Answer:
Standard deviation = 2.2360679774998
Step-by-step explanation:
We are asked to find the Standard deviation of a samples of speeches as an awards.
The formula for sample standard deviation is given as:
√[(x - μ)²/N - 1 ]
Step 1
We find the mean (μ)
The mean of the sample =>
= Sum of term/ Number of terms
= (3 + 7 + 5 + 4 + 1)/5
= 20/5
= 4
Step 2
Find the Standard deviation of the sample
√[(x - μ)²/N - 1 ]
N = number of samples or terms = 5
= √[(3 - 4) ² + (7 - 4)² + (5 - 4)² +(4 - 4)² +(1 - 4)²/ 4]
= √ (1 ² + 3² + -1² + 0² + -3²/4)
= √( 1 + 9 + 1 + 0 + 9/4)
= √20/5 - 1
= √5
= 2.2360679774998
The standard deviation of the sample = 2.2360679774998
Given a dataset with the following properties:
mean = 50
median = 40
standard deviation = 5
What is the shape of the distribution?
Answer:
The distribution is positively skewed.
Step-by-step explanation:
A measure of skewness is defined in such a way that the measure should always be zero when the distribution is symmetric and measure should be a pure number i.e independent of origin and units of measurement.
The shape of the distribution can be found by finding the coefficient of skewness.
The coefficient of skewness can be found by
Sk= 3(Mean-Median)/ Standard Deviation
Sk= 3( 50-40)5= 30/5=6
The shape will be positively skewed.
In a positively skewed distribution the mean > median > mode. It has a long right tail.
Using the skewness formula, it is found that the distribution is right-skewed.
------------------
The skewness of a data-set with mean M, median [tex]M_e[/tex] and standard deviation s is given by:[tex]S = \frac{3(M - M_e)}{s}[/tex]
If |S| < 0.5, the distribution is said to be symmetric.If S <-0.5, the distribution is left-skewed.If S > 0.5, the distribution is right-skewed.------------------
Mean of 50, thus, [tex]M = 50[/tex]Median of 40, thus [tex]M_e = 40[/tex]Standard deviation of 5, thus, [tex]s = 5[/tex]The coefficient is:
[tex]S = \frac{3(M - M_e)}{s} = \frac{3(50 - 40)}{5} = \frac{30}{5} = 6[/tex]
Thus, the distribution is right-skewed.
A similar problem is given at https://brainly.com/question/24415645
The scores for all the Algebra 1 students at Miller High on a test are normally distributed with a mean of 82 and a standard deviation of 7. What percent of students made scores above 89?
Answer:
15.7% of students made above an 89.
Step-by-step explanation:
If the data is normally distributed, the standard deviation is 7, and the mean is 82, then about 68.2% of students made between 75 and 89. 13.6% made between 90 and 96, and 2.1% made over 96. 13.6+2.1=15.7%
which rate can you set 7 miles over 1 hour equal to in order to find the distance traveled in 49 hours at 7 miles per hour
Answer:
Step-by-step explanation:
time = 49 hours
speed = 7 miles/hour
speed = distance / time
∴ distance = speed × time
= 7 × 49
= 343 miles
Simple math! What is the issue with my work? I got it wrong.
Answer:
x = 6
Step-by-step explanation:
In the third line of the solution on right side of the equal sign, middle term should be 8x instead of 4x.
The final value of x will be 6.
[tex] PQ^2 + QO^2 = PO^2 \\
x^2 + 8^2 = (4+x)^2 \\
x^2 + 64 = 16 + 8x + x^2 \\
64 = 16 + 8x \\
64 - 16 = 8x \\
48 = 8x \\
6 = x\\[/tex]
Decide whether the pair of ratios form a proportion 15/12=4.5/3.6
Answer: Yes they form a proportion. The given equation is a true equation.
==========================================
Explanation:
The idea is that if we have
a/b = c/d
then that it is the same as
a*d = b*c
This is known as cross multiplication. We'll use this rule to get
15/12 = 4.5/3.6
15*3.6 = 12*4.5
54 = 54
We got the same value on both sides, meaning that the last equation is true. Consequently, it means the first equation is true as well (all three equations are true).
