Answer:
A change of 160.819 atmospheres is required to keep water from expanding when it is heated from 10.9 °C to 40.0 °C.
Explanation:
The bulk modulus of water ([tex]B[/tex]), in newtons per square meters, can be estimated by means of the following model:
[tex]B = \rho_{o}\cdot \frac{\Delta P}{\rho_{f} - \rho_{o}}[/tex] (1)
Where:
[tex]\rho_{o}[/tex] - Water density at 10.9 °C, in kilograms per cubic meter.
[tex]\rho_{f}[/tex] - Water density at 40 °C, in kilograms per cubic meter.
[tex]\Delta P[/tex] - Pressure change, in pascals.
If we know that [tex]\rho_{o} = 999.623\,\frac{kg}{m^{3}}[/tex], [tex]\rho_{f} = 992.219\,\frac{kg}{m^{3}}[/tex] and [tex]B = 2.2\times 10^{9}\,\frac{N}{m^{2}}[/tex], then the bulk modulus of water is:
[tex]\Delta P = B\cdot \left(\frac{\rho_{f}}{\rho_{o}}-1 \right)[/tex]
[tex]\Delta P = \left(2.2\times 10^{9}\,\frac{N}{m^{3}} \right)\cdot \left(\frac{992.219\,\frac{kg}{m^{3}} }{999.623\,\frac{kg}{m^{3}} }-1 \right)[/tex]
[tex]\Delta P = -16294943.19\,Pa \,(-160.819\,atm)[/tex]
A change of 160.819 atmospheres is required to keep water from expanding when it is heated from 10.9 °C to 40.0 °C.
need help pleaseee,question is in the pic
Explanation:
For engine 1,
Energy removed = 239 J
Energy added = 567 J
[tex]\eta_1=\dfrac{239}{567}\cdot100=42.15\%[/tex]
For engine 2,
Energy removed = 457 J
Energy added = 789 J
[tex]\eta_2=\dfrac{457}{789}\cdot100=57.92\%[/tex]
For engine 3,
Energy removed = 422 J
Energy added = 1038 J
[tex]\eta_3=\dfrac{422}{1038}\cdot100=40.65\%[/tex]
So, the engine 2 has the highest thermal efficiency.
12) If, after viewing a specimen at low power, you switch to high-dry power and, after using fine focus, cannot find the specimen, what things could you do to help yourself (before calling me over to assist you?)
Answer:
See the answer below
Explanation:
After seeing an object on a slide at the low-power objective of the microscope and it disappears on changing to high power, the following can be done to resolve the problem
1. Drop a few drops of immersion oil on the slide and view again under high the power objective.
2. If the object is still not visible after the action above, return the microscope to the low-power objective and make sure the object is refocused and centered. Then carefully change back to the high power objective and use the fine adjustment to bring it into focus.
Calculate the change in length of a 90.5 mm aluminum bar that has increased in temperature by from -14.4 oC to 154.6 oC
Take the coefficient of expansion to be 25 x 10-6 (oC)-1 . Write the answer in meters with three significant figures
Answer:
ΔL = 3.82 10⁻⁴ m
Explanation:
This is a thermal expansion exercise
ΔL = α L₀ ΔT
ΔT = T_f - T₀
where ΔL is the change in length and ΔT is the change in temperature
Let's reduce the length to SI units
L₀ = 90.5 mm (1m / 1000 mm) = 0.0905 m
let's calculate
ΔL = 25.10⁻⁶ 0.0905 (154.6 - (14.4))
ΔL = 3.8236 10⁻⁴ m
using the criterion of three significant figures
ΔL = 3.82 10⁻⁴ m
Three 30 g metal balls, one of aluminum, copper and lead, are placed in a large beaker of hot water for a few minutes. [The specific heats of aluminum, copper, and lead are 903, 385, and 130 J / (kg ° C), respectively].
to. Which of the balls, if any, will reach the highest temperature? Explain.
b. Which of the balls, if any, will have the most heat energy? Explain.
Answer:
The answer is below
Explanation:
Specific heat capacity is an intensive property of a material. The specific heat of a material is the amount of energy required to raise the temperature of one unit mass m of material by one unit of temperature.
a) Temperature is inversely proportional to specific heat capacity. If the same amount of heat is applied to all three balls, the ball that will reach the highest temperature is the ball with the least specific heat capacity.
