backyard
Answer:
40 minutes
Step-by-step explanation:
If it takes her 8 minutes to mow 1/6 of it, we can find the total amount of time it will take by multiplying 8 by 6, since 1/6 times 6 is 1 (1 represents the whole lawn mowed)
8(6) = 48
The question asks for how many more minutes it will take, so subtract 48 by 8.
48 - 8 = 40
= 40 minutes
Answer:
40 minutes
Step-by-step explanation:
We can use ratios to solve
8 minutes x minutes
------------------- = ----------------
1/6 yard 1 yard
Using cross products
8 * 1 = 1/6 x
Multiply each side by 6
8*6 = 1/6 * x * 6
48 = x
48 minutes total
She has already done 8 minutes
48-8 = 40 minutes
A research center claims that % of adults in a certain country would travel into space on a commercial flight if they could afford it. In a random sample of adults in that country, % say that they would travel into space on a commercial flight if they could afford it. At , is there enough evidence to reject the research
Complete Question
A research center claims that 30% of adults in a certain country would travel into space on a commercial flight if they could afford it. In a random sample of 700 adults in that country, 34% say that they would travel into space on a commercial flight if they could afford it. At , is there enough evidence to reject the research center's claim
Answer:
Yes there is sufficient evidence to reject the research center's claim.
Step-by-step explanation:
From the question we are told that
The population proportion is p = 0.30
The sample proportion is [tex]\r p = 0.34[/tex]
The sample size is n = 700
The null hypothesis is [tex]H_o : p = 0.30[/tex]
The alternative hypothesis is [tex]H_a : p \ne 0.30[/tex]
Here we are going to be making use of level of significance = 0.05 to carry out this test
Now we will obtain the critical value of [tex]Z_{\alpha }[/tex] from the normal distribution table , the value is [tex]Z_{\alpha } = 1.645[/tex]
Generally the test statistics is mathematically represented as
[tex]t = \frac{ \r p - p }{ \sqrt{ \frac{ p (1-p)}{n} } }[/tex]
substituting values
[tex]t = \frac{ 0.34 - 0.30 }{ \sqrt{ \frac{ 0.30 (1-0.30 )}{ 700} } }[/tex]
[tex]t = 2.31[/tex]
Looking at the values of t and [tex]Z_{\alpha }[/tex] we see that [tex]t > Z_{\alpha }[/tex] hence the null hypothesis is rejected
Thus we can conclude that there is sufficient evidence to reject the research center's claim.
Consider population data with μ = 30 and σ = 3. (a) Compute the coefficient of variation. (b) Compute an 88.9% Chebyshev interval around the population mean. Lower Limit Upper Limit
Answer:
A. 10%
B. Lower limit= 21
Upper limit = 39
Step-by-step explanation:
Mean = 30
SD = 3
a. COV = SD/|x| × 100
= 3/30 × 100
= 10%
= 0.1
B. For 88.9 chevbychev interval:
= (1 - 1/K²) = 0.889
= 1/K² = 1 - 0.889
= 1/K² = 0.111
= K² = 1/0.111
= K² = 9
= K = √9
K = 3
Lower limit = 30 - 3(3)
Lower limit = 21
Upper limit = 30 + 3(3)
Upper limit = 39
Therefore lower limit is 21 and upper limit is 39
Peter saved up $20,000 in an account earning a nominal 5% per year compounded continuously. How much was in the account at the end of two years? Round the answer to nearest dollar.
Answer: 22,103
Step-by-step explanation:
Compound interest is the interest calculated on the initial principal and the accumulated interest.
The amount in the account at the end of two years is $22,050.
What is compound interest?Compound interest is the interest calculated on the initial principal and the accumulated interest.
We have,
Principal = $20,000
Rate = r = 5%
It is compounded yearly.
Time = t = 2 years.
The formula for the amount having compound interest:
A = P [tex]( 1 + \frac{r}{n} )^{nt}[/tex]
A = 20,000 [tex](1 + \frac{5}{100\times1})^{2\times1}[/tex]
A = 20,000 ( 1 + 5/100 )²
A = 20,000 ( 105/100 )²
A = (20,000 x 105 x 105) / (100 x 100)
A = 2 x 105 x 105
A = $22,050
Thus the amount in the account at the end of two years is $22,050.
Learn more about compound interest here:
https://brainly.com/question/14740098
#SPJ2
The quotient of 8 and the difference of three and a number.