--------
You could also use your calculator to see that
15/12 = 1.25
4.5/3.6 = 1.25
showing that 15/12 = 4.5/3.6 is a true equation and the ratios form a proportion.
Answer:
15/12=4.5/3.6 = True
Step-by-step explanation:
Simplify the following: Left-hand
15/12
Hint: | Reduce 15/12 to lowest terms. Start by finding the GCD of 15 and 12.
The gcd of 15 and 12 is 3, so 15/12 = (3×5)/(3×4) = 3/3×5/4 = 5/4:
Answer: 5/4
______________________________
Approximate the following:
4.5/3.6
Hint: | Express 4.5/3.6 in decimal form.
4.5/3.6 = 1.25:
Answer: 1.25 = 5/4
Given: x - 5 > -2. Choose the solution set.
Answer: x>3
Step-by-step explanation:
x-5>2
x>+5-2
x>3
The length of a rectangle is three times its width. If the perimeter of the rectangle is 160 cm, what are the dimensions of this rectangle?
Answer:
The dimensions or Area of the rectangle is 1200cm².
Suppose we want to test the color distribution claim on the M&M’s website that a bag of plain M&M’s is made up of 10% blue, 10% orange, 10% green, 20% red, 20% yellow, and 30% brown. We select a sample of 400 plain M&M’s and found the following: Color Blue Orange Green Red Yellow Brown Frequency 30 48 55 66 70 131
Is there evidence to doubt the color distribution claimed by the website? Use =0.05
Answer:
Calculated χ² = 13.425
χ² (5,0.025) >14.45 and χ²(5,0.975) <1.24
The given data does not fall in the critical region so we accept H0 and conclude there is no evidence to doubt the color distribution claimed by the website.
Step-by-step explanation:
Color Blue Orange Green Red Yellow Brown
Frequency 30 48 55 66 70 131
Expected 40 40 40 80 80 120
H0: The bag of plain M&Ms is made up of 10% blue, 10% orange, 10% green, 20% red, 20% yellow, and 30% brown
Ha: The color distribution is not equal to the distribution stated in the null hypothesis.
Calculate chi square
χ² = (30-40)² /40 + (48-40)²/40 + (55-40)²/40 + (66-80)²/80 + (70-80)²/80 + (131-120)²/120
χ² = 2.5 + 1.6 + 5.625 + 2.45 + 1.25= 13.425
The critical region for χ² for 5 degrees of freedom with ∝= 0.05 is
χ² (5,0.025) >14.45 and χ²(5,0.975) <1.24
The given data does not fall in the critical region so we accept H0 and conclude there is no evidence to doubt the color distribution claimed by the website.
Last question of the day!!
Answer:
Correct options are 2, 5 and 7.
Step-by-step explanation:
Consider the given vertices of triangle are A(-3,-3), B(-3,2) and C(1,2).
Distance formula:
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Using distance formula, we get
[tex]AB=\sqrt{(-3-(-3))^2+(2-(-3))^2}[/tex]
[tex]AB=\sqrt{(0)^2+(5)^2}[/tex]
[tex]AB=\sqrt{25}[/tex]
[tex]AB=5[/tex]
Similarly,
[tex]BC=\sqrt{(1-(-3))^2+(2-2)^2}=4[/tex]
[tex]AC=\sqrt{(1-(-3))^2+(2-(-3))^2}=\sqrt{16+25}=\sqrt{41}[/tex]
From the above calculation it is clear that AC>AB and AC>BC.
According to Pythagoras theorem, in a right angle triangle, the square of largest side is equal to the sum of squares of two small sides.
[tex]hypotenuse^2=base^2+perpendicular^2[/tex]
[tex]AC^2=(\sqrt{41})^2=41[/tex]
[tex]AB^2+BC^2=(5)^2+4^2=24+16=41=AC^2[/tex]
So, given triangle is a right angle triangle and AC is its hypotenuse.
Therefore, the correct options are 2, 5 and 7.