Hence lead will have the highest temperature since it has the least specific heat capacity.
b) The quantity of heat is directly proportional to the specific heat capacity. Hence if all balls experience the same temperature change, the ball that have the most energy will be that with the highest specific heat capacity.
Hence aluminum will have the most heat since it has the highest specific heat capacity.
A 10.0 L tank contains 0.329 kg of helium at 28.0 ∘C. The molar mass of helium is 4.00 g/mol . Part A How many moles of helium are in the tank? Express your answer in moles.
Answer:
82.25 moles of He
Explanation:
From the question given above, the following data were obtained:
Volume (V) = 10 L
Mass of He = 0.329 Kg
Temperature (T) = 28.0 °C
Molar mass of He = 4 g/mol
Mole of He =?
Next, we shall convert 0.329 Kg of He to g. This can be obtained as follow:
1 Kg = 1000 g
Therefore,
0.329 Kg = 0.329 Kg × 1000 g / 1 Kg
0.329 Kg = 329 g
Thus, 0.329 Kg is equivalent to 329 g.
Finally, we shall determine the number of mole of He in the tank. This can be obtained as illustrated below:
Mass of He = 329 g
Molar mass of He = 4 g/mol
Mole of He =?
Mole = mass / molar mass
Mole of He = 329 / 4
Mole of He = 82.25 moles
Therefore, there are 82.25 moles of He in the tank.
The north pole of magnet A will __?____ the south pole of magnet B
Answer:
A will attract
B will repare
A body of mass 4kg is moving with a velocity of 108km/h . find the kenetic energy of the body.
Answer:
KE = 2800 J
Explanation:
Usually a velocity is expressed as m/s. Then the energy units are joules.
[tex]\frac{108 km}{hr} * \frac{1000m}{1 km} * \frac{1 hour}{3600 seconds} =\frac{108*1000 m}{3600sec}[/tex]
v = 30 m / sec
KE = 1/2 * 4 * (30)^2
KE =2800 kg m^2/sec^2
KE = 2800 Joules
A particle of mass 1.2 mg is projected vertically upward from the ground with a velocity of 1.62 x 10 cm/h. Use the above information to answer the following four questions: 7. The kinetic energy of the particle at time t = 0 s is A. 1.215 x 10-3 J B. 2.430 J C. 1215 J D. 9.72 x 106 J E. OJ (2)
Answer:
K = 0 J
Explanation:
Given that,
The mass of the particle, m = 1.2 mg
The speed of the particle, [tex]v=1.62\times 10\ cm/h[/tex]
We need to find the kinetic energy of the particle at time t = 0 s.
At t = 0 s, the particle is at rest, v = 0
So,
[tex]K=\dfrac{1}{2}mv^2[/tex]
If v = 0,
[tex]K=0\ J[/tex]
So, the kinetic energy of the particle at time t = 0 s is 0 J.
What word chemical equation describes this chemical reaction?
Answer : sodium + chlorine → sodium chloride
1. A block of mass m = 10.0 kg is released with a speed v from a frictionless incline at height 7.00 m. The
block reaches the horizontal ground and then slides up another frictionless incline as shown in Fig. 1.1. If the
horizontal surface is also frictionless and the maximum height that the block can slide up to is 26.0 m, (a) what
is the speed v of the block equal to when it is released and (b) what is the speed of the block when it reaches
the horizontal ground? If a portion of length 1 2.00 m on the horizontal surface is frictional with coefficient
of kinetic friction uk = 0.500 (Fig. 1.2) and the block is released at the same height 7.00 m with the same
speed v determined in (a), (c) what is the maximum height that the block can reach, (d) what is the speed of the
block at half of the maximum height, and (e) how many times will the block cross the frictional region before
it stops completely?
1 = 2.00 m (frictional region)
Let A be the position of the block at the top of the first incline; B its position at the bottom of the first incline; C its position at the bottom of the second incline; and D its position at the top of the second incline. I'll denote the energy of the block at a given point by E (point).
