Answer:
The final price of the textbook rounded to the nearest dollar is $167
Step-by-step explanation:
To solve this problem, we need to find out what 13.5% of $147 equals.
13.5% = 0.135
0.135 x $147 = $19.845
$147 + 19.845 = 166.845
Round to the nearest dollar to get $167
[tex] {4}^{m} = \frac{1}{16} \\ find \: m[/tex]
Answer:
[tex] {4}^{m} = \frac{1}{16} [/tex]
[tex] {4}^{m} = {4}^{ - 2} [/tex]
[tex]same \: base \: so[/tex]
[tex]m = - 2[/tex]
[tex]hope \: this \: help \: u[/tex]
Answer:
Answer:
{4}^{m} = \frac{1}{16}4
m
=
16
1
{4}^{m} = {4}^{ - 2}4
m
=4
−2
same \: base \: sosamebaseso
m = - 2m=−2
hope \: this \: help \: uhopethishelpu
There are two 5s in the number 855,309. Rico
says that the 5 in the ten-thousinds place is 1000
times greater than the 5 to its right. Is she correct?
Explain how
you know
Answer:
no it is 10 times greater because we use the base 10 system where each number to the left is 10 times greater
Step-by-step explanation:
Find the probability of a couple having at least 1 girl among 4 children. Assume that boys and girls are
equally likely and that the gender of a child is independent of the gender of any brothers or sisters.
Answer:
15/16 (93.75%)
Step-by-step explanation:
List of Possible Combinations:
BBBB, BBBG, BBGB, BBGG, BGBB, BGBG, BGGB, BGGG, GBBB, GBBG, GBGB, GBGG, GGBB, GGBG, GGGB, GGGG
As you can see, only 1 out of 16 of the possible combinations is all boys. This means that the chance of at least 1 girl among the 4 children is 15 out of 16 (15/16) or 93.75%
What is the measurement of N?
Answer:
the measurement of N is D, 81.
Step-by-step explanation:
The angle measurement of a Right Angled Triangle is 90 degrees. And based off the angle dimension given in the image above ( 9 degrees ), you need to subtract 90 ( the angle dimension of the triangle) with the angle dimension given (9 degrees) which gets you to an answer of 81 degrees.
According to the scale drawing, how wide will the actual patio be?
m
Garden
Patio
7 cm
Scale 1 cm: 2 m
The width of the actual garden patio according to the scale drawing is 14 meters.
What is an equation?An equation is an expression that shows the relationship between two or more numbers and variables.
An independent variable is a variable that does not depends on other variable while a dependent variable is a variable that depends on other variable.
Given the scale of 1 cm : 2 m
For a patio of 7 cm, then:
Actual patio = 7 cm / (1 cm/ 2m) = 14 m
The width of the actual garden patio according to the scale drawing is 14 meters.
Find out more on equation at: brainly.com/question/2972832
#SPJ1
A humanities professor assigns letter grades on a test according to the following scheme.
A: Top 8% of scores
B: Scores below the top 8% and above the bottom 62%
C: Scores below the top 38% and above the bottom 18%
D: Scores below the top 82% and above the bottom 9%
E: Bottom 9% of scores Scores on the test are normally distributed with a mean of 67 and a standard deviation of 7.3.
Find the numerical limits for a C grade.
Answer:
The numerical limits for a C grade are 60.6 and 69.1.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Scores on the test are normally distributed with a mean of 67 and a standard deviation of 7.3.
This means that [tex]\mu = 67, \sigma = 7.3[/tex]
Find the numerical limits for a C grade.
Below the 100 - 38 = 62th percentile and above the 18th percentile.
18th percentile:
X when Z has a p-value of 0.18, so X when Z = -0.915.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-0.915 = \frac{X - 67}{7.3}[/tex]
[tex]X - 67 = -0.915*7[/tex]
[tex]X = 60.6[/tex]
62th percentile:
X when Z has a p-value of 0.62, so X when Z = 0.305.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]0.305 = \frac{X - 67}{7.3}[/tex]
[tex]X - 67 = 0.305*7[/tex]
[tex]X = 69.1[/tex]
The numerical limits for a C grade are 60.6 and 69.1.
10 ft wide by 14 ft long. if the ceiling is 8 ft high. what is the area of the four walls?
Answer: 80
Step-by-step explanation:
Directions: Use the figure to write the symbol for each.
1. I ray
2. a plane
А
3. 3 points
4. 2 lines
5. 3 angles
6. 3 line segments
D
Geometry
156
Total Math Grade 6
I need help ASAP please due tomorrow 6th grade geometry
How does the rate of change of f(x)=3x+5 compare to the rate of change of g(x)=2x+5 ?
HELP I NEED ANSWERS
Answer:
The rate of change of f(x) is faster than the rate of change of g(x).