Which rule describes this transformation? (Zoom in to see it clearly)
Answer:
(x,y) -> (x+6, y-3)
Step-by-step explanation:
I followed c and it translated like the last ans choice.
Musah stands at the centre of a rectangular field. He first takes 50 steps north, then 25 steps
west and finally 50 steps on a bearing of 3150
.
i. Sketch Musah’s movement
ii. How far west is Musah’s final point from the centre?
iii. How far north is Musah’s final point from the centre?
iv. Describe how you would guide a JHS student to find the bearing and distance of
Musah’s final point from the centre.
Answer:
ii. 75 steps
iii. 75 steps
iv. 106 steps, and [tex]315^{0}[/tex]
Step-by-step explanation:
Let Musah's starting point be A, his waiting point after taking 50 steps northward and 25 steps westward be B, and his stopping point be C.
ii. From the second attachment, Musah's distance due west from A to C (AD) can be determined as;
bearing at B = [tex]315^{0}[/tex], therefore <BCD = [tex]45^{0}[/tex]
To determine distance AB,
[tex]/AB/^{2}[/tex] = [tex]/50/^{2}[/tex] + [tex]/25/^{2}[/tex]
= 25000 + 625
= 3125
AB = [tex]\sqrt{3125}[/tex]
= 55.90
AB ≅ 56 steps
Thus, AC = 50 steps + 56 steps
= 106 steps
From ΔACD,
Sin [tex]45^{0}[/tex] = [tex]\frac{x}{106}[/tex]
⇒ x = 106 × Sin [tex]45^{0}[/tex]
= 74.9533
≅ 75 steps
Musah's distance west from centre to final point is 75 steps
iii. From the secon attachment, Musah's distance north, y, can be determined by;
Cos [tex]45^{0}[/tex] = [tex]\frac{y}{106}[/tex]
⇒ y = 106 × Cos [tex]45^{0}[/tex]
= 74.9533
≅ 75 steps
Musah's distance north from centre to final point is 75 steps.
iv. Musah's distance from centre to final point is AC = AB + BC
= 50 steps + 56 steps
= 106 steps
From ΔACD,
Tan θ = [tex]\frac{75}{75}[/tex]
= 1.0
θ = [tex]Tan^{-1}[/tex] 1.0
= [tex]45^{0}[/tex]
Musah's bearing from centre to final point = [tex]45^{0}[/tex] + [tex]270^{0}[/tex]
= [tex]315^{0}[/tex]
If the sum of the daily unpaid balances is $7,812 over a 31-day billing cycle, what is the average daily balance?
Answer:
252
Step-by-step explanation:
Divide 7812 by 31 and we get the average daily answer... Hope this helps!!
PLS HELP:Find all the missing elements:
Answer:
b = 9.5 , c = 15Step-by-step explanation:
For b
To find side b we use the sine rule
[tex] \frac{ |a| }{ \sin(A) } = \frac{ |b| }{ \sin(B) } [/tex]a = 7
A = 23°
B = 32°
b = ?
Substitute the values into the above formula
That's
[tex] \frac{7}{ \sin(23) } = \frac{ |b| }{ \sin(32) } [/tex][tex] |b| \sin(23) = 7 \sin(32) [/tex]Divide both sides by sin 23°
[tex] |b| = \frac{7 \sin(32) }{ \sin(23) } [/tex]b = 9.493573
b = 9.5 to the nearest tenthFor cTo find side c we use sine rule
[tex] \frac{ |a| }{ \sin(A) } = \frac{ |c| }{ \sin(C) } [/tex]C = 125°
So we have
[tex] \frac{7}{ \sin(23) } = \frac{ |c| }{ \sin(125) } [/tex][tex] |c| \sin(23) = 7 \sin(125) [/tex]Divide both sides by sin 23°
[tex] |c| = \frac{7 \sin(125) }{ \sin(23) } [/tex]c = 14.67521
c = 15.0 to the nearest tenthHope this helps you
The solution system to 3y-2x=-9 and y=-2x+5
Answer:
[tex]\boxed{(3,-1)}[/tex]
Step-by-step explanation:
Hey there!