At point A, the block has total energy
E (A) = (10.0 kg) (9.80 m/s²) (7.00 m) + 1/2 (10.0 kg) v₀²
E (A) = 686 J + 1/2 (10.0 kg) v₀²
At point B, the block's potential energy is converted into kinetic energy, so that its total energy is
E (B) = 1/2 (10.0 kg) v₁²
The block then slides over the horizontal surface with constant speed v₁ until it reaches point C and slides up a maximum height of 26.0 m to point D. Its total energy at D is purely potential energy,
E (D) = (10.0 kg) (9.80 m/s²) (26.0 m) = 2548 J
Throughout this whole process, energy is conserved, so
E (A) = E (B) = E (C) = E (D)
(a) Solve for v₀ :
686 J + 1/2 (10.0 kg) v₀² = 2548 J
==> v₀ ≈ 19.3 m/s
(b) Solve for v₁ :
1/2 (10.0 kg) v₁² = 2548 J
==> v₁ ≈ 22.6 m/s
Now if the horizontal surface is not frictionless, kinetic friction will contribute some negative work to slow down the block between points C and D. Check the net forces acting on the block over this region:
• net horizontal force:
∑ F = -f = ma
• net vertical force:
∑ F = n - mg = 0
where f is the magnitude of kinetic friction, a is the block's acceleration, n is the mag. of the normal force, and mg is the block's weight. Solve for a :
n = mg = (10.0 kg) (9.80 m/s²) = 98.0 N
f = µn = 0.500 (98.0 N) = 49.0 N
==> - (49.0 N) = (10.0 kg) a
==> a = - 4.90 m/s²
The block decelerates uniformly over a distance 2.00 m and slows down to a speed v₂ such that
v₂² - v₁² = 2 (-4.90 m/s²) (2.00 m)
==> v₂² = 490 m²/s²
and thus the block has total/kinetic energy
E (C) = 1/2 (10.0 kg) v₂² = 2450 J
(c) The block then slides a height h up the frictionless incline to D, where its kinetic energy is again converted to potential energy. With no friction, E (C) = E (D), so
2450 J = (10.0 kg) (9.80 m/s²) h
==> h = 25.0 m
(d) At half the maximum height, the block has speed v₃ such that
2450 J = (10.0 kg) (9.80 m/s²) (h/2) + 1/2 (10.0 kg) v₃²
==> v₃ ≈ 15.7 m/s
The block loses speed and thus energy as it moves between B and C, but its energy is conserved elsewhere. If we ignore the inclines and pretend that the block is sliding over a long horizontal surface, then its velocity v at time t is given by
v = v₁ + at = 22.6 m/s - (4.90 m/s²) t
The block comes to a rest when v = 0 :
0 = 22.6 m/s - (4.90 m/s²) t
==> t ≈ 4.61 s
It covers a distance x after time t of
x = v₁t + 1/2 at ²
so when it comes to a complete stop, it will have moved a distance of
x = (22.6 m/s) (4.61 s) + 1/2 (-4.90 m/s²) (4.61 s)² = 52.0 m
(e) The block crosses the rough region
(52.0 m) / (2.00 m) = 26 times
Every object around you is attracted to you. In fact, every object in the galaxy is attracted to every other object in the galaxy.
a. True
b. False
Answer:
True
Explanation:
With the gravitational pull that our planets have, we are able to remain in orbit. This demonstrates how every object in the galaxy is attracted to every other object. Every object in the universe that has mass exerts a gravitational pull on every other mass. We as humans do it too, but since our force isn't strong, we don't have much of an effect. I hope this helped and please don't hesitate to reach out with more questions!
What is (a) the x component and (b) the y component of the net electric field at the square's center
Answer:
What is (a) the x component and (b) the y component of the net electric field at the square's center
write down the following units in the ascending of their value A) mm nm cm um B) 1m 1cm 1km 1mm. convert the following units into SI without changing their values? A)3500g B)2.5km C)2h
Answer:
A) nm, um, mm, cm
B) 1mm, 1cm, 1m, 1km
A) 3500g, B) 2500m, C) 7200 seconds
When you hammer a nail into wood, the nail heats up. 30 Joules of energy was absorbed by a 5-g nail as it was hammered into place. How much does the nail's temperature increase (in °C) during this process? (The specific heat capacity of the nail is 450 J/kg-°C, and round to 3 significant digits.
