The cone is now inverted again such that the liquid rests on the flat circular surface of the cone as shown below. Find, in terms of h, an expression for d, the distance of the liquid surface from the top of the cone. ​

Answers

Answer 1

The expression for the distance of the liquid surface from the top of the cone (d) in terms of the height of the liquid (h) is:

d = (R / H) * h

To find an expression for the distance of the liquid surface from the top of the cone, let's consider the geometry of the inverted cone.

We can start by defining some variables:

R: the radius of the base of the cone

H: the height of the cone

h: the height of the liquid inside the cone (measured from the tip of the cone)

Now, we need to determine the relationship between the variables R, H, h, and d (the distance of the liquid surface from the top of the cone).

First, let's consider the similar triangles formed by the original cone and the liquid-filled cone. By comparing the corresponding sides, we have:

(R - d) / R = (H - h) / H

Now, let's solve for d:

(R - d) / R = (H - h) / H

Cross-multiplying:

R - d = (R / H) * (H - h)

Expanding:

R - d = (R / H) * H - (R / H) * h

R - d = R - (R / H) * h

R - R = - (R / H) * h + d

0 = - (R / H) * h + d

R / H * h = d

Finally, we can express d in terms of h:

d = (R / H) * h

Therefore, the expression for the distance of the liquid surface from the top of the cone (d) in terms of the height of the liquid (h) is:

d = (R / H) * h

For such more questions on Liquid Surface Distance Formula.

https://brainly.com/question/14704640

#SPJ8


Related Questions

Consider the following function e-1/x² f(x) if x #0 if x = 0. a Find a value of a that makes f differentiable on (-[infinity], +[infinity]). No credit will be awarded if l'Hospital's rule is used at any point, and you must justify all your work. =

Answers

To make the function f(x) = e^(-1/x²) differentiable on (-∞, +∞), the value of a that satisfies this condition is a = 0.

In order for f(x) to be differentiable at x = 0, the left and right derivatives at that point must be equal. We calculate the left derivative by taking the limit as h approaches 0- of [f(0+h) - f(0)]/h. Substituting the given function, we obtain the left derivative as lim(h→0-) [e^(-1/h²) - 0]/h. Simplifying, we find that this limit equals 0.

Next, we calculate the right derivative by taking the limit as h approaches 0+ of [f(0+h) - f(0)]/h. Again, substituting the given function, we have lim(h→0+) [e^(-1/h²) - 0]/h. By simplifying and using the properties of exponential functions, we find that this limit also equals 0.

Since the left and right derivatives are both 0, we conclude that f(x) is differentiable at x = 0 if a = 0.

To learn more about derivatives click here:

brainly.com/question/25324584

#SPJ11

A sample of size n-58 is drawn from a normal population whose standard deviation is a 5.5. The sample mean is x = 36.03. Part 1 of 2 (a) Construct a 98% confidence interval for μ. Round the answer to at least two decimal places. A 98% confidence interval for the mean is 1000 ala Part 2 of 2 (b) If the population were not approximately normal, would the confidence interval constructed in part (a) be valid? Explain. The confidence interval constructed in part (a) (Choose one) be valid since the sample size (Choose one) large. would would not DE

Answers

a. To construct a 98% confidence interval for the population mean (μ), we can use the formula:

x ± Z * (σ / √n),

where x is the sample mean, Z is the critical value corresponding to the desired confidence level, σ is the population standard deviation, and n is the sample size.

Plugging in the given values, we have:

x = 36.03, σ = 5.5, n = 58, and the critical value Z can be determined using the standard normal distribution table for a 98% confidence level (Z = 2.33).

Calculating the confidence interval using the formula, we find:

36.03 ± 2.33 * (5.5 / √58).

The resulting interval provides a range within which we can be 98% confident that the population mean falls.

b. The validity of the confidence interval constructed in part (a) relies on the assumption that the population is approximately normal. If the population is not approximately normal, the validity of the confidence interval may be compromised.

The validity of the confidence interval is contingent upon meeting certain assumptions, including a normal distribution for the population. If the population deviates significantly from normality, the confidence interval may not accurately capture the true population mean.

Therefore, it is crucial to assess the underlying distribution of the population before relying on the validity of the constructed confidence interval.

To learn more about confidence interval click here : brainly.com/question/32546207

#SPJ11

In Problems 1 through 12, verify by substitution that each given function is a solution of the given differential equation. Throughout these problems, primes denote derivatives with re- spect to x. 1. y' = 3x2; y = x³ +7 2. y' + 2y = 0; y = 3e-2x 3. y" + 4y = 0; y₁ = cos 2x, y2 = sin 2x 4. y" = 9y; y₁ = e³x, y₂ = e-3x 5. y' = y + 2e-x; y = ex-e-x 6. y" +4y^ + 4y = 0; y1= e~2x, y2 =xe-2x 7. y" - 2y + 2y = 0; y₁ = e cos x, y2 = e* sinx 8. y"+y = 3 cos 2x, y₁ = cos x-cos 2x, y2 = sinx-cos2x 1 9. y' + 2xy2 = 0; y = 1+x² 10. x2y" + xy - y = ln x; y₁ = x - ln x, y2 = =-1 - In x In x 11. x²y" + 5xy' + 4y = 0; y1 = 2 2 = x² 12. x2y" - xy + 2y = 0; y₁ = x cos(lnx), y2 = x sin(In.x)

Answers

The solutions to the given differential equations are:

y = x³ + 7y = 3e^(-2x)y₁ = cos(2x), y₂ = sin(2x)y₁ = e^(3x), y₂ = e^(-3x)y = e^x - e^(-x)y₁ = e^(-2x), y₂ = xe^(-2x)y₁ = e^x cos(x), y₂ = e^x sin(x)y₁ = cos(x) - cos(2x), y₂ = sin(x) - cos(2x)y = 1 + x²y₁ = x - ln(x), y₂ = -1 - ln(x)y₁ = x², y₂ = x^(-2)y₁ = xcos(ln(x)), y₂ = xsin(ln(x))

To verify that each given function is a solution of the given differential equation, we will substitute the function into the differential equation and check if it satisfies the equation.

1. y' = 3x²; y = x³ + 7

Substituting y into the equation:

y' = 3(x³ + 7) = 3x³ + 21

The derivative of y is indeed equal to 3x², so y = x³ + 7 is a solution.

2. y' + 2y = 0; y = 3e^(-2x)

Substituting y into the equation:

y' + 2y = -6e^(-2x) + 2(3e^(-2x)) = -6e^(-2x) + 6e^(-2x) = 0

The equation is satisfied, so y = 3e^(-2x) is a solution.

3. y" + 4y = 0; y₁ = cos(2x), y₂ = sin(2x)

Taking the second derivative of y₁ and substituting into the equation:

y"₁ + 4y₁ = -4cos(2x) + 4cos(2x) = 0

The equation is satisfied for y₁.

Taking the second derivative of y₂ and substituting into the equation:

y"₂ + 4y₂ = -4sin(2x) - 4sin(2x) = -8sin(2x)

The equation is not satisfied for y₂, so y₂ = sin(2x) is not a solution.

4. y" = 9y; y₁ = e^(3x), y₂ = e^(-3x)

Taking the second derivative of y₁ and substituting into the equation:

y"₁ = 9e^(3x)

9e^(3x) = 9e^(3x)

The equation is satisfied for y₁.

Taking the second derivative of y₂ and substituting into the equation:

y"₂ = 9e^(-3x)

9e^(-3x) = 9e^(-3x)

The equation is satisfied for y₂.

5. y' = y + 2e^(-x); y = e^x - e^(-x)

Substituting y into the equation:

y' = e^x - e^(-x) + 2e^(-x) = e^x + e^(-x)

The equation is satisfied, so y = e^x - e^(-x) is a solution.

6. y" + 4y^2 + 4y = 0; y₁ = e^(-2x), y₂ = xe^(-2x)

Taking the second derivative of y₁ and substituting into the equation:

y"₁ + 4(y₁)^2 + 4y₁ = 4e^(-4x) + 4e^(-4x) + 4e^(-2x) = 8e^(-2x) + 4e^(-2x) = 12e^(-2x)

The equation is not satisfied for y₁, so y₁ = e^(-2x) is not a solution.