Well to find the solution the the given system,
3y - 2x = -9
y = -2x + 5
So to find x lets plug in -2x + 5 for y in 3y - 2x = -9.
3(-2x + 5) - 2x = -9
Distribute
-6x + 15 - 2x = -9
-8x + 15 = -9
-15 to both sides
-8x = -24
Divide -8 to both sides
x = 3
Now that we have x which is 3, we can plug in 3 for x in y = -2x + 5.
y = -2(3) + 5
y = -6 + 5
y = -1
So the solution is (3,-1).
Hope this helps :)
Multiple-Choice Questions
1. In 1995, Diana read 10 English books and 7 French books. In 1996, she read twice as many French books as English books. If 60% of the books that she read during the 2 years were French, how many English and French books did she read in 1996?
(A) 16
(B) 26
(0) 32
(D) 48
Answer:
(D) 48
Step-by-step explanation:
Let English book = x
Let french book = y
In 1995 x= 10
Y= 7
In 1996
Y = 2x
Total book read in the two years
0.6(Total) = y
0.4(total) = x
We don't know the exact amount of books read in 1996.
Total = 10 + 7 +x +2x
Total = 17+3x
0.6(total) = 7+2x
0.6(17+3x) = 7+2x
10.2 +1.8x= 7+2x
10.2-7= 2x-1.8x
3.2= 0.2x
3.2/0.2= x
16= x
So she read 16 English book
And 16*2 = 32 french book Making it a total of 16+32= 48 books in 1996
A population has a mean and a standard deviation . Find the mean and standard deviation of a sampling distribution of sample means with sample size n. nothing (Simplify your answer.) nothing (Type an integer or decimal rounded to three decimal places as needed.)
Complete Question
A population has a mean mu μ equals = 77 and a standard deviation σ = 14. Find the mean and standard deviation of a sampling distribution of sample means with sample size n equals = 26
Answer:
The mean of sampling distribution of the sample mean ( [tex]\= x[/tex]) is [tex]\mu_{\= x } = 77[/tex]
The standard deviation of sampling distribution of the sample mean ( [tex]\= x[/tex]) is
[tex]\sigma _{\= x} = 2.746[/tex]
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 77[/tex]
The standard deviation is [tex]\sigma = 14[/tex]
The sample size is [tex]n = 26[/tex]
Generally the standard deviation of sampling distribution of the sample mean ( [tex]\= x[/tex]) is mathematically represented as
[tex]\sigma _{\= x} = \frac{ \sigma }{ \sqrt{n} }[/tex]
substituting values
[tex]\sigma _{\= x} = \frac{ 14}{ \sqrt{26} }[/tex]
[tex]\sigma _{\= x} = 2.746[/tex]
Generally the mean of sampling distribution of the sample mean ( [tex]\= x[/tex]) is equivalent to the population mean i.e
[tex]\mu_{\= x } = \mu[/tex]
[tex]\mu_{\= x } = 77[/tex]
The head of a computer science department is interested in estimating the proportion of students entering the department who will choose the new computer engineering option. Suppose there is not information about the proportion of students who might choose the option. What size sample should the department head take if he wants to be 95% confident that the estimate is within 0.10 of the true proportion
Answer:
96
Step-by-step explanation:
From the given information:
At 95% Confidence interval level,Level of significance [tex]\alpha[/tex] 0.05, the value of Z from the standard normal tables = 1.96
Margin of Error = 0.10
Let assume that the estimated proportion = 0.5
therefore; the sample size n can be determined by using the formula: [tex]n =(\dfrac{Z}{E})^2 \times p\times (1-p)[/tex]
[tex]n =(\dfrac{1.96}{0.1})^2 \times 0.5\times (1-0.5)[/tex]
[tex]n =(19.6)^2 \times 0.5\times (0.5)[/tex]
n = 96.04
n [tex]\approx[/tex] 96
A bike wheel. A bike wheel is 26 inches in diameter. What is the bike wheel's diameter in millimeters (1 inch = 25.4 millimeters)?