Answer:
13.33 K
Explanation:
Given that,
Heat absorbed, Q = 30 J
Mass of nail, m = 5 g = 0.005 kg
The specific heat capacity of the nail is 450 J/kg-°C.
We need to find the increase in the temperature during the process. The heat absorbed in a process is as follows:
[tex]Q=mc\Delta T\\\\\Delta T=\dfrac{Q}{mc}\\\\\Delta T=\dfrac{30}{0.005\times 450}\\\\=13.33\ K[/tex]
So, the increase in temperature is 13.33 K.
what is the average velocity if the initial velocity is at rest and the final velocity is 16 m/s
Answer:
8m/s
Explanation:
Vavg= 16-0/2=8m/s
A block of mass M is connected by a string and pulley to a hanging mass m. The coefficient of kinetic friction between block M and the table is 0.2, and also, M = 20 kg, m = 10 kg. How far will block m drop in the first seconds after the system is released?
How long will block M move during above time?
At the time, calculate the velocity of block M
Find out the deceleration of the block M, if the connected string is
removal by cutting after the first second. Then, calculate the time
taken to contact block M and pulley.
Answer:
a) y = 0.98 t², t=1s y= 0.98 m,
b) he two blocks must move the same distance
c) v = 1.96 m / s, d) a = -1.96 m / s², e) x = 0.98 m
Explanation:
For this exercise we can use Newton's second law
Big Block
Y axis
N-W = 0
N = M g
X axis
T- fr = Ma
the friction force has the expression
fr = μ N
fr = μ Mg
small block
w- T = m a
we write the system of equations
T - fr = M a
mg - T = m a
we add and resolved
mg- μ Mg = (M + m) a
a = [tex]g \ \frac{m - \mu M}{m+M}[/tex]
a = [tex]9.8 \ \frac{10- 0.2 \ 20}{ 10 \ +\ 20}[/tex]
a = 9.8 (6/30)
a = 1.96 m / s²
a) now we can use the kinematic relations
y = v₀ t + ½ a t²
the blocks come out of rest so their initial velocity is zero
y = ½ a t²
y = ½ 1.96 t²
y = 0.98 t²
for t = 1s y = 0.98 m
t = 2s y = 1.96 m
b) Time is a scale that is the same for the entire system, the question should be oriented to how far the big block will move.
As the curda is in tension the two blocks must move the same distance
c) the velocity of the block M
v = vo + a t
v = 0 + 1.96 t
for t = 1 s v = 1.96 m / s
t = 2 s v = 3.92 m / s
d) the deceleration if the chain is cut
when removing the chain the tension becomes zero
-fr = M a
- μ M g = M a
a = - μ g
a = - 0.2 9.8
a = -1.96 m / s²
e) the distance to stop the block is
v² = vo² - 2 a x
0 = vo² - 2a x
x = vo² / 2a
x = 1.96² / 2 1.96
x = 0.98 m
the time to travel this distance is
v = vo - a t
t = vo / a
t = 1.96 /1.96
t = 1 s
Electrical resistance is a measure of resistance to the flow of _?____
Resistance is a measure of the opposition to current flow in an electrical circuit. Resistance is measured in ohms, symbolized by the Greek letter omega (Ω). Ohms are named after Georg Simon Ohm (1784-1854), a German physicist who studied the relationship between voltage, current and resistance.
Hope this helps!!!!
Answer:
electric current
Explanation:
The answer is electric current
recognizing forms of energy
Answer:
hi the question isn't obvious and need a photo I guess
A hot air balloon is a sphere of volume 2210 m3. The density of the hot air inside is 1.13 kg/m3, while the air outside has a density of 1.29 kg/m3. The balloon itself has a mass of 240 kg. What is the TOTAL NET force acting on the balloon?
[?]N
The total net force acting on the balloon will be 24498 Newtons
Given that
Volume of the balloon = 2210 cubic meter
Density of the air inside the balloon = 1.13 kg/m3
What will be the net force exerted on the balloon ?Here force on the balloon will be equal to the weight of the air displaced by balloon
[tex]F= mass of air displaced\times gravity[/tex]
[tex]F= Density \times volume \times gravity[/tex]
[tex]F=1.13 \times 2210 \times 9.81[/tex]
[tex]F=24498 N[/tex]
The total net force acting on the balloon will be 24498 Newtons
To know more about buoyancy force follow
https://brainly.com/question/117714
Explain what a circuit breaker is and how it helps protect your house?