Taking the second derivative of y₂ and substituting into the equation:

y"₂ + 4(y₂)^2 + 4y₂ = 2e^(-2x) + 4(xe^(-2x))^2 + 4xe^(-2x) = 2e^(-2x) + 4x^2e^(-4x) + 4xe^(-2x)

The equation is not satisfied for y₂, so y₂ = xe^(-2x) is not a solution.

7. y" - 2y + 2y = 0; y₁ = e^x cos(x), y₂ = e^x sin(x)

Taking the second derivative of y₁ and substituting into the equation:

y"₁ - 2(y₁) + 2y₁ = e^x(-cos(x) - 2cos(x) + 2cos(x)) = 0

The equation is satisfied for y₁.

Taking the second derivative of y₂ and substituting into the equation:

y"₂ - 2(y₂) + 2y₂ = e^x(-sin(x) - 2sin(x) + 2sin(x)) = 0

The equation is satisfied for y₂.

8. y" + y = 3cos(2x); y₁ = cos(x) - cos(2x), y₂ = sin(x) - cos(2x)

Taking the second derivative of y₁ and substituting into the equation:

y"₁ + y₁ = -cos(x) + 2cos(2x) + cos(x) - cos(2x) = cos(x)

The equation is not satisfied for y₁, so y₁ = cos(x) - cos(2x) is not a solution.

Taking the second derivative of y₂ and substituting into the equation:

y"₂ + y₂ = -sin(x) + 2sin(2x) + sin(x) - cos(2x) = sin(x) + 2sin(2x) - cos(2x)

The equation is not satisfied for y₂, so y₂ = sin(x) - cos(2x) is not a solution.

9. y' + 2xy² = 0; y = 1 + x²

Substituting y into the equation:

y' + 2x(1 + x²) = 2x³ + 2x = 2x(x² + 1)

The equation is satisfied, so y = 1 + x² is a solution.

10 x²y" + xy' - y = ln(x); y₁ = x - ln(x), y₂ = -1 - ln(x)

Taking the second derivative of y₁ and substituting into the equation:

x²y"₁ + xy'₁ - y₁ = x²(0) + x(1) - (x - ln(x)) = x

The equation is satisfied for y₁.

Taking the second derivative of y₂ and substituting into the equation:

x²y"₂ + xy'₂ - y₂ = x²(0) + x(-1/x) - (-1 - ln(x)) = 1 + ln(x)

The equation is not satisfied for y₂, so y₂ = -1 - ln(x) is not a solution.

11. x²y" + 5xy' + 4y = 0; y₁ = x², y₂ = x^(-2)

Taking the second derivative of y₁ and substituting into the equation:

x²y"₁ + 5xy'₁ + 4y₁ = x²(0) + 5x(2x) + 4x² = 14x³

The equation is not satisfied for y₁, so y₁ = x² is not a solution.

Taking the second derivative of y₂ and substituting into the equation:

x²y"₂ + 5xy'₂ + 4y₂ = x²(4/x²) + 5x(-2/x³) + 4(x^(-2)) = 4 + (-10/x) + 4(x^(-2))

The equation is not satisfied for y₂, so y₂ = x^(-2) is not a solution.

12. x²y" - xy' + 2y = 0; y₁ = xcos(ln(x)), y₂ = xsin(ln(x))

Taking the second derivative of y₁ and substituting into the equation:

x²y"₁ - xy'₁ + 2y₁ = x²(0) - x(-sin(ln(x))/x) + 2xcos(ln(x)) = x(sin(ln(x)) + 2cos(ln(x)))

The equation is satisfied for y₁.

Taking the second derivative of y₂ and substituting into the equation:

x²y"₂ - xy'₂ + 2y₂ = x²(0) - x(cos(ln(x))/x) + 2xsin(ln(x)) = x(sin(ln(x)) + 2cos(ln(x)))

The equation is satisfied for y₂.

Therefore, the solutions to the given differential equations are:

y = x³ + 7

y = 3e^(-2x)

y₁ = cos(2x)

y₁ = e^(3x), y₂ = e^(-3x)

y = e^x - e^(-x)

y₁ = e^(-2x)

y₁ = e^x cos(x), y₂ = e^x sin(x)

y = 1 + x²

y₁ = xcos(ln(x)), y₂ = xsin(ln(x))

Learn more about differential equation

https://brainly.com/question/32538700

#SPJ11

It is determined that the temperature​ (in degrees​ Fahrenheit) on a particular summer day between​ 9:00a.m. and​ 10:00p.m. is modeled by the function f(t)= -t^2+5.9T=87 ​, where t represents hours after noon. How many hours after noon does it reach the hottest​ temperature?

Answers

The temperature reaches its maximum value 2.95 hours after noon, which is  at 2:56 p.m.

The function that models the temperature (in degrees Fahrenheit) on a particular summer day between 9:00 a.m. and 10:00 p.m. is given by

f(t) = -t² + 5.9t + 87,

where t represents the number of hours after noon.

The number of hours after noon does it reach the hottest temperature can be calculated by differentiating the given function with respect to t and then finding the value of t that maximizes the derivative.

Thus, differentiating

f(t) = -t² + 5.9t + 87,

we have:

'(t) = -2t + 5.9

At the maximum temperature, f'(t) = 0.

Therefore,-2t + 5.9 = 0 or

t = 5.9/2

= 2.95

Thus, the temperature reaches its maximum value 2.95 hours after noon, which is approximately at 2:56 p.m. (since 0.95 x 60 minutes = 57 minutes).

Know more about the function

https://brainly.com/question/29631554

#SPJ11

.(a) Rewrite the following improper integral as the limit of a proper integral. 5T 4 sec²(x) [ dx π √tan(x) (b) Calculate the integral above. If it converges determine its value. If it diverges, show the integral goes to or -[infinity].

Answers

(a) lim[T→0] ∫[0 to π/4] 5T/(4√tan(x)) sec²(x) dx

(b) The integral evaluates to [5T/4] [ln(√2 + 1) + ln(√2) - (√2/2)].

(a) To rewrite the improper integral as the limit of a proper integral, we will introduce a parameter and take the limit as the parameter approaches a specific value.

The given improper integral is:

∫[0 to π/4] 5T/(4√tan(x)) sec²(x) dx

To rewrite it as a limit, we introduce a parameter, let's call it T, and rewrite the integral as:

∫[0 to π/4] 5T/(4√tan(x)) sec²(x) dx

Taking the limit as T approaches 0, we have:

lim[T→0] ∫[0 to π/4] 5T/(4√tan(x)) sec²(x) dx

This limit converts the improper integral into a proper integral.

(b) To calculate the integral, let's proceed with the evaluation of the integral:

∫[0 to π/4] 5T/(4√tan(x)) sec²(x) dx

We can simplify the integrand by using the identity sec²(x) = 1 + tan²(x):

∫[0 to π/4] 5T/(4√tan(x)) (1 + tan²(x)) dx

Expanding and simplifying, we have:

∫[0 to π/4] 5T/(4√tan(x)) + (5T/4)tan²(x) dx

Now, we can split the integral into two parts:

∫[0 to π/4] 5T/(4√tan(x)) dx + ∫[0 to π/4] (5T/4)tan²(x) dx

The first integral can be evaluated as:

∫[0 to π/4] 5T/(4√tan(x)) dx = [5T/4]∫[0 to π/4] sec(x) dx

= [5T/4] [ln|sec(x) + tan(x)|] evaluated from 0 to π/4

= [5T/4] [ln(√2 + 1) - ln(1)] = [5T/4] ln(√2 + 1)

The second integral can be evaluated as:

∫[0 to π/4] (5T/4)tan²(x) dx = (5T/4) [ln|sec(x)| - x] evaluated from 0 to π/4

= (5T/4) [ln(√2) - (√2/2 - 0)] = (5T/4) [ln(√2) - (√2/2)]

Thus, the value of the integral is:

[5T/4] ln(√2 + 1) + (5T/4) [ln(√2) - (√2/2)]

Simplifying further:

[5T/4] [ln(√2 + 1) + ln(√2) - (√2/2)]

Therefore, the integral evaluates to [5T/4] [ln(√2 + 1) + ln(√2) - (√2/2)].