Answer: 8÷(3-x)
Answer:
Below
Step-by-step explanation:
● 8 ÷ (3-x)
Dividing by 3-x is like multiplying by 1/(3-x)
● 8 × (1/3-x)
● 8 /(3-x)
please help solving.
Answer:
right machine first, then left.6 into left machine, then rightStep-by-step explanation:
a) Putting 6 into the first (left) machine will give an output of ...
y = √(6 -5) = √1 = 1
Putting 1 into the second (right) machine will give an output of ...
y = 1² -6 = -5
This answers the second question, but not the first question.
__
If we put 6 into the right machine first, we get an output of ...
y = 6² -6 = 30
Putting 30 into the left machine, we get an output of ...
y = √(30 -5) = √25 = 5 . . . . . the desired output.
The input must go into the right machine first, then its output goes into the left machine to get a final output of 5 from an input of 6.
__
b) The left machine cannot produce negative outputs, so achieving an output of -5 with the arrangement used in part A is not possible. (green curves in the attached graph)
However, as we have shown above, inputting 6 to the left machine first, following that by processing with the right machine, can produce an output of -5. (purple curve in the attached graph)
Look at the chore chart--write a notice and a wonder about the chart. Click on the image to see the chart. Enter ur answer
Answer:
I noticed that to babysit my cousin was the chore that doled out the most, and I wonder why pet my dog is even a chore. Do they not love their pets?
Two sides of a triangle are equal length. The length of the third side exceeds the length of one of the other sides by 3 centimeters. The perimeter of the triangle is 93 centimeters. Find the length of each of the shorter sides of the triangle
Answer:
30 cm
Step-by-step explanation:
let x be the lenght of the two sides of equal lenghts, so the other is x+3
and the perimeter is x+x +x +3
P=3x+3
P=3(x+1)
93=3(x+1)
31=x+1
x=30
so the shorter sides are of 30 centimeters and the longest is 33
Max believes that the sales of coffee at his coffee shop depend upon the weather. He has taken a sample of 5 days. Below you are given the results of the sample.
Cups of Coffee Sold Temperature
350 50
200 60
210 70
100 80
60 90
40 100
A. Which variable is the dependent variable?
B. Compute the least squares estimated line.
C. Compute the correlation coefficient between temperature and the sales of coffee.
D. Predict sales of a 90 degree day.
Answer:
1. cups of coffee sold
2.Y = 605.7 - 5.943x
3. -0.952
4. 70.84
Step-by-step explanation:
1. the dependent variable in this question is the cups of coffee sold
2. least square estimation line
Y = a+bx
we have y as the cups of coffee sold
x as temperature.
first we will have to solve for a and then b
∑X = 450
∑Y = 960
∑XY = 61600
∑X² = 35500
∑Y² = 221800
a = ∑y∑x²-∑x∑xy/n∑x²-(∑x)²
a = 960 * 35500-450*61600/6*35500-450²
a = 6360000/10500
= 605.7
b = n∑xy - ∑x∑y/n∑x²-(∑x)²
= 6*61600 - 450*960/6*35500 - 450²
= -5.943
the regression line
Y = a + bx
Y = 605.7 - 5.943x
3. we are to find correlation coefficient
r = n∑xy - ∑x∑y multiplied by√(n∑x²-(∑x)² * (n∑y² - (∑y)²)
= 6*61600 -960*450/√(6*35500 - 450²)*(6*221800 - 960²)
=-62400/√4296600000
= -62400/65548.5
= -0.952
4. we have to predict sales of a 90 degree day fro the regression line
Y = 605.7 - 5.943x
y = 605.7 - 5.943(90)
y = 605.7 - 534.87
= 70.84
If f(x)=x/2-3and g(x)=4x^2+x-4, find (f+g)(x)
Step-by-step explanation:
(f+g)(x) = f(x) + g(x)
= x/2-3 + 4x²+x+4
= ..........
Compute (3/4)*(8/9)*(15/16)*(24/25)*(35/36)*(48/49)*(63/64)*(80/81)*(99/100) Express your answer in the simplest way possible. (Suggestion: First, try computing 3/4*8/9 then 3/4*8/9*15/16 and so on. Look for patterns.