Explanation:
A circuit breaker is an electrical switch designed to protect an electrical circuit from damage caused by overcurrent/overload or short circuit. Its basic function is to interrupt current flow after protective relays detect a fault.
Circuit breakers have been designed to detect when there is a fault in the electricity, so it will “trip” and shut down electrical flow. ... This detection is key to preventing surges of electricity that travel to appliances or other outlets, which can cause them to break down
Find the starting pressure of CCl4 at this temperature that produces a total pressure of 1.1 atm at equilibrium. Express the pressure in atmospheres to three significant figures.
The complete question is as follows: At 700 K, [tex]CCl_{4}[/tex] decomposes to carbon and chlorine. The Kp for the decomposition is 0.76.
Find the starting pressure of [tex]CCl_{4}[/tex] at this temperature that will produce a total pressure of 1.1 atm at equilibrium.
Answer: The starting pressure of [tex]CCl_{4}[/tex] is 0.79 atm.
Explanation:
The equation for decomposition of [tex]CCl_{4}[/tex] is as follows.
[tex]CCl_{4}(g) \rightleftharpoons C(s) + 2Cl_{2}(g)[/tex]
Let us assume that initial concentration of [tex]CCl_{4}[/tex] is 'a'. Hence, the initial and equilibrium concentrations will be as follows.
[tex]CCl_{4}(g) \rightleftharpoons C(s) + 2Cl_{2}(g)[/tex]
Initial: a 0 0
Equilibrium: (a - x) 0 2x
Total pressure = (a - x) + 2x = a + x
As it is given that the total pressure is 1.1 atm.
So, a + x = 1.1
a = 1.1 - x
Now, expression for equilibrium constant for this equation is as follows.
[tex]K_{p} = \frac{P^{2}_{Cl_{2}}}{P_{CCl_{4}}}\\0.76 = \frac{(2x)^{2}}{(a - x)}\\0.76 = \frac{4x^{2}}{1.1 - x - x}\\0.76 = \frac{4x^{2}}{1.1 - 2x}\\x = 0.31 atm[/tex]
Hence, the value of 'a' is calculated as follows.
a + x = 1.1 atm
a = 1.1 atm - x
= 1.1 atm - 0.31 atm
= 0.79 atm
Thus, we can conclude that starting pressure of [tex]CCl_{4}[/tex] is 0.79 atm.
A 12.5-m fire truck ladder is leaning against a wall. Find the distance d the ladder goes up the wall (above the fire truck) if the ladder makes an angle of with the horizontal
Complete Question
A 12.5-m fire truck ladder is leaning against a wall. Find the distance d the ladder goes up the wall (above the fire truck) if the ladder makes an angle of
40° 16' with the horizontal.
Answer:
[tex]d=8.01m[/tex]
Explanation:
From the question we are told that:
Length of ladder [tex]l=12.5m[/tex]
Angle [tex]\theta=40° 16'=20.26 \textdegree[/tex]
Generally the Trigonometric equation for distance d it goes up the wall is mathematically given by
[tex]d=l sin \theta[/tex]
[tex]d=12.5 sin 40.26[/tex]
[tex]d=8.01m[/tex]
What is significant about the primary colors of pigments?
They can be mixed together to make almost any other color.
Any two primary colors of pigments combine to make white pigment.
Each primary color of pigment absorbs all other colors.
Any two primary colors of pigments combine to make black pigment.
Answer:
They can be mixed together to make almost any other color.
Explanation:
All the three primary colors can mix to form white color.
Blue and red mix to form a black color.
The gravitational field strength due to its planet is 5N/kg What does it mean?
Answer:
The weight of an object is the force on it caused by the gravity due to the planet. The weight of an object and the gravitational field strength are directly proportional. For a given mass, the greater the gravitational field strength of the planet, the greater its weight.