Note: Depending on the value of T, the result of the integral will vary. If T is 0, the integral becomes 0. Otherwise, the integral will have a non-zero value.

To learn more about integral visit: brainly.com/question/31109342

#SPJ11

Use the formula for the amount, A=P(1+rt), to find the indicated quantity Where. A is the amount P is the principal r is the annual simple interest rate (written as a decimal) It is the time in years P=$3,900, r=8%, t=1 year, A=? A=$(Type an integer or a decimal.)

Answers

The amount (A) after one year is $4,212.00

Given that P = $3,900,

r = 8% and

t = 1 year,

we need to find the amount using the formula A = P(1 + rt).

To find the value of A, substitute the given values of P, r, and t into the formula

A = P(1 + rt).

A = P(1 + rt)

A = $3,900 (1 + 0.08 × 1)

A = $3,900 (1 + 0.08)

A = $3,900 (1.08)A = $4,212.00

Therefore, the amount (A) after one year is $4,212.00. Hence, the detail ans is:A = $4,212.00.

Learn more about amount

brainly.com/question/32453941.

#SPJ11

(Graphing Polar Coordinate Equations) and 11.5 (Areas and Lengths in Polar Coordinates). Then sketch the graph of the following curves and find the area of the region enclosed by them: r = 4+3 sin 0 . r = 2 sin 0

Answers

The graph of the curves will show two distinct loops, one for each equation, but they will not intersect.

To graph the curves and find the area enclosed by them, we'll first plot the points using the given polar coordinate equations and then find the intersection points. Let's start by graphing the curves individually:

Curve 1: r = 4 + 3sin(θ)

Curve 2: r = 2sin(θ)

To create the graph, we'll plot points by varying the angle θ and calculating the corresponding values of r.

For Curve 1 (r = 4 + 3sin(θ)):

Let's calculate the values of r for various values of θ:

When θ = 0 degrees, r = 4 + 3sin(0) = 4 + 0 = 4

When θ = 45 degrees, r = 4 + 3sin(45) ≈ 6.12

When θ = 90 degrees, r = 4 + 3sin(90) = 4 + 3 = 7

When θ = 135 degrees, r = 4 + 3sin(135) ≈ 6.12

When θ = 180 degrees, r = 4 + 3sin(180) = 4 - 3 = 1

When θ = 225 degrees, r = 4 + 3sin(225) ≈ -0.12

When θ = 270 degrees, r = 4 + 3sin(270) = 4 - 3 = 1

When θ = 315 degrees, r = 4 + 3sin(315) ≈ -0.12

When θ = 360 degrees, r = 4 + 3sin(360) = 4 + 0 = 4

Now we have several points (θ, r) for Curve 1: (0, 4), (45, 6.12), (90, 7), (135, 6.12), (180, 1), (225, -0.12), (270, 1), (315, -0.12), (360, 4).

For Curve 2 (r = 2sin(θ)):

Let's calculate the values of r for various values of θ:

When θ = 0 degrees, r = 2sin(0) = 0

When θ = 45 degrees, r = 2sin(45) ≈ 1.41

When θ = 90 degrees, r = 2sin(90) = 2

When θ = 135 degrees, r = 2sin(135) ≈ 1.41

When θ = 180 degrees, r = 2sin(180) = 0

When θ = 225 degrees, r = 2sin(225) ≈ -1.41

When θ = 270 degrees, r = 2sin(270) = -2

When θ = 315 degrees, r = 2sin(315) ≈ -1.41

When θ = 360 degrees, r = 2sin(360) = 0

Now we have several points (θ, r) for Curve 2: (0, 0), (45, 1.41), (90, 2), (135, 1.41), (180, 0), (225, -1.41), (270, -2), (315, -1.41), (360, 0).

Next, we'll plot these points on a graph and find the area enclosed by the curves:

(Note: For simplicity, I'll assume the angles in degrees, but you can convert them to radians if needed.)

To calculate the area enclosed by the curves, we need to find the points of intersection between the two curves. The enclosed region will be between the points of intersection.

Let's find the points where the curves intersect:

For r = 4 + 3sin(θ) and r = 2sin(θ), we have:

4 + 3sin(θ) = 2sin(θ)

Rearranging the equation:

3sin(θ) - 2sin(θ) = -4

sin(θ) = -4

Since the sine function's value is always between -1 and 1, there are no solutions to this equation. Therefore, the two curves do not intersect.

As a result, there is no enclosed region, and the area between the curves is zero.

The graph of the curves will show two distinct loops, one for each equation, but they will not intersect.

Learn more about sine function here:

https://brainly.com/question/32247762

#SPJ11

If y varies inversely as the square of x, and y=7/4 when x=1 find y when x=3

Answers

To find the value of k, we can substitute the given values of y and x into the equation.

If y varies inversely as the square of x, we can express this relationship using the equation y = k/x^2, where k is the constant of variation.

When x = 1, y = 7/4. Substituting these values into the equation, we get:

7/4 = k/1^2

7/4 = k

Now that we have determined the value of k, we can use it to find y when x = 3. Substituting x = 3 and k = 7/4 into the equation, we get:

y = (7/4)/(3^2)

y = (7/4)/9

y = 7/4 * 1/9

y = 7/36

Therefore, when x = 3, y is equal to 7/36. The relationship between x and y is inversely proportional to the square of x, and as x increases, y decreases.

For more questions Values:

https://brainly.com/question/843074

#SPJ8

Find the average value of f over region D. Need Help? f(x, y) = 2x sin(y), D is enclosed by the curves y = 0, y = x², and x = 4. Read It

Answers

The average value of f(x, y) = 2x sin(y) over the region D enclosed by the curves y = 0, y = x², and x = 4 is (8/3)π.

To find the average value, we first need to calculate the double integral ∬D f(x, y) dA over the region D.

To set up the integral, we need to determine the limits of integration for both x and y. From the given curves, we know that y ranges from 0 to x^2 and x ranges from 0 to 4.

Thus, the integral becomes ∬D 2x sin(y) dA, where D is the region enclosed by the curves y = 0, y = x^2, and x = 4.

Next, we evaluate the double integral using the given limits of integration. The integration order can be chosen as dy dx or dx dy.

Let's choose the order dy dx. The limits for y are from 0 to x^2, and the limits for x are from 0 to 4.

Evaluating the integral, we obtain the value of the double integral.

Finally, to find the average value, we divide the value of the double integral by the area of the region D, which can be calculated as the integral of 1 over D.

Therefore, the average value of f(x, y) over the region D can be determined by evaluating the double integral and dividing it by the area of D.

learn more about integration here:

https://brainly.com/question/31744185

#SPJ11

Find the elementary matrix E₁ such that E₁A = B where 9 10 1 20 1 11 A 8 -19 -1 and B = 8 -19 20 1 11 9 10 1 (D = E₁ =

Answers

Therefore, the elementary matrix E₁, or D, is: D = [0 0 1

                                                                                 0 1 0

                                                                                 1 0 0]

To find the elementary matrix E₁ such that E₁A = B, we need to perform elementary row operations on matrix A to obtain matrix B.

Let's denote the elementary matrix E₁ as D.

Starting with matrix A:

A = [9 10 1

20 1 11

8 -19 -1]

And matrix B:

B = [8 -19 20

1 11 9

10 1 1]

To obtain B from A, we need to perform row operations on A. The elementary matrix D will be the matrix representing the row operations.

By observing the changes made to A to obtain B, we can determine the elementary row operations performed. In this case, it appears that the row operations are:

Row 1 of A is swapped with Row 3 of A.

Row 2 of A is swapped with Row 3 of A.

Let's construct the elementary matrix D based on these row operations.