Answer:
[tex](\frac{3}{4})*(\frac{8}{9})*(\frac{15}{16})*(\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49})*(\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}) = \frac{11}{20}[/tex]
Step-by-step explanation:
Given
[tex](\frac{3}{4})*(\frac{8}{9})*(\frac{15}{16})*(\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49})*(\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100})[/tex]
Required
Simplify
For clarity, group the expression in threes
[tex]((\frac{3}{4})*(\frac{8}{9})*(\frac{15}{16}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
Evaluate the first group [Divide 8 by 4]
[tex]((\frac{3}{1})*(\frac{2}{9})*(\frac{15}{16}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[Divide 9 by 3]
[tex]((\frac{1}{1})*(\frac{2}{3})*(\frac{15}{16}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[tex]((\frac{2}{3})*(\frac{15}{16}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[Divide 15 by 3]
[tex]((\frac{2}{1})*(\frac{5}{16}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[Divide 16 by 2]
[tex]((\frac{1}{1})*(\frac{5}{8}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[tex](\frac{5}{8})*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
Evaluate the second group [Divide 35 and 25 by 5]
[tex](\frac{5}{8})*((\frac{24}{5})*(\frac{7}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[Divide 49 by 7]
[tex](\frac{5}{8})*((\frac{24}{5})*(\frac{1}{3})*(\frac{4}{7}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[Divide 24 by 3]
[tex](\frac{5}{8})*((\frac{8}{5})*(\frac{1}{1})*(\frac{4}{7}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[tex](\frac{5}{8})*((\frac{8}{5})*(\frac{4}{7}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
Merge the first and second group
[tex]((\frac{5}{8})*(\frac{8}{5})*(\frac{4}{7}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[tex](1*(\frac{4}{7}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[tex](\frac{4}{7})*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
Evaluate the last group [Divide 99 by 9]
[tex](\frac{4}{7})*((\frac{63}{64})*(\frac{80}{9})*(\frac{11}{100}))[/tex]
[Divide 63 by 9]
[tex](\frac{4}{7})*((\frac{7}{64})*(\frac{80}{1})*(\frac{11}{100}))[/tex]
[Divide 64 and 80 by 8]
[tex](\frac{4}{7})*((\frac{7}{8})*(\frac{10}{1})*(\frac{11}{100}))[/tex]
[Divide 10 and 4 by 2]
[tex](\frac{4}{7})*((\frac{7}{4})*(\frac{5}{1})*(\frac{11}{100}))[/tex]
[Divide 100 by 5]
[tex](\frac{4}{7})*((\frac{7}{4})*(\frac{1}{1})*(\frac{11}{20}))[/tex]
[tex](\frac{4}{7})*((\frac{7}{4})*(\frac{11}{20}))[/tex]
[tex](\frac{4}{7})*(\frac{7}{4})*(\frac{11}{20})[/tex]
[tex]1*(\frac{11}{20})[/tex]
[tex]\frac{11}{20}[/tex]
Hence;
[tex](\frac{3}{4})*(\frac{8}{9})*(\frac{15}{16})*(\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49})*(\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}) = \frac{11}{20}[/tex]
Explain how to solve the inequality (x + 1)(x – 2) ∙ (x – 3) > 0. Explain in your own words, each step necessary to solve the inequality, making sure to follow the proper order of operations. Is this inequality accurate? Explain why or why not.
Answer:
[tex]x > -1[/tex] or
[tex]x > 2[/tex] or
[tex]x > 3[/tex]
Step-by-step explanation:
Given
[tex](x + 1)(x - 2) (x - 3) > 0[/tex]
Required
Solve; with steps
[tex](x + 1)(x - 2) (x - 3) > 0[/tex]
Start by splitting the inequality as follows
[tex]x + 1 > 0[/tex] or [tex]x - 2 > 0[/tex] or [tex]x - 3 > 0[/tex]
Solve the inequalities one after the other
Solving: [tex]x + 1 > 0[/tex]
Subtract 1 from both sides
[tex]x + 1 - 1 > 0 - 1[/tex]
[tex]x > -1[/tex]
Solving: [tex]x - 2 > 0[/tex]
Add 2 to both sides
[tex]x - 2 +2 > 0 +2[/tex]
[tex]x > 2[/tex]
Solving: [tex]x - 3 > 0[/tex]
Add 3 to both sides
[tex]x - 3 +3> 0+3[/tex]
[tex]x > 3[/tex]
Hence, the solution to the inequality is
[tex]x > -1[/tex] or
[tex]x > 2[/tex] or
[tex]x > 3[/tex]