Answer:
its multiple choice
A. 26inches (1inch/25.4mm)
B. 26inches (25.4mm/1inch)
C. 25.4inches (1mm/26inch)
D. 26inches (1mm/25.4inch)
and its b
Log 1/10 how do you convert this without a calculator
Answer:
log(1/10) = -1
Step-by-step explanation:
Use the law of exponents and the meaning of logarithm.
1/10 = 10^-1
log(10^x) = x
So, you have ...
log(1/10) = log(10^-1)
log(1/10) = -1
A local mattress manufacturer wants to know if its manufacturing process is in or out of control and has hired you, a statistics expert in the field, to analyze its process. Specifically, the business has run 20 random samples of size 5 over the past month and has determined the mean of each sample.
a. Determine the estimate of the mean when the process is in control.
b. Assuming the process standard deviation is .50 and the mean of the process is the estimate calculated in part a, determine the Upper Control Limit (UCL) and the Lower Control Limit (LCL) for the manufacturing process.
c. Explain the results to the vice-president of the mattress manufacturer focusing on whether, based on the results, the process is in or out of control.
Sample no. Mean of Sample
1 95.72
2 95.44
3 95.40
4 95.50
5 95.56
6 95.72
7 95.60
8 95.24
9 95.46
10 95.44
11 95.80
12 95.20
13 94.82
14 95.78
15 95.18
16 95.32
17 95.08
18 95.22
19 95.04
20 95.
Answer:
Answer to question a = 95.4
Answer to question b = UCL = 96.07
LCL = 94.73
Answer to question c = Process is still in control
Step-by-step explanation:
a. The computation of estimate mean is as shown below:-
= 95.4
b. The computation of Upper Control Limit (UCL) and the Lower Control Limit (LCL) for the manufacturing process is shown below:-
= 95.4 + 0.67082
= 96.07
= 95.4 - 0.67082
= 94.73
c. The explanation is shown below:-
From the above calculation we can see that the sample lies between LCL AND UCL that is (94.73 ,96.07) ,
The Process is still in control
A household survey of 10 families was conducted by students of 4th year MBBS. In the collected data, the ages of heads of families were: 32, 34, 35, 36, 36, 42, 44, 46, 48, and 52. The mean age of heads of families is
a. 36
b. 38.5
c. 40
d. 40.5
e. 42
Answer:
Which polynomial is prime?
7x2 – 35x + 2x – 10
9x3 + 11x2 + 3x – 33
10x3 – 15x2 + 8x – 12
12x4 + 42x2 + 4x2 + 14
Step-by-step explanation:
Which polynomial is prime?
7x2 – 35x + 2x – 10
9x3 + 11x2 + 3x – 33
10x3 – 15x2 + 8x – 12
12x4 + 42x2 + 4x2 + 14 SO IT IS RIGHT
A pharmacist needs 16 liters of a 4% saline solution. He has a 1% solution and a 5% solution available. How many liters of the 1% solution and how many liters of the 5% solution should he mix to make the 4% solution?
x = liters of 1% solution
y = liters of 5% solution
x + y = 16
0.01x + 0.05y = 0.04*16 = 0.64
y = 16 - x
0.01x + 0.05(16 - x) = 0.64
0.01x + 0.8 - 0.05x = 0.64
0.16 = 0.04x
x = 4
y = 12
Consider F and C below.
F(x, y) = x2 i + y2 j
C is the arc of the parabola y = 2x2 from (−1, 2) to (2, 8)
(a) Find a function f such that F = ∇f. f(x, y) =
(b) Use part (a) to evaluate C ∇f · dr along the given curve C.
(a)
[tex]\dfrac{\partial f}{\partial x}=x^2\implies f(x,y)=\dfrac{x^3}3+g(y)[/tex]
[tex]\dfrac{\partial f}{\partial y}=\dfrac{\mathrm dg}{\mathrm dy}=y^2\implies g(y)=\dfrac{y^3}3+C[/tex]
[tex]\implies f(x,y)=\dfrac{x^3+y^3}3+C[/tex]
(b)
[tex]\displaystyle\int_C\nabla f\cdot\mathrm d\mathbf r=f(2,8)-f(-1,2)=\boxed{171}[/tex]
Factor 13ab3 + 39a2b5.