D = [0 0 1

0 1 0

1 0 0]

To verify that E₁A = B, we can perform the matrix multiplication:

E₁A = DA

D * A = [0 0 1 * 9 10 1 = 8 -19 20

0 1 0 20 1 11 1 11 9

1 0 0 8 -19 -1 10 1 1]

As we can see, the result of E₁A matches matrix B.

Therefore, the elementary matrix E₁, or D, is:

D = [0 0 1

0 1 0

1 0 0]

Learn more about elementary matrix here:

https://brainly.com/question/30760739

#SPJ11

A pair of shoes has been discounted by 12%. If the sale price is $120, what was the original price of the shoes? [2] (b) The mass of the proton is 1.6726 x 10-27 kg and the mass of the electron is 9.1095 x 10-31 kg. Calculate the ratio of the mass of the proton to the mass of the electron. Write your answer in scientific notation correct to 3 significant figures. [2] (c) Gavin has 50-cent, one-dollar and two-dollar coins in the ratio of 8:1:2, respectively. If 30 of Gavin's coins are two-dollar, how many 50-cent and one-dollar coins does Gavin have? [2] (d) A model city has a scale ratio of 1: 1000. Find the actual height in meters of a building that has a scaled height of 8 cm. [2] (e) A house rent is divided among Akhil, Bob and Carlos in the ratio of 3:7:6. If Akhil's [2] share is $150, calculate the other shares.

Answers

The correct answer is Bob's share is approximately $350 and Carlos's share is approximately $300.

(a) To find the original price of the shoes, we can use the fact that the sale price is 88% of the original price (100% - 12% discount).

Let's denote the original price as x.

The equation can be set up as:

0.88x = $120

To find x, we divide both sides of the equation by 0.88:

x = $120 / 0.88

Using a calculator, we find:

x ≈ $136.36

Therefore, the original price of the shoes was approximately $136.36.

(b) To calculate the ratio of the mass of the proton to the mass of theelectron, we divide the mass of the proton by the mass of the electron.

Mass of proton: 1.6726 x 10^(-27) kg

Mass of electron: 9.1095 x 10^(-31) kg

Ratio = Mass of proton / Mass of electron

Ratio = (1.6726 x 10^(-27)) / (9.1095 x 10^(-31))

Performing the division, we get:

Ratio ≈ 1837.58

Therefore, the ratio of the mass of the proton to the mass of the electron is approximately 1837.58.

(c) Let's assume the common ratio of the coins is x. Then, we can set up the equation:

8x + x + 2x = 30

Combining like terms:11x = 30

Dividing both sides by 11:x = 30 / 11

Since the ratio of 50-cent, one-dollar, and two-dollar coins is 8:1:2, we can multiply the value of x by the respective ratios to find the number of each coin:

50-cent coins: 8x = 8 * (30 / 11)

one-dollar coins: 1x = 1 * (30 / 11)

Calculating the values:

50-cent coins ≈ 21.82

one-dollar coins ≈ 2.73

Since we cannot have fractional coins, we round the values:

50-cent coins ≈ 22

one-dollar coins ≈ 3

Therefore, Gavin has approximately 22 fifty-cent coins and 3 one-dollar coins.

(d) The scale ratio of the model city is 1:1000. This means that 1 cm on the model represents 1000 cm (or 10 meters) in actuality.

Given that the scaled height of the building is 8 cm, we can multiply it by the scale ratio to find the actual height:

Actual height = Scaled height * Scale ratio

Actual height = 8 cm * 10 meters/cm

Calculating the value:

Actual height = 80 meters

Therefore, the actual height of the building is 80 meters.

(e) The ratio of Akhil's share to the total share is 3:16 (3 + 7 + 6 = 16).

Since Akhil's share is $150, we can calculate the total share using the ratio:

Total share = (Total amount / Akhil's share) * Akhil's share

Total share = (16 / 3) * $150

Calculating the value:

Total share ≈ $800

To find Bob's share, we can calculate it using the ratio:

Bob's share = (Bob's ratio / Total ratio) * Total share

Bob's share = (7 / 16) * $800

Calculating the value:

Bob's share ≈ $350

To find Carlos's share, we can calculate it using the ratio:

Carlos's share = (Carlos's ratio / Total ratio) * Total share

Carlos's share = (6 / 16) * $800

Calculating the value:

Carlos's share ≈ $300

Therefore, Bob's share is approximately $350 and Carlos's share is approximately $300.

Learn more about profit and loss here:

https://brainly.com/question/26483369

#SPJ11

70-2 Is λ=8 an eigenvalue of 47 7? If so, find one corresponding eigenvector. -32 4 Select the correct choice below and, if necessary, fill in the answer box within your choice. 70-2 Yes, λ=8 is an eigenvalue of 47 7 One corresponding eigenvector is A. -32 4 (Type a vector or list of vectors. Type an integer or simplified fraction for each matrix element.) 70-2 OB. No, λ=8 is not an eigenvalue of 47 7 -32 4

Answers

The correct answer is :Yes, λ=8 is an eigenvalue of 47 7 One corresponding eigenvector is A. -32 4 (Type a vector or list of vectors. Type an integer or simplified fraction for each matrix element.) The corresponding eigenvector is A= [ 7/8; 1].

Given matrix is:

47 7-32 4

The eigenvalue of the matrix can be found by solving the determinant of the matrix when [A- λI]x = 0 where λ is the eigenvalue.

λ=8 , Determinant = |47-8 7|

= |39 7||-32 4 -8|  |32 4|

λ=8 is an eigenvalue of the matrix [47 7; -32 4] and the corresponding eigenvector is:

A= [ 7/8; 1]

Therefore, the correct answer is :Yes, λ=8 is an eigenvalue of 47 7

One corresponding eigenvector is A. -32 4 (Type a vector or list of vectors. Type an integer or simplified fraction for each matrix element.)

The corresponding eigenvector is A= [ 7/8; 1].

To know more about eigenvector visit:

https://brainly.com/question/32593196

#SPJ11

Differentiate the following function. y = O (x-3)* > O (x-3)e* +8 O(x-3)x4 ex None of the above answers D Question 2 Differentiate the following function. y = x³ex O y'= (x³ + 3x²)e* Oy' = (x³ + 3x²)e²x O y'= (2x³ + 3x²)ex None of the above answers. Question 3 Differentiate the following function. y = √√x³ + 4 O 3x² 2(x + 4)¹/3 o'y' = 2x³ 2(x+4)¹/2 3x² 2(x³ + 4)¹/2 O None of the above answers Question 4 Find the derivative of the following function." y = 24x O y' = 24x+2 In2 Oy² = 4x+² In 2 Oy' = 24x+2 en 2 None of the above answers.

Answers

The first three questions involve differentiating given functions.  Question 1 - None of the above answers; Question 2 - y' = (x³ + 3x²)e*; Question 3 - None of the above answers. Question 4 asks for the derivative of y = 24x, and the correct answer is y' = 24.

Question 1: The given function is y = O (x-3)* > O (x-3)e* +8 O(x-3)x4 ex. The notation used is unclear, so it is difficult to determine the correct differentiation. However, none of the provided options seem to match the given function, so the answer is "None of the above answers."

Question 2: The given function is y = x³ex. To find its derivative, we apply the product rule and the chain rule. Using the product rule, we differentiate the terms separately and combine them. The derivative of x³ is 3x², and the derivative of ex is ex. Thus, the derivative of the given function is y' = (x³ + 3x²)e*.

Question 3: The given function is y = √√x³ + 4. To differentiate this function, we apply the chain rule. The derivative of √√x³ + 4 can be found by differentiating the inner function, which is x³ + 4. The derivative of x³ + 4 is 3x², and applying the chain rule, the derivative of √√x³ + 4 becomes 3x² * 2(x + 4)¹/2. Thus, the correct answer is "3x² * 2(x + 4)¹/2."

Question 4: The given function is y = 24x. To find its derivative, we differentiate it with respect to x. The derivative of 24x is simply 24, as the derivative of a constant multiplied by x is the constant. Therefore, the correct answer is y' = 24.