General Formulas and Concepts:
Algebra I
Slope-Intercept Form: y = mx + b
m - slope b - y-interceptStep-by-step explanation:
*Note:
Rate of Change is determined by slope.
Step 1: Define
f(x) = 3x + 5
↓ Compare to y = mx + b
Slope m = 3
g(x) = 2x + 5
↓ Compare to y = mx + b
Slope m = 2
Step 2: Answer
We can see that the slope of f(x) is greater than g(x).
∴ the rate of change of f(x) would be greater than g(x).
Use the procedures developed to find the general solution of the differential equation. (Let x be the independent variable.)
2y''' + 15y'' + 24y' + 11y= 0
Solution :
Given :
2y''' + 15y'' + 24y' + 11y= 0
Let x = independent variable
[tex](a_0D^n + a_1D^{n-1}+a_2D^{n-2} + ....+ a_n) y) = Q(x)[/tex] is a differential equation.
If [tex]Q(x) \neq 0[/tex]
It is non homogeneous then,
The general solution = complementary solution + particular integral
If Q(x) = 0
It is called the homogeneous then the general solution = complementary solution.
2y''' + 15y'' + 24y' + 11y= 0
[tex]$(2D^3+15D^2+24D+11)y=0$[/tex]
Auxiliary equation,
[tex]$2m^3+15m^2+24m +11 = 0$[/tex]
-1 | 2 15 24 11
| 0 -2 - 13 -11
2 13 11 0
∴ [tex]2m^2+13m+11=0[/tex]
The roots are
[tex]$=\frac{-b\pm \sqrt{b^2-4ac}}{2a}$[/tex]
[tex]$=\frac{-13\pm \sqrt{13^2-4(11)(2)}}{2(2)}$[/tex]
[tex]$=\frac{-13\pm9}{4}$[/tex]
[tex]$=-5.5, -1$[/tex]
So, [tex]m_1, m_2, m_3 = -1, -1, -5.5[/tex]
Then the general solution is :
[tex]$= (c_1+c_2 x)e^{-x} + c_3 \ e^{-5.5x}$[/tex]
can you help me with these high rated questions
I wish you will help me with his highlighted questions
Answer:
52 is (a)
55 is.( d)
56. is (d)
.
you invested $
7000
7000
between two accounts payin
6
%
6
%
and
8
%
8
%
annual interet, respectively. if the total interest earned for the year was $
480
,
480
,
how much was invested at each rate
9514 1404 393
Answer:
$3000 at 8%$4000 at 6%Step-by-step explanation:
Let x represent the amount invested at 8%. Then the total interest earned is ...
0.06(7000 -x) +0.08x = 480
420 +0.02x = 480 . . . . . . . . . eliminate parentheses
0.02x = 60 . . . . . . . . . . subtract 420
x = 60/0.02 = 3000 . . . . . divide by the coefficient of x
$3000 was invested at 8%; $4000 was invested at 6%.
The work done by a machine in 2 minutes is 480J. Calculate the power of the machine
Answer:
I think the power is 4
Step-by-step explanation:
480J / 120 = 4
Put 2 mins into seconds which is 120 seconds
Sorry if it is wrong :)
Answer:
[tex]4\text{ watts}[/tex]
Step-by-step explanation:
In physics, the power of a machine is given by [tex]P=\frac{W}{\Delta t}[/tex], where [tex]W[/tex] is work in Joules and [tex]\Delta t[/tex] is time in seconds.
Convert 2 minutes into seconds:
2 minutes = 120 seconds.
Substitute [tex]W=480[/tex] and [tex]\Delta t=120[/tex] to solve for [tex]P[/tex]:
[tex]P=\frac{480}{120}=\boxed{4\text{ watts}}[/tex]
Betty received $ 500,000 from a life insurance policy to be distributed to her as an annuity certain in 10 equal annual installments with the first payment made immediately. On the day she receives her third payment, she is offered a monthly perpetuity of X in lieu of the future annual payments. The first payment will be made in exactly one month. The effective annual rate of interest is 8 %. Determine the value of X.
9514 1404 393
Answer:
annual payment: $68,995.13monthly payment in perpetuity: X = $2394.76Step-by-step explanation:
a) For payments made at the beginning of the period, the annuity is called an "annuity due." The formula in the first attachment tells how to compute the payment for a given present value ($500,000), number of periods (N=10), and interest rate (i=0.08).
pmt = $500,000/(1 +(1 -(1 +i)^(-N+1))/i) = $500,000/(1 +(1 -(1.08^-9))/.08)
pmt ≈ $68,995.13 . . . . annual payment
__
b) After the first payment, the account balance is ...
$500,000 -68,995.13 = $431,004.87
After subsequent payments, the account balance will be ...