[tex]13ab^3+39a^2b^5\\\\\boxed{\boxed{\boxed{13ab^3(1+3ab^2)}}}\\\\[/tex]
Brazil number one.
Answer:
there's no answer for that equation
Karl needs a total of $30 to buy a bike. He has $12. He can earn $6 an hour
babysitting. Which equation can be used to find the number of hours, h, Karl has to
babysit to have the money he needs?
30 - 6h + 12 = 0
6+ n = 12
6 + 12 h = 30
6 h + 12 = 30
Answer:
6h + 12 = 30
Step-by-step explanation:
Hence, the equation obtained for number of hours worked is given as 12 + 6h = 30.
How to write a linear equation?A linear equation for the given case can be written by assuming any variable as the unknown quantity. Then, as per the given data the required operations are done and it is equated to some value.
The total money required is given as $30.
Suppose the number of hours for babysitting be h.
Then, the money earned by doing it is $6h.
And, the total money with Karl is 12 + 6h.
As per the question, the following equations can be written as,
12 + 6h = 30
Hence, the equation for finding the number of hours is given as 12 + 6h = 30.
To know more about linear equation click on,
https://brainly.com/question/11897796
#SPJ2
how do you figure out ratios? the problem is 12 quarters to 34 dollars. thanks
Step-by-step explanation:
When you have a ratio, you put one number as the numerator and than one number as the denominator.
so it would be (12/34)=(x/68)
In this example I made the ratio you are comparing it to have 68 dollars, so when you solve for the amount of quarters you need it should be 24, since all of the numbers in this example are just being doubled.
To solve for x, you multiply 68 on both sides of the equation, 68×(12/34)=x
24=x
So this proves that this is how ratios, are used. It also does not matter what number you place on the numerator or denominator.
How to evaluate this help me out so lost?
Answer:
5443
Step-by-step explanation:
Order of Operations: BPEMDAS
Always left to right.
Step 1: Add 68 and 5042
68 + 5042 = 5110
Step 2: Add 5110 and 333
5110 + 333 = 5443
And we have our answer!
Question 1 (5 points)
The line segment AB with endpoints A(-3, 6) and B(9, 12) is dilated with a scale
factor 2/3 about the origin. Find the endpoints of the dilated line segment.
OA) (-2, 4), (6,8)
B) (2, 4). (6,8)
OC) (4, -2), (6,8)
OD) (-2,4), (8,6)
Answer: A) (-2, 4), (6,8)
Step-by-step explanation:
When a point (x,y) is dilated by a scale factor of k , then the new points is given by (kx,ky).
Given: The line segment AB with endpoints A(-3, 6) and B(9, 12) is dilated with a scale factor [tex]\dfrac23[/tex] about the origin.
Let A' and B' b the endpoints of the dilated line segment.
Then, [tex]A'(\dfrac{2}{3}(-3), \dfrac23(6))=A'(-2,4)[/tex]
[tex]B'(\dfrac{2}{3}(9), \dfrac23(12))=B'(6,8)[/tex]
Hence, the correct option is A) (-2, 4), (6,8)
. One sample has M = 18 and a second sample has M = 14. If the pooled variance for the two samples is 16, what is the value of Cohen’s d?
Answer:
Cohen's d : 1.00
Step-by-step explanation:
We know that M₁ = 18, and M₂ = 14. Given that the pooled variance for the these two samples are 16, S²Pooled = 16, and therefore S - pooled = 4.
The formula to solve for the value of Cohen's d is as follows,
d = M₁ - M₂ / S - pooled,
d = 18 - 14 / 4 = 4 / 4 = 1
Therefore the value of Cohen's d = 1
[tex]f(x) = sqr root x+3 ; g(x) = 8x - 7[/tex]
Find (f(g(x))
[tex]f(x)=\sqrt{x+3}\\g(x)=8x-7\\\\f(g(x))=\sqrt{8x-7+3}=\sqrt{8x-4}[/tex]