Learn more about derivative here: https://brainly.com/question/32963989

#SPJ11

In the problem of the 3-D harmonic oscillator, do the step of finding the recurrence relation for the coefficients of d²u the power series solution. That is, for the equation: p + (2l + 2-2p²) + (x − 3 − 2l) pu = 0, try a dp² du dp power series solution of the form u = Σk akp and find the recurrence relation for the coefficients.

Answers

The recurrence relation relates the coefficients ak, ak+1, and ak+2 for each value of k is (2k(k-1) + 1)ak + (2l + 2 - 2(k+1)²) * ak+1 + (x - 3 - 2l) * ak+2 = 0.

To find the recurrence relation for the coefficients of the power series solution, let's substitute the power series form into the differential equation and equate the coefficients of like powers of p.

Given the equation: p + (2l + 2 - 2p²) + (x - 3 - 2l) pu = 0

Let's assume the power series solution takes the form: u = Σk akp

Differentiating u with respect to p twice, we have:

d²u/dp² = Σk ak * d²pⁿ/dp²

The second derivative of p raised to the power n with respect to p can be calculated as follows:

d²pⁿ/dp² = n(n-1)p^(n-2)

Substituting this back into the expression for d²u/dp², we have:

d²u/dp² = Σk ak * n(n-1)p^(n-2)

Now let's substitute this expression for d²u/dp² and the power series form of u into the differential equation:

p + (2l + 2 - 2p²) + (x - 3 - 2l) * p * Σk akp = 0

Expanding and collecting like powers of p, we get:

Σk [(2k(k-1) + 1)ak + (2l + 2 - 2(k+1)²) * ak+1 + (x - 3 - 2l) * ak+2] * p^k = 0

Since the coefficient of each power of p must be zero, we obtain a recurrence relation for the coefficients:

(2k(k-1) + 1)ak + (2l + 2 - 2(k+1)²) * ak+1 + (x - 3 - 2l) * ak+2 = 0

This recurrence relation relates the coefficients ak, ak+1, and ak+2 for each value of k.

To learn more about recurrence relation visit:

brainly.com/question/31384990

#SPJ11

Summer Rental Lynn and Judy are pooling their savings to rent a cottage in Maine for a week this summer. The rental cost is $950. Lynn’s family is joining them, so she is paying a larger part of the cost. Her share of the cost is $250 less than twice Judy’s. How much of the rental fee is each of them paying?

Answers

Lynn is paying $550 and Judy is paying $400 for the cottage rental in Maine this summer.

To find out how much of the rental fee Lynn and Judy are paying, we have to create an equation that shows the relationship between the variables in the problem.

Let L be Lynn's share of the cost, and J be Judy's share of the cost.

Then we can translate the given information into the following system of equations:

L + J = 950 (since they are pooling their savings to pay the $950 rental cost)

L = 2J - 250 (since Lynn is paying $250 less than twice Judy's share)

To solve this system, we can use substitution.

We'll solve the second equation for J and then substitute that expression into the first equation:

L = 2J - 250

L + 250 = 2J

L/2 + 125 = J

Now we can substitute that expression for J into the first equation and solve for L:

L + J = 950

L + L/2 + 125 = 950

3L/2 = 825L = 550

So, Lynn is paying $550 and Judy is paying $400.

Learn more about substitution visit:

brainly.com/question/1132161

#SPJ11

Latoya bought a car worth $17500 on 3 years finance with 8% rate of interest. Answer the following questions. (2) Identify the letters used in the simple interest formula I-Prt. P-5 ... (2) Find the interest amount. Answer: 15 (3) Find the final balance. Answer: As (3) Find the monthly installment amount. Answer: 5

Answers

To answer the given questions regarding Latoya's car purchase, we can analyze the information provided.

(1) The letters used in the simple interest formula I = Prt are:

I represents the interest amount.

P represents the principal amount (the initial loan or investment amount).

r represents the interest rate (expressed as a decimal).

t represents the time period (in years).

(2) To find the interest amount, we can use the formula I = Prt, where:

P is the principal amount ($17,500),

r is the interest rate (8% or 0.08),

t is the time period (3 years).

Using the formula, we can calculate:

I = 17,500 * 0.08 * 3 = $4,200.

Therefore, the interest amount is $4,200.

(3) The final balance can be calculated by adding the principal amount and the interest amount:

Final balance = Principal + Interest = $17,500 + $4,200 = $21,700.

Therefore, the final balance is $21,700.

(4) The monthly installment amount can be calculated by dividing the final balance by the number of months in the finance period (3 years = 36 months):

Monthly installment amount = Final balance / Number of months = $21,700 / 36 = $602.78 (rounded to two decimal places).

Therefore, the monthly installment amount is approximately $602.78.

In conclusion, the letters used in the simple interest formula are I, P, r, and t. The interest amount is $4,200. The final balance is $21,700. The monthly installment amount is approximately $602.78.

Learn more about simple interest here: brainly.com/question/29639856

#SPJ11

Fill the blanks to write general solution for a linear systems whose augmented matrices was reduce to -3 0 0 3 0 6 2 0 6 0 8 0 -1 <-5 0 -7 0 0 0 3 9 0 0 0 0 0 General solution: +e( 0 0 0 0 20 pts

Answers

The general solution is:+e(13 - e3 + e4  e5  -3e6 - 3e7  e8  e9)

we have a unique solution, and the general solution is given by:

x1 = 13 - e3 + e4x2 = e5x3 = -3e6 - 3e7x4 = e8x5 = e9

where e3, e4, e5, e6, e7, e8, and e9 are arbitrary parameters.

To fill the blanks and write the general solution for a linear system whose augmented matrices were reduced to

-3 0 0 3 0 6 2 0 6 0 8 0 -1 -5 0 -7 0 0 0 3 9 0 0 0 0 0,

we need to use the technique of the Gauss-Jordan elimination method. The general solution of the linear system is obtained by setting all the leading variables (variables in the pivot positions) to arbitrary parameters and expressing the non-leading variables in terms of these parameters.

The rank of the coefficient matrix is also calculated to determine the existence of the solution to the linear system.

In the given matrix, we have 5 leading variables, which are the pivots in the first, second, third, seventh, and ninth columns.

So we need 5 parameters, one for each leading variable, to write the general solution.

We get rid of the coefficients below and above the leading variables by performing elementary row operations on the augmented matrix and the result is given below.

-3 0 0 3 0 6 2 0 6 0 8 0 -1 -5 0 -7 0 0 0 3 9 0 0 0 0 0

Adding 2 times row 1 to row 3 and adding 5 times row 1 to row 2, we get

-3 0 0 3 0 6 2 0 0 0 3 0 -1 10 0 -7 0 0 0 3 9 0 0 0 0 0

Dividing row 1 by -3 and adding 7 times row 1 to row 4, we get

1 0 0 -1 0 -2 -2 0 0 0 -1 0 1 -10 0 7 0 0 0 -3 -9 0 0 0 0 0

Adding 2 times row 5 to row 6 and dividing row 5 by -3,

we get1 0 0 -1 0 -2 0 0 0 0 1 0 -1 10 0 7 0 0 0 -3 -9 0 0 0 0 0

Dividing row 3 by 3 and adding row 3 to row 2, we get

1 0 0 -1 0 0 0 0 0 0 1 0 -1 10 0 7 0 0 0 -3 -3 0 0 0 0 0

Adding 3 times row 3 to row 1,

we get

1 0 0 0 0 0 0 0 0 0 1 0 -1 13 0 7 0 0 0 -3 -3 0 0 0 0 0

So, we see that the rank of the coefficient matrix is 5, which is equal to the number of leading variables.

Thus, we have a unique solution, and the general solution is given by:

x1 = 13 - e3 + e4x2 = e5x3 = -3e6 - 3e7x4 = e8x5 = e9

where e3, e4, e5, e6, e7, e8, and e9 are arbitrary parameters.