$431,004.87×1.08 -68,995.13 = $396,490.13 . . . after 2nd payment
$396,490.13×1.08 -68,995.13 = $359,214.21 . . . after 3rd payment
The payment amount that can be made in perpetuity is the amount of the monthly interest on this balance:
X = $359,214.21 × (0.08/12) = $2394.76
what is the area of this whole shape
Answer:
104 m²
Step-by-step explanation:
Area of the whole shape = area of the triangle + area of the rectangle
= ½*b*h + L*W
Where,
b = 8 m
h = 6 m
L = 10 m
W = 8 m
Plug in the values into the equation
Area of the whole shape = ½*8*6 + 10*8
= 24 + 80
= 104 m²
Find the values of c such that the area of the region bounded by the parabolas y = 4x2 − c2 and y = c2 − 4x2 is 32/3. (Enter your answers as a comma-separated list.)
Answer:
-2,2
Step-by-step explanation:
Let
[tex]y_1=4x^2-c^2[/tex]
[tex]y_2=c^2-4x^2[/tex]
We have to find the value of c such that the are of the region bounded by the parabolas =32/3
[tex]y_1=y_2[/tex]
[tex]4x^2-c^2=c^2-4x^2[/tex]
[tex]4x^2+4x^2=c^2+c^2[/tex]
[tex]8x^2=2c^2[/tex]
[tex]x^2=c^2/4[/tex]
[tex]x=\pm \frac{c}{2}[/tex]
Now, the area bounded by two curves
[tex]A=\int_{a}^{b}(y_2-y_1)dx[/tex]
[tex]A=\int_{-c/2}^{c/2}(c^2-4x^2-4x^2+c^2)dx[/tex]
[tex]\frac{32}{3}=\int_{-c/2}^{c/2}(2c^2-8x^2)dx[/tex]
[tex]\frac{32}{3}=2\int_{-c/2}^{c/2}(c^2-4x^2)dx[/tex]
[tex]\frac{32}{3}=2[c^2x-\frac{4}{3}x^3]^{c/2}_{-c/2}[/tex]
[tex]\frac{32}{3}=2(c^2(c/2+c/2)-4/3(c^3/8+c^3/28))[/tex]
[tex]\frac{32}{3}=2(c^3-\frac{4}{3}(\frac{c^3}{4}))[/tex]
[tex]\frac{32}{3}=2(c^3-\frac{c^3}{3})[/tex]
[tex]\frac{32}{3}=2(\frac{2}{3}c^3)[/tex]
[tex]c^3=\frac{32\times 3}{4\times 3}[/tex]
[tex]c^3=8[/tex]
[tex]c=\sqrt[3]{8}=2[/tex]
When c=2 and when c=-2 then the given parabolas gives the same answer.
Therefore, value of c=-2, 2
what is the percent decrease on a Tv that has been marked down from $550 to $420? round to the nearest tenth
The percent decrease on a TV after the markdown to the nearest tenth is 23.6%.
What is the percent decrease on the TV after the markdown?The percent decrease formula can be expressed as:
Percent decrease = [( original value - new value ) / original value ] × 100%
Given the data in the question:
The original value of the TV = $550
New value after markdown = $420
Percent decrease =?
Plug the given values into the above formula and solve for the percent decrease.
Percent decrease = [( original value - new value ) / original value ] × 100%
Percent decrease = [( 550 - 420 ) / 550 ] × 100%
Percent decrease = [ 130 / 550 ] × 100%
Percent decrease = 0.2363 × 100%
Percent decrease = 23.6%
Therefore, the percent decrease is 23.6%.
Learn about Percent increase here: https://brainly.com/question/19062651
#SPJ3
5 = –6x2 + 24x
5 = –6(x2 – 4x)
inside the parentheses and
.
–19 = –6(x – 2)2
StartFraction 19 Over 6 EndFraction = (x – 2)2
Plus or minus StartRoot StartFraction 19 Over 6 EndFraction EndRoot = x – 2
The two solutions are
Plus or minus StartRoot StartFraction 19 Over 6 EndFraction EndRoot.
Answer:
x = 2 - sqrt(19/6)
x = 2 + sqrt(19/6)
Step-by-step explanation:
Answer:
add 4
subtract 24 from 5
2
Step-by-step explanation:
For the rational function f(x)=5−xx2+5x+6, find the points on the graph at the function value f(x)=3.
Given:
The rational function is:
[tex]f(x)=\dfrac{5-x}{x^2+5x+6}[/tex]
To find:
The points on the graph at the function value [tex]f(x)=3[/tex].