Weight can be calculated using the equation:
weight = mass × gravitational field strength
This is when:
weight (W) is measured in newtons (N)
mass (m) is measured in kilograms (kg)
gravitational field strength (g) is measured in newtons per kilogram (N/kg)
What are stepdown transformers used for
Answer:
Step down transformers are used in power adaptors and rectifiers to efficiently decrease the voltage. They are also used in electronic SMPS.
Explanation:
pls mark me as brainlist
Thanks a lot
A 64-ka base runner begins his slide into second base when he is moving at a speed of 3.2 m/s. The coefficient of friction between his clothes and Earth is 0.70. He slides so that his speed is zero just as he reaches the base.
Required:
a. How much mechanical energy is tout due to friction acting on the runner?
b, How far does he slide?
Answer:
Explanation:
From the given information:
mass = 64 kg
speed = 3.2 m/s
coefficient of friction [tex]\mu =[/tex] 0.70
The mechanical energy touted relates to the loss of energy in the system as a result of friction and this can be computed as:
[tex]W = \Delta K.E[/tex]
[tex]\implies \dfrac{1}{2}m(v^2 -u^2)[/tex]
[tex]= \dfrac{1}{2}(64.0 \kg) (0 - (3.2 \ m/s^2))[/tex]
Thus, the mechanical energy touted = 327.68 J
According to the formula used in calculating the frictional force
[tex]F_r = \mu mg[/tex]
= 0.70 × 64 kg× 9.8 m/s²
= 439.04 N
The distance covered now can be determined as follows:
d = W/F
d = 327.68 J/ 439.04 N
d = 0.746 m
Two blocks in contact with each other are pushed to the right across a rough horizontal surface by the two forces shown. If the coefficient of kinetic friction between each of the blocks and the surface is 0.30, determine the magnitude of the force exerted on the 2.0-kg block by the 3.0-kg block.
I assume the blocks are pushed together at constant speed, and it's not so important but I'll also assume it's the smaller block being pushed up against the larger one. (The opposite arrangement works out much the same way.)
Consider the forces acting on either block. Let the direction in which the blocks are being pushed by the positive direction.
The 2.0-kg block feels
• the downward pull of its own weight, (2.0 kg) g
• the upward normal force of the surface, magnitude n₁
• kinetic friction, mag. f₁ = 0.30n₁, pointing in the negative horizontal direction
• the contact force of the larger block, mag. c₁, also pointing in the negative horizontal direction
• the applied force, mag. F, pointing in the positive horizontal direction
Meanwhile the 3.0-kg block feels
• its own weight, (3.0 kg) g, pointing downward
• normal force, mag. n₂, pointing upward
• kinetic friction, mag. f₂ = 0.30n₂, pointing in the negative horizontal direction
• contact force from the smaller block, mag. c₂, pointing in the positive horizontal direction (this is the force that is causing the larger block to move)
Notice the contact forces form an action-reaction pair, so that c₁ = c₂, so we only need to find one of these, and we can get it right away from the net forces acting on the 3.0-kg block in the vertical and horizontal directions:
• net vertical force:
n₂ - (3.0 kg) g = 0 ==> n₂ = (3.0 kg) g ==> f₂ = 0.30 (3.0 kg) g
• net horizontal force:
c₂ - f₂ = 0 ==> c₂ = 0.30 (3.0 kg) g ≈ 8.8 N
There are two beakers of water on the table. We can compare the average kinetic energy of the water molecules in the two beakers by measuring their
A temperatures.
B volumes.
C densities.
D masses.
Answer: masses
Explanation:
Trust me
a vehicle start moving at 15m/s. How long will it take to stop at a distance of 15m?
Answer:
Explanation:
Speed= distance/time
Or time = distance/speed
According to your question
Speed=15m/s
and. Distance=1.2km. ,we must change kilometer in meter because given speed is in m/s
D= 1.2km = 1.2×1000m =1200meter
Time = distance/ speed
1200/15 =80second
Or. 1min and 20 sec will be your answer.
A system is acted on by its surroundings in such a way that it receives 50 J of heat while simultaneously doing 20 J of work. What is its net change in internal energy
Answer:
30J
Explanation:
Given data
The total quantity of heat recieved= 50J
Quantity of heat used to do work= 20J
Hence the net change is
ΔU= Total Heat - Net work
ΔU= 50-20
ΔU= 30J
Hence the change in the internal energy is 30J