Hence, the general solution is:+e(13 - e3 + e4  e5  -3e6 - 3e7  e8  e9)

The general solution is:+e(13 - e3 + e4  e5  -3e6 - 3e7  e8  e9)

learn more about coefficient matrix here

https://brainly.com/question/22964625

#SPJ11

In the diagram below, how many different paths from A to B are possible if you can only move forward and down? A 4 B 3. A band consisting of 3 musicians must include at least 2 guitar players. If 7 pianists and 5 guitar players are trying out for the band, then the maximum number of ways that the band can be selected is 50₂ +503 C₂ 7C1+5C3 C₂ 7C15C17C2+7C3 D5C₂+50₁ +5Co

Answers

There are 35 different paths from A to B in the diagram. This can be calculated using the multinomial rule, which states that the number of possible arrangements of n objects, where there are r1 objects of type A, r2 objects of type B, and so on, is given by:

n! / r1! * r2! * ...

In this case, we have n = 7 objects (the 4 horizontal moves and the 3 vertical moves), r1 = 4 objects of type A (the horizontal moves), and r2 = 3 objects of type B (the vertical moves). So, the number of paths is:

7! / 4! * 3! = 35

The multinomial rule can be used to calculate the number of possible arrangements of any number of objects. In this case, we have 7 objects, which we can arrange in 7! ways. However, some of these arrangements are the same, since we can move the objects around without changing the path. For example, the path AABB is the same as the path BABA. So, we need to divide 7! by the number of ways that we can arrange the objects without changing the path.

The number of ways that we can arrange 4 objects of type A and 3 objects of type B is 7! / 4! * 3!. This gives us 35 possible paths from A to B.

To learn more about multinomial rule click here : brainly.com/question/32616196

#SPJ11

The answer above is NOT correct. Find the orthogonal projection of onto the subspace W of R4 spanned by -1632 -2004 projw(v) = 10284 -36 v = -1 -16] -4 12 16 and 4 5 -26

Answers

Therefore, the orthogonal projection of v onto the subspace W is approximately (-32.27, -64.57, -103.89, -16.71).

To find the orthogonal projection of vector v onto the subspace W spanned by the given vectors, we can use the formula:

projₓy = (y⋅x / ||x||²) * x

where x represents the vectors spanning the subspace, y represents the vector we want to project, and ⋅ denotes the dot product.

Let's calculate the orthogonal projection:

Step 1: Normalize the spanning vectors.

First, we normalize the spanning vectors of W:

u₁ = (-1/√6, -2/√6, -3/√6, -2/√6)

u₂ = (4/√53, 5/√53, -26/√53)

Step 2: Calculate the dot product.

Next, we calculate the dot product of the vector we want to project, v, with the normalized spanning vectors:

v⋅u₁ = (-1)(-1/√6) + (-16)(-2/√6) + (-4)(-3/√6) + (12)(-2/√6)

= 1/√6 + 32/√6 + 12/√6 - 24/√6

= 21/√6

v⋅u₂ = (-1)(4/√53) + (-16)(5/√53) + (-4)(-26/√53) + (12)(0/√53)

= -4/√53 - 80/√53 + 104/√53 + 0

= 20/√53

Step 3: Calculate the projection.

Finally, we calculate the orthogonal projection of v onto the subspace W:

projW(v) = (v⋅u₁) * u₁ + (v⋅u₂) * u₂

= (21/√6) * (-1/√6, -2/√6, -3/√6, -2/√6) + (20/√53) * (4/√53, 5/√53, -26/√53)

= (-21/6, -42/6, -63/6, -42/6) + (80/53, 100/53, -520/53)

= (-21/6 + 80/53, -42/6 + 100/53, -63/6 - 520/53, -42/6)

= (-10284/318, -20544/318, -33036/318, -5304/318)

≈ (-32.27, -64.57, -103.89, -16.71)

To know more about orthogonal projection,

https://brainly.com/question/30031077

#SPJ11

Find two non-zero vectors that are both orthogonal to vector u = 〈 1, 2, -3〉. Make sure your vectors are not scalar multiples of each other.

Answers

Two non-zero vectors orthogonal to vector u = 〈1, 2, -3〉 are v = 〈3, -2, 1〉 and w = 〈-1, 1, 1〉.

To find two non-zero vectors orthogonal to vector u = 〈1, 2, -3〉, we can use the property that the dot product of two orthogonal vectors is zero. Let's denote the two unknown vectors as v = 〈a, b, c〉 and w = 〈d, e, f〉. We want to find values for a, b, c, d, e, and f such that the dot product of u with both v and w is zero.

We have the following system of equations:

1a + 2b - 3c = 0,

1d + 2e - 3f = 0.

To find a particular solution, we can choose arbitrary values for two variables and solve for the remaining variables. Let's set c = 1 and f = 1. Solving the system of equations, we find a = 3, b = -2, d = -1, and e = 1.

Therefore, two non-zero vectors orthogonal to u = 〈1, 2, -3〉 are v = 〈3, -2, 1〉 and w = 〈-1, 1, 1〉. These vectors are not scalar multiples of each other, as their components differ.

Learn more about vectors here:

https://brainly.com/question/24256726

#SPJ11

The percentage of the U.S. national
income generated by nonfarm proprietors between 1970
and 2000 can be modeled by the function f given by
P(x) = (13x^3 - 240x^2 - 2460x + 585000) / 75000
where x is the number of years since 1970. (Source: Based
on data from www.bls.gov.) Sketch the graph of this
function for 0 5 x ≤ 40.

Answers

To sketch the graph of the function f(x) = (13x^3 - 240x^2 - 2460x + 585000) / 75000 for 0 ≤ x ≤ 40, we can follow these steps:

1. Find the y-intercept: Substitute x = 0 into the equation to find the value of f(0).

  f(0) = 585000 / 75000

  f(0) = 7.8

2. Find the x-intercepts: Set the numerator equal to zero and solve for x.

  13x^3 - 240x² - 2460x + 585000 = 0

  You can use numerical methods or a graphing calculator to find the approximate x-intercepts. Let's say they are x = 9.2, x = 15.3, and x = 19.5.

3. Find the critical points: Take the derivative of the function and solve for x when f'(x) = 0.

  f'(x) = (39x² - 480x - 2460) / 75000

  Set the numerator equal to zero and solve for x.

  39x² - 480x - 2460 = 0

  Again, you can use numerical methods or a graphing calculator to find the approximate critical points. Let's say they are x = 3.6 and x = 16.4.

4. Determine the behavior at the boundaries and critical points:

  - As x approaches 0, f(x) approaches 7.8 (the y-intercept).

  - As x approaches 40, calculate the value of f(40) using the given equation.

  - Evaluate the function at the x-intercepts and critical points to determine the behavior of the graph in those regions.

5. Plot the points: Plot the y-intercept, x-intercepts, and critical points on the graph.

6. Sketch the curve: Connect the plotted points smoothly, considering the behavior at the boundaries and critical points.

Learn more about function here:

brainly.com/question/30721594

#SPJ11

If y(x) is the solution to the initial value problem y' - y = x² + x, y(1) = 2. then the value y(2) is equal to: 06 02 0-1

Answers

To find the value of y(2), we need to solve the initial value problem and evaluate the solution at x = 2.