Solution:
We have,
[tex]f(x)=\dfrac{5-x}{x^2+5x+6}[/tex]
Substituting [tex]f(x)=3[/tex], we get
[tex]3=\dfrac{5-x}{x^2+5x+6}[/tex]
[tex]3(x^2+5x+6)=5-x[/tex]
[tex]3x^2+15x+18=5-x[/tex]
Moving all the terms on one side, we get
[tex]3x^2+15x+18-5+x=0[/tex]
[tex]3x^2+16x+13=0[/tex]
Splitting the middle term, we get
[tex]3x^2+3x+13x+13=0[/tex]
[tex]3x(x+1)+13(x+1)=0[/tex]
[tex](3x+13)(x+1)=0[/tex]
Using zero product property, we get
[tex](3x+13)=0\text{ or }(x+1)=0[/tex]
[tex]x=-\dfrac{13}{3}\text{ or }x=-1[/tex]
Therefore, the required values are [tex]-\dfrac{13}{3},-1[/tex].
helppp .....................
Answer:
D represents a proportional relationship
Step-by-step explanation:
Proportional graphs always intersect with zero
Regarding the violation of multicollinearity, which of the following description is wrong?
Complete question is;
Regarding the violation of multicollinearity, which of the following description is wrong?
a. It changes the intercept of the regression line.
b. It changes the sign of the slope.
c. It changes the slope of the regression line.
d. It changes the value of F-tests.
e. It changes the value of T-tests
Answer:
a. It changes the intercept of the regression line
Step-by-step explanation:
Multicollinearity is a term used in multiple regression analysis to show a high correlation between independent variables of a study.
Since it deals with independent variables correlation, it means it must be found before getting the regression equation.
Now, looking at the options, the one that doesn't relate with multicollinearity is option A because the intercept of the regression line is the value of y that is predicted when x is 0. Meanwhile, multicollinearity from definition above does in no way change the intercept of the regression line because it doesn't predict the y-value when x is zero.
whats 2 plus 2
*just trying to help someone get points* :)
Answer:4 ma boi
Step-by-step explanation:
Answer:
14
Step-by-step explanation:
because I am god at meth and very smart
ASAP PLSSS!!!!!!!!!!1!!!!!!!!!!!!!!!!!!!!!!!!!!!
Answer: i think its the last one bc if you multiply 9 and 3 in its gets you 18
Step-by-step explanation:
Answer:
V=(1/3)πr²h
v=
[tex] \frac{1}{3} \times {3}^{2} \times 9 \times \pi \\ = 27\pi[/tex]
27pi in³
27pi in³First option
Brainliest please~
Abraham is writing a recursive function for the geometric sequence:
24, 12, 6, 3,
Khan Academy Problem PLEASE HELP
Answer:
a1 = 24
an = an-1 × 1/2, n >1
Step-by-step explanation:
a geometric sequence is a sequence where we multiply every previous term by a certain factor to create the next term.
so, we multiply 24 by something to get 12.
and then 12 by the same something to get 6.
and then 6 by the and something to get 3.
do you see the pattern ? hmmm ?
right, we always divide by 2 (or multiply by 1/2).
the starting value a1 = 24
so,
an = an-1 × 1/2, n>1
or
[tex]an = a1 \times {(1 \div 2)}^{n - 1} [/tex]
n>1
Complete the table for the function y = x−−√3 + 7.
Answer:
option D (5 6 8 9) is the answer
Answer:
X [tex]\Longrightarrow -8\Longrightarrow -1\Longrightarrow 1\Longrightarrow 8[/tex]
Y[tex]\Longrightarrow 5\Longrightarrow 6\Longrightarrow 8\Longrightarrow 9[/tex]
[tex]Answer\hookrightarrow D)[/tex]
-------------------------
Hope it helps...
Have a great day!!
Evaluate each expression.
if ABCD is a parallelogram,find m>D and angle C=(9×-1) and angle A=(13×-25)
9514 1404 393
Answer:
∠C = ∠A = 53°
∠D = 127°
Step-by-step explanation:
Opposite angles of a parallelogram are congruent, so ...
∠A = ∠C
13x -25 = 9x -1
4x = 24
x = 6
∠C = ∠A = 9(6) -1
∠C = ∠A = 53°
Adjacent angles of a parallelogram are supplementary.
∠D = 180 -∠C
∠D = 180 -(9(6) -1) = 180 -53
∠D = 127°
17. What is the solution to -7s=-35? (1 point)
Os=-6
Os=-5
Os = 5
Os=6
Answer:
(+5)=S , be the correct answer
Answer: s = +5
Step-by-step explanation: Since s is being multiplied by -7, to get s by itself, we need to divide by -7 on both sides of the equation.
So we get s = +5 which is the solution to our equation.
The winter group provides tax advice
what? ;-;.............
Please helpppppp me!!!!!!!!
Answer:
A --> y=cot(x)
Step-by-step explanation:
if you graph tan(x), it has a period of just PI, because tan(x) is just sin(x)/cos(), and cot(x) is the same because it is just sec(x)/csc(x).