The given initial value problem is:

y' - y = x² + x

y(1) = 2

First, let's find the integrating factor for the homogeneous equation y' - y = 0. The integrating factor is given by e^(∫-1 dx), which simplifies to [tex]e^(-x).[/tex]

Next, we multiply the entire equation by the integrating factor: [tex]e^(-x) * y' - e^(-x) * y = e^(-x) * (x² + x)[/tex]

Applying the product rule to the left side, we get:

[tex](e^(-x) * y)' = e^(-x) * (x² + x)[/tex]

Integrating both sides with respect to x, we have:

∫ ([tex]e^(-x)[/tex]* y)' dx = ∫[tex]e^(-x)[/tex] * (x² + x) dx

Integrating the left side gives us:

[tex]e^(-x)[/tex] * y = -[tex]e^(-x)[/tex]* (x³/3 + x²/2) + C1

Simplifying the right side and dividing through by e^(-x), we get:

y = -x³/3 - x²/2 +[tex]Ce^x[/tex]

Now, let's use the initial condition y(1) = 2 to solve for the constant C:

2 = -1/3 - 1/2 + [tex]Ce^1[/tex]

2 = -5/6 + Ce

C = 17/6

Finally, we substitute the value of C back into the equation and evaluate y(2):

y = -x³/3 - x²/2 + (17/6)[tex]e^x[/tex]

y(2) = -(2)³/3 - (2)²/2 + (17/6)[tex]e^2[/tex]

y(2) = -8/3 - 2 + (17/6)[tex]e^2[/tex]

y(2) = -14/3 + (17/6)[tex]e^2[/tex]

So, the value of y(2) is -14/3 + (17/6)[tex]e^2.[/tex]

Learn more about integrals here:

https://brainly.com/question/30094386

#SPJ11

What is the equation function of cos that has an amplitude of 4 a period of 2 and has a point at (0,2)?

Answers

The equation function of cosine with an amplitude of 4, a period of 2, and a point at (0,2) is y = 4cos(2πx) + 2.

The general form of a cosine function is y = A cos(Bx - C) + D, where A represents the amplitude, B is related to the period, C indicates any phase shift, and D represents a vertical shift.

In this case, the given amplitude is 4, which means the graph will oscillate between -4 and 4 units from its centerline. The period is 2, which indicates that the function completes one full cycle over a horizontal distance of 2 units.

To incorporate the given point (0,2), we know that when x = 0, the corresponding y-value should be 2. Since the cosine function is at its maximum at x = 0, the vertical shift D is 2 units above the centerline.

Using these values, the equation function becomes y = 4cos(2πx) + 2, where 4 represents the amplitude, 2π/2 simplifies to π in the argument of cosine, and 2 is the vertical shift. This equation satisfies the given conditions of the cosine function.

Learn more about cosine here:

https://brainly.com/question/29114352

#SPJ11

Find the value of a such that: 10 10 a) ²0 16²20-2i 520 i

Answers

To find the value of a in the given expression 10²0 - 16²20 - 2i + 520i = a, we need to simplify the expression and solve for a.

Let's simplify the expression step by step:

10²0 - 16²20 - 2i + 520i

= 100 - 2560 - 2i + 520i

= -2460 + 518i

Now, we have the simplified expression -2460 + 518i. This expression is equal to a. Therefore, we can set this expression equal to a:

a = -2460 + 518i

So the value of a is -2460 + 518i.

Learn more about value here:

https://brainly.com/question/30145972

#SPJ11

The production at a manufacturing company will use a certain solvent for part of its production process in the next month. Assume that there is a fixed ordering cost of $1,600 whenever an order for the solvent is placed and the solvent costs $60 per liter. Due to short product life cycle, unused solvent cannot be used in the next month. There will be a $15 disposal charge for each liter of solvent left over at the end of the month. If there is a shortage of solvent, the production process is seriously disrupted at a cost of $100 per liter short. Assume that the demand is governed by a continuous uniform distribution varying between 500 and 800 liters. (a) What is the optimal order-up-to quantity? (b) What is the optimal ordering policy for arbitrary initial inventory level r? (c) Assume you follow the inventory policy from (b). What is the total expected cost when the initial inventory I = 0? What is the total expected cost when the initial inventory x = 700? (d) Repeat (a) and (b) for the case where the demand is discrete with Pr(D = 500) = 1/4, Pr(D=600) = 1/2, and Pr(D=700) = Pr(D=800) = 1/8.

Answers

(a) The optimal order-up-to quantity is given by Q∗ = √(2AD/c) = 692.82 ≈ 693 liters.

Here, A is the annual demand, D is the daily demand, and c is the ordering cost.

In this problem, the demand for the next month is to be satisfied. Therefore, the annual demand is A = 30 × D,

where

D ~ U[500, 800] with μ = 650 and σ = 81.65. So, we have A = 30 × E[D] = 30 × 650 = 19,500 liters.

Then, the optimal order-up-to quantity is Q∗ = √(2AD/c) = √(2 × 19,500 × 1,600/60) = 692.82 ≈ 693 liters.

(b) The optimal policy for an arbitrary initial inventory level r is given by: Order quantity Q = Q∗ if I_t < r + Q∗, 0 if I_t ≥ r + Q∗

Here, the order quantity is Q = Q∗ = 693 liters.

Therefore, we need to place an order whenever the inventory level reaches the reorder point, which is given by r + Q∗.

For example, if the initial inventory is I = 600 liters, then we have r = 600, and the first order is placed at the end of the first day since I_1 = r = 600 < r + Q∗ = 600 + 693 = 1293. (c) The expected total cost for an initial inventory level of I = 0 is $40,107.14, and the expected total cost for an initial inventory level of I = 700 is $39,423.81.

The total expected cost is the sum of the ordering cost, the holding cost, and the shortage cost.

Therefore, we have: For I = 0, expected total cost =

(1600)(A/Q∗) + (c/2)(Q∗) + (I/2)(h) + (P_s)(E[shortage]) = (1600)(19500/693) + (60/2)(693) + (0/2)(10) + (100)(E[max(0, D − Q∗)]) = 40,107.14 For I = 700, expected total cost = (1600)(A/Q∗) + (c/2)(Q∗) + (I/2)(h) + (P_s)(E[shortage]) = (1600)(19500/693) + (60/2)(693) + (50)(10) + (100)(E[max(0, D − Q∗)]) = 39,423.81(d)

The optimal order-up-to quantity is Q∗ = 620 liters, and the optimal policy for an arbitrary initial inventory level r is given by:

Order quantity Q = Q∗ if I_t < r + Q∗, 0 if I_t ≥ r + Q∗

Here, the demand for the next month is discrete with Pr(D = 500) = 1/4, Pr(D=600) = 1/2, and Pr(D=700) = Pr(D=800) = 1/8.

Therefore, we have A = 30 × E[D] = 30 × [500(1/4) + 600(1/2) + 700(1/8) + 800(1/8)] = 16,950 liters.

Then, the optimal order-up-to quantity is Q∗ = √(2AD/c) = √(2 × 16,950 × 1,600/60) = 619.71 ≈ 620 liters.

learn more about inventory level here

https://brainly.com/question/31728780

#SPJ11

This table represents a quadratic function with a vertex at (1, 0). What is the
average rate of change for the interval from x= 5 to x = 6?
A 9
OB. 5
C. 7
D. 25
X
-
2
3
4
5
0
4
9
16
P

Answers

Answer: 9

Step-by-step explanation:

Answer:To find the average rate of change for the interval from x = 5 to x = 6, we need to calculate the change in the function values over that interval and divide it by the change in x.

Given the points (5, 0) and (6, 4), we can calculate the change in the function values:

Change in y = 4 - 0 = 4

Change in x = 6 - 5 = 1

Average rate of change = Change in y / Change in x = 4 / 1 = 4

Therefore, the correct answer is 4. None of the given options (A, B, C, or D) match the correct answer.

Step-by-step explanation:

Suppose A, B, and C are sets and A Ø. Prove that Ax CCA x B if and only if CC B.

Answers

The statement is as follows: "For sets A, B, and C, if A is empty, then A cross (C cross B) if and only if C cross B is empty". If A is the empty set, then the cross product of C and B is empty if and only if B is empty.

To prove the statement, we will use the properties of the empty set and the definition of the cross product.

First, assume A is empty. This means that there are no elements in A.

Now, let's consider the cross product A cross (C cross B). By definition, the cross product of two sets A and B is the set of all possible ordered pairs (a, b) where a is an element of A and b is an element of B. Since A is empty, there are no elements in A to form any ordered pairs. Therefore, A cross (C cross B) will also be empty.

Next, we need to prove that C cross B is empty if and only if B is empty.

Assume C cross B is empty. This means that there are no elements in C cross B, and hence, no ordered pairs can be formed. If C cross B is empty, it implies that C is also empty because if C had any elements, we could form ordered pairs with those elements and elements from B.

Now, if C is empty, then it follows that B must also be empty. If B had any elements, we could form ordered pairs with those elements and elements from the empty set C, contradicting the assumption that C cross B is empty.

Therefore, we have shown that if A is empty, then A cross (C cross B) if and only if C cross B is empty, which can also be written as CC B.

Learn more about cross product here:

https://brainly.com/question/30829649

#SPJ11

Someone help please!

Answers

The graph A is the graph of the function [tex]f(x) = -x^4 + 9[/tex].

What is the end behavior of a function?

The end behavior of a function refers to how the function behaves as the input variable approaches positive or negative infinity.

The function in this problem is given as follows:

[tex]f(x) = -x^4 + 9[/tex]

It has a negative leading coefficient with an even root, meaning that the function will approach negative infinity both to the left and to the right of the graph.

Hence the graph A is the graph of the function [tex]f(x) = -x^4 + 9[/tex].

More can be learned about the end behavior of a function at brainly.com/question/1365136

#SPJ1

You will begin with a relatively standard calculation Consider a concave spherical mirror with a radius of curvature equal to 60.0 centimeters. An object 6 00 centimeters tall is placed along the axis of the mirror, 45.0 centimeters from the mirror. You are to find the location and height of the image. Part G What is the magnification n?. Part J What is the value of s' obtained from this new equation? Express your answer in terms of s.

Answers

The magnification n can be found by using the formula n = -s'/s, where s' is the image distance and s is the object distance. The value of s' obtained from this new equation can be found by rearranging the formula to s' = -ns.


To find the magnification n, we can use the formula n = -s'/s, where s' is the image distance and s is the object distance. In this case, the object is placed 45.0 centimeters from the mirror, so s = 45.0 cm. The magnification can be found by calculating the ratio of the image distance to the object distance. By rearranging the formula, we get n = -s'/s.

To find the value of s' obtained from this new equation, we can rearrange the formula n = -s'/s to solve for s'. This gives us s' = -ns. By substituting the value of n calculated earlier, we can find the value of s'. The negative sign indicates that the image is inverted.

Using the given values, we can now calculate the magnification and the value of s'. Plugging in s = 45.0 cm, we find that s' = -ns = -(2/3)(45.0 cm) = -30.0 cm. This means that the image is located 30.0 centimeters from the mirror and is inverted compared to the object.

To know more about Image visit.

https://brainly.com/question/30725545

#SPJ11

Assume that ACB. Prove that |A| ≤ |B|.

Answers

The statement to be proved is which means that if A is a subset of C and C is a subset of B, then the cardinality (number of elements) of set A is less than or equal to the cardinality of set B. Hence, we have proved that if ACB, then |A| ≤ |B|.

To prove that |A| ≤ |B|, we need to show that there exists an injective function (one-to-one mapping) from A to B. Since A is a subset of C and C is a subset of B, we can construct a composite function that maps elements from A to B. Let's denote this function as f: A → C → B, where f(a) = c and g(c) = b.

Since A is a subset of C, for each element a ∈ A, there exists an element c ∈ C such that f(a) = c. Similarly, since C is a subset of B, for each element c ∈ C, there exists an element b ∈ B such that g(c) = b. Therefore, we can compose the functions f and g to create a function h: A → B, where h(a) = g(f(a)) = b.

Since the function h maps elements from A to B, and each element in A is uniquely mapped to an element in B, we have established an injective function. By definition, an injective function implies that |A| ≤ |B|, as it shows that there are at least as many or fewer elements in A compared to B.

Hence, we have proved that if ACB, then |A| ≤ |B|.

Learn more about  injective function here:

https://brainly.com/question/13656067

#SPJ11

Other Questions
the ______ pattern is used when reading via a website. At the beginning of 2020, Acatela Wholesale Corp. had inventory of $337,000. It ended the year with inventory of $276,000 after purchasing $558,000 worth of inventory. The cost of goods sold totalled $723,000. Determine the inventory turnover ratio and the days' sales in inventory. Do not enter dollar signs or commas in the input boxes. For the inventory turnover ratio, round your answer to 2 decimal places. Inventory Turnover = For the days' sales in inventory, round your answer to the nearest whole number. Days' Sales in Inventory = days Check How does a producer-owned ethanol cooperative impose theconvenience yield and what are the costs of not being able toaccess corn stocks for ethanol processing? Linear Application The function V(x) = 19.4 +2.3a gives the value (in thousands of dollars) of an investment after a months. Interpret the Slope in this situation. The value of this investment is select an answer at a rate of Select an answer O Which one of the following is NOT included in cash flow from assets?A. accounts payableB. inventory salesC. interest expenseD. cash account Advertising is classified according to its purpose. Which of the following is NOT a purpose of advertising? 1) To Persuade 2) To Inform 3) To Degrade 4) To Remind What is contract termination? Under what circumstances can acontract be terminated?What are contract amendments? How can a contract be amended? The income statement for Pepe Serna Company for the year ended December 31,2022 is as follows: Prepare the entries to close the revenue and expense accounts at December 31, 2022. (Credit account titles are automatically indented when the amount is entered. Do not indent manually.) Date Account Titles and Explanation Dec. 31 (To close revenue accounts) Dec. 31 (To close expense accounts) State the cardinality of the following. Use No and c for the cardinalities of N and R respectively. (No justifications needed for this problem.) 1. NX N 2. R\N 3. {x R : x + 1 = 0} to say that food-foraging societies are egalitarian means that Describe how improvement, learning and innovation would contribute to sustained success of an organization. Golden Gate Construction Associates, a real estate developer and building contractor in San Francisco, has two sources of long-term capital: debt and equity. The cost to Golden Gate of issuing debt is the after-tax cost of the interest payments on the debt, taking into account the fact that the interest payments are tax deductible. The cost of Golden Gates equity capital is the investment opportunity rate of Golden Gates investors, that is, the rate they could earn on investments of similar risk to that of investing in Golden Gate Construction Associates. The interest rate on Golden Gates $85 million of long-term debt is 8 percent, and the companys combined federal and state income tax rates amount to 30 percent. The cost of Golden Gates equity capital is 16 percent. Moreover, the market value ______________ of Golden Gates equity is $153 million. A $1,000 par value bond with a market price of $985 and a coupon interest rate of 12 percent. Flotation costs for a new issue would be approximately 6 percent of market price. The bond mature in 12 years, and the marginal corporate tax rate is 17 percent. (7 marks) A preferred stock selling for $110 with an annual dividend payment of $9. The floatation cost will be $8 per share. The company's marginal tax rate is 17 percent. (3 marks) Determine the missing amounts. Unit Selling Price 1. 2. 3. $ $750 $450 (e) $ $ Unit Variable: Costs $375 (c) (1) $ Unit Contribution Margin $153 $760 (a) Contril it Selling Price $750 $450 (e) S $ Unit Variable Costs $375 (c) (1) $ Unit Contribution Margin $153 $760 (a) Contribution Margin Ratio % (b) % (d) 40 % artists use found objects to create artwork by a process called a crescent-shaped dune with anchoring vegetation is called a CIS 312 End of Unit 3 Assessment (PCPro6.0) A user is trying to log into Windows on her notebook computer. She enters the correct password for her user account, but the system won't let her authenticate, claiming the wrong password has been entered. Which of the following is MOST likely causing this problem? She has turned Num Lock on, causing the keyboard to register numbers instead of letters. The CPU is in power-save mode, causing all login attempts to be denied. She has entered the wrong password too many times, causing Intruder Detection in Windows to lock the system. The keyboard must be replaced. The Scroll Lock key has been pressed, locking all input from the keyboard. Find the points on the cone 2 = x + y that are closest to the point (-1, 3, 0). Please show your answers to at least 4 decimal places. the balances that appear on the post-closing trial balance will match the The specified solution ysp = is given as: -21 11. If y=Ae +Be 2 is the solution of a homogenous second order differential equation, then the differential equation will be: 12. If the general solution is given by YG (At+B)e' +sin(t), y(0)=1, y'(0)=2, the specified solution | = is: