The four wheels of a car are connected to the car's body by spring assemblies that let the wheels move up and down over bumps and dips in the road. When a 68 kg (about 150 lb) person sits on the left front fender of a small car, this corner of the car dips by about 1.2 cm (about 1/2 in).

If we treat the spring assembly as a single spring, what is the approximate spring constant?

k= ____________

Answers

Answer 1

Answer:

The approximate  spring constant is  [tex]k = 55533.33 \ N/m[/tex]

Explanation:

From the question we are told that

   The  mass of the person is  [tex]m = 68 \ kg[/tex]

     The  dip of the car is  [tex]x = 1.2 \ cm = 0.012 \ m[/tex]

Generally according to hooks law  

        [tex]F = k * x[/tex]

here the force F is the weight of the person which is mathematically represented as

         [tex]F = m * g[/tex]

=>    [tex]m * g = k * x[/tex]

=>     [tex]k = \frac{m * g }{x }[/tex]

=>    [tex]k = \frac{68 * 9.8}{ 0.012}[/tex]

=>   [tex]k = 55533.33 \ N/m[/tex]


Related Questions

A student holds a bike wheel and starts it spinning with an initial angular speed of 7.0 rotations per second. The wheel is subject to some friction, so it gradually slows down.

In the 10.0 s period following the inital spin, the bike wheel undergoes 60.0 complete rotations. Assuming the frictional torque remains constant, how much more time Δ????s will it take the bike wheel to come to a complete stop?

The bike wheel has a mass of 0.625 kg0.625 kg and a radius of 0.315 m0.315 m. If all the mass of the wheel is assumed to be located on the rim, find the magnitude of the frictional torque ????fτf that was acting on the spinning wheel.

Answers

Answer:

a)   Δt = 24.96 s , b)  τ = 0.078 N m

Explanation:

This is a rotational kinematics exercise

        θ = w₀ t - ½ α t²

Let's reduce the magnitudes the SI system

       θ = 60 rev (2π rad / 1 rev) = 376.99 rad

       w₀ = 7.0 rot / s (2π rad / 1 rpt) = 43.98 rad / s

       

      α = (w₀ t - θ) 2 / t²

let's calculate the annular acceleration

      α = (43.98 10 - 376.99) 2/10²

      α = 1,258 rad / s²

Let's find the time it takes to reach zero angular velocity (w = 0)

        w = w₀ - alf t

         t = (w₀ - 0) / α

         t = 43.98 / 1.258

         t = 34.96 s

this is the total time, the time remaining is

         Δt = t-10

         Δt = 24.96 s

To find the braking torque, we use Newton's law for angular motion

        τ = I α

the moment of inertia of a circular ring is

       I = M r²

we substitute

         τ = M r² α

we calculate

        τ = 0.625  0.315²  1.258

        τ = 0.078 N m

The total time taken by the wheel to come to rest is 25.18 s and the magnitude of the frictional torque is 25.18 N-m.

Given data:

The initial angular speed of wheel is, [tex]\omega = 7.0 \;\rm rps[/tex]   (rps means rotation per second).

The time interval is, t' = 10.0 s.

The number of rotations made by wheel is, n = 60.0.

The mass of bike wheel is, m = 0.625 kg.

The radius of wheel is, r = 0.315 m.

The problem is based on rotational kinematics. So, apply the second rotational equation of motion as,

[tex]\theta = \omega t-\dfrac{1}{2} \alpha t'^{2}[/tex]

Here, [tex]\theta[/tex] is the angular displacement, and its value is,

[tex]\theta =2\pi \times 60\\\\\theta = 376.99 \;\rm rad[/tex]

And, angular speed is,

[tex]\omega = 2\pi n\\\omega = 2\pi \times 7\\\omega = 43.98 \;\rm rad/s[/tex]

Solving as,

[tex]376.99 = 43.98 \times 10-\dfrac{1}{2} \alpha \times 10^{2}\\\\\alpha = 1.25 \;\rm rad/s^{2}[/tex]

Apply the first rotational equation of motion to obtain the value of time to reach zero final velocity.

[tex]\omega' = \omega - \alpha t\\\\0 = 43.98 - 1.25 \times t\\\\t = 35.18 \;\rm s[/tex]

Then total time is,

T = t - t'

T = 35.18 - 10

T = 25.18 s

Now, use the standard formula to obtain the value of braking torque as,

[tex]T = m r^{2} \alpha\\\\T = 0.625 \times (0.315)^{2} \times 1.25\\\\T = 0.0775 \;\rm Nm[/tex]

Thus, we can conclude that the total time taken by the wheel to come to rest is 25.18 s and the magnitude of the frictional torque is 25.18 N-m.

Learn more about the rotational motion here:

https://brainly.com/question/1388042

Determine the next possible thickness of the film (in nm) that will provide the proper destructive interference. The index of refraction of the glass is 1.58 and the index of refraction of the film material is 1.48.

Answers

Answer:

I know the answer

Explanation:

We want to choose the film thickness such that destructive interference occurs between the light reflected from the air-film interface (call it wave 1) and from the film-lens interface (call it wave 2). For destructive interference to occur, the phase difference between the two waves must be an odd multiple of half-wavelengths.

You can think of the phases of the two waves as second hands on a clock; as the light travels, the hands tick-tock around the clock. Consider the clocks on the two waves in question. As both waves travel to the air-film interface, their clocks both tick-tock the same time-no phase difference. When wave 1 is reflected from the air-film boundary, its clock is set forward 30 seconds; i.e., if the hand was pointing toward 12, it's now pointing toward 6. It's set forward because the index of refraction of air is smaller than that of the film.

Now wave 1 pauses while wave two goes into and out of the film. The clock on wave 2 continues to tick as it travels in the film-tick, tock, tick, tock.... Clock 2 is set forward 30 seconds when it hits the film-lens interface because the index of refraction of the film is smaller than that of the lens. Then as it travels back through the film, its clock still continues ticking. When wave 2 gets back to the air-film interface, the two waves continue side by side, both their clocks ticking; there is no change in phase as they continue on their merry way.

So, to recap, since both clocks were shifted forward at the two different interfaces, there was no net phase shift due to reflection. There was also no phase shift as the waves travelled into and out from the air-film interface. The only phase shift occured as clock 2 ticked inside the film.

Call the thickness of the film t. Then the total distance travelled by wave 2 inside the film is 2t, if we assume the light entered pretty much normal to the interface. This total distance should equal to half the wavelength of the light in the film (for the minimum condition; it could also be 3/2, 5/2, etc., but that wouldn't be the minimum thickness) since the hand of the clock makes one revolution for each distance of one wavelength the wave travels (right?).

Convert 76.2 kilometers to meters?

Answers

Answer

76200meters

Explanation:

we know that 1km=1000meters

to convert km into meters we we divide km by meters

=76.2/1000

=76200meters

Water pressurized to 3.5 x 105 Pa is flowing at 5.0 m/s in a horizontal pipe which contracts to 1/2 its former radius. a. What are the pressure and velocity of the water after the contraction

Answers

Answer:

Explanation:

Using the Continuity equation

v X A = v' xA'

so if A is 1/2of A' then A velocity must be 2 times the A'

after-contraction v = 2 x 5.0m/s = 10m/s

Using the Bernoulli equation

p₁ + ½ρv₁² + ρgh₁ = p₂ + ½ρv₂² + ρgh₂

, the "h" terms cancel

3.5 x 10^ 5Pa + ½ x 1000kg/m³x (5.0m/s)² = p₂ + ½ x 1000kg/m³ x (10m/s)²

p₂ = 342500pa

An electric train operates on 800 V. What is its power consumption when the current flowing through the train's motor is 2,130 A?

Answers

Answer:

1704 kW

Explanation:

To solve for the power consumed by the trains motor we have to employ the formula for power which is

Power= current * voltage

Given that

voltage V= 800 V

current I= 2130 A

Substituting in the formula for power we have

Power= 2130*800=  1704000 watt

Power = 1704 kW

This is the amount of energy consumed, transferred or converted per unit of time

Hence the power consumed  by the trains motor is 1704 kW

You have a horizontal grindstone (a disk) that is 95 kg, has a 0.38 m radius, is turning at 87 rpm (in the positive direction), and you press a steel axe against the edge with a force of 16 N in the radial direction.
(a) Assuming the kinetic coefficient of friction between steel and stone is 0.20, calculate the angular acceleration of the grindstone.
(b) How many turns will the stone make before coming to rest?

Answers

Answer:

Explanation:

The moment of inertia of the disk I  = 1/2 m R² where R is radius of the disc and m is its mass .

putting the values

I = .5 x 95 x .38²

= 6.86 kg m²

n = 87 rpm = 87 / 60 rps

n = 1.45 rps

angular velocity ω = 2π n , n is frequency of rotation .

= 2 x 3.14 x 1.45

= 9.106 radian /s

frictional force = 16 x .2

= 3.2 N

torque created by frictional force = 3.2 x .38

= 1.216 N.m

angular acceleration = torque / moment of inertia

= - 3.2 / 6.86

α  = - 0.4665 rad /s²

b ) ω² = ω₀² +  2 α θ , where α is angular acceleration

0 = 9.106² - 2 x .4665 θ

θ = 88.87 radian

no of turns = 88.87 / 2π

= 14.15  turns

A fish is 80 cm below the surface of a pond. What is the apparent depth (in cm) when viewed from a position almost directly above the fish

Answers

Answer:

Apparent depth (Da) = 60.15 cm (Approx)

Explanation:

Given:

Distance from fish (D) = 80 cm

Find:

Apparent depth (Da)

Computation:

We know that,

Refractive index of water (n2) = 1.33

So,

Apparent depth (Da) = D(n1/n2)

Apparent depth (Da) = 80 (1/1.33)

Apparent depth (Da) = 60.15 cm (Approx)

The apparent depth of the fish is 60 cm.

To calculate the apparent depth of the fish, we use the formula below.

Formula:

R.F(water) = Real depth(D)/Apparent depth(D')R.F = D/D'.................... Equation 1

Where:

R.F = Refractive index of water

Make D' The subject of the equation.

D' = D/R.F................... Equation 2

From the question,

Given:

D = 80 cmR.F = 1.333

Substitute these values into equation 2

D' = 80/1.33D' = 60.01D' = 60 cm

Hence, the apparent depth of the fish is 60 cm

Learn more about apparent depth here: https://brainly.com/question/24319677

15. Food chain always start with
a. Photosynthesis
Decay
b. Respiration
d. N2 Fixation
C.Photosynthesis​

Answers

Answer: Photosynthesis

Explanation: every food chain starts with plant life, therefore photosynthesis comes first.

Which of the following explains why a “control” is important in a case-control study of a disease? The researchers need to control the bias that those who contracted the disease may create when they talk to others. The researchers need to compare those who contracted the disease to those who did not. The researchers need to compare those who contracted the disease to those who contracted previous diseases. The researchers need to control the disease so that it is not spread further.

Answers

The researchers need to compare those who contracted the disease to those who did not.

At what minimum angle will you get total internal reflection of light traveling in diamond and reflected from ethanol? °

Answers

Answer:

34°

Using the relation

θᶜ = sin^-1(n₂/n₁),

where n1= the refractive index of light is propagating from a medium

And n2 = refractive index of medium into which light is entering

So we know that

refractive index of diamond at 589nm = 2.41= n₁

refractive index of ethanol at 589nm and 20°C = 1.36= n₂

Thus. θᶜ = sin^-1(1.361/2.417) = 0.58radians = 34°

Explanation:

A professor, with dumbbells in his hands and holding his arms out, is spinning on a turntable with an angular velocity. What happens after he pulls his arms inwards

Answers

Answer:

His angular velocity will increase.

Explanation:

According to the conservation of rotational momentum, the initial angular momentum of a system must be equal to the final angular momentum of the system.

The angular momentum of a system = [tex]I[/tex]'ω'

where

[tex]I[/tex]' is the initial rotational inertia

ω' is the initial angular velocity

the rotational inertia = [tex]mr'^{2}[/tex]

where m is the mass of the system

and r' is the initial radius of rotation

Note that the professor does not change his position about the axis of rotation, so we are working relative to the dumbbells.

we can see that with the mass of the dumbbells remaining constant, if we reduce the radius of rotation of the dumbbells to r, the rotational inertia will reduce to [tex]I[/tex].

From

[tex]I[/tex]'ω' = [tex]I[/tex]ω

since [tex]I[/tex] is now reduced, ω will be greater than ω'

therefore, the angular velocity increases.

A windmill on a farm rotates at a constant speed and completes one-half of a rotation in 0.5 seconds. What is its rotation speed

Answers

Answer:

v = 6.28 m/s

Explanation:

It is given that,

A windmill on a farm rotates at a constant speed and completes one-half of a rotation in 0.5 seconds,

Number of revolution is half. It means angular velocity is 3.14 radians.

Let v is the angular speed. So,

[tex]v=\dfrac{\omega}{t}\\\\v=\dfrac{3.14}{0.5}\\\\v=6.28\ m/s[/tex]

So, the rotation speed is 6.28 m/s.

The angular velocity is the rotation speed, which is the angle of rotation

of the windmill per second, which is 2·π radians.

Response:

The rotation speed is 2·π rad/s

How can the rotational speed of the windmill be calculated?

The given parameter are;

The angle of rotation the windmill rotates in 0.5 seconds = One-half a

rotation.

Required:

The rotational speed (angular velocity)

Solution:

The angle of one rotation = 2·π radians

Angle of one-half ration = [tex]\frac{1}{2}[/tex] × 2·π radians = π radians

[tex]Rotational \ speed = \mathbf{\dfrac{Angle \ of \ rotation}{Time}}[/tex]

Which gives;

[tex]Rotational \ speed, \omega = \dfrac{\pi}{0.5 \ s} = \mathbf{2 \cdot \pi \ rad/s}[/tex]

The rotation speed is 2·π rad/s

Learn more about rotational speed here:

https://brainly.com/question/6969329

Consider a series RLC circuit where R=25.0 Ω, C=35.5 μF, and L=0.0940 H, that is driven at a frequency of 70.0 Hz. Determine the phase angle ϕ of the circuit in degrees.

Answers

Answer:

137.69°

Explanation:

The phase angle of an RLC circuit  ϕ is expressed as shoen below;

ϕ = [tex]tan^{-1} \dfrac{X_l-X_c}{R}[/tex]

Xc is the capacitive reactance = 1/2πfC

Xl is the inductive reactance = 2πfL

R is the resistance = 25.0Ω

Given C = 35.5 μF, L = 0.0940 H, and frequency f = 70.0Hz

Xl = 2π * 70*0.0940

Xl = 41.32Ω

For the capacitive reactance;

Xc = 1/2π * 70*35.5*10⁻⁶

Xc = 1/0.0156058

Xc = 64.08Ω

Phase angle ϕ = [tex]tan^{-1} \frac{41.32-64.08}{25} \\\\[/tex]

ϕ = [tex]tan^{-1} \frac{-22.76}{25} \\\\\\\\[/tex]

[tex]\phi = tan^{-1} -0.9104\\\\\phi = -42.31^0[/tex]

Since tan is negative in the 2nd quadrant;

[tex]\phi = 180-42.31^0\\\\\phi = 137.69^0[/tex]

Hence the phase angle ϕ of the circuit in degrees is 137.69°

The phase angle ϕ of the series RLC circuit that is driven at a frequency of 70.0 Hz is ϕ = 137.69°

Phase angle:

Given that:

capacitance C = 35.5 μF,

Inductance L = 0.0940 H,

The resistance R = 25.0Ω

and frequency f = 70.0Hz

The capacitive reactance is given by:

Xc = 1/2πfC

Xc = 1/2π × 70 × 35.5× 10⁻⁶

Xc = 1/0.0156058

Xc = 64.08Ω

The inductive reactance is given by:

Xl = 2πfL

Xl = 2π × 70 × 0.0940

Xl = 41.32Ω

The phase angle of an RLC circuit ϕ  is given by:

[tex]\phi=tan^{-1}\frac{X_l-X_c}{R}\\\\\phi=tan^{-1}\frac{41.32-64.08}{25}[/tex]

Ф = -42.31°

Since tan is negative in the 2nd quadrant, thus:

ϕ = 180° - 42.31°

ϕ = 137.69°

Learn more about RLC circuit:

https://brainly.com/question/372577?referrer=searchResults

A golfer hits a 42 g ball, which comes down on a tree root and bounces straight up with an initial speed of 15.6 m/s. Determine the height the ball will rise after the bounce. Show all your work.

Answers

Answer:

12.2 m

Explanation:

Given:

v₀ = 15.6 m/s

v = 0 m/s

a = -10 m/s²

Find: Δy

v² = v₀² + 2aΔy

(0 m/s)² = (15.6 m/s)² + 2 (-10 m/s²) Δy

Δy = 12.2 m

[tex] \LARGE{ \boxed{ \rm{ \green{Answer:}}}}[/tex]

Given,

The initial speed is 15.6 m/s The mass of the ball is 42g = 0.042kg

Finding the initial kinetic energy,

[tex]\large{ \boxed{ \rm{K.E. = \frac{1}{2}m {v}^{2}}}}[/tex]

⇛ KE = (1/2)mv²

⇛ KE = (1/2)(0.042)(15.6)²

⇛ KE = 5.11 J

|| ⚡By conservation of energy, the potential energy at the highest point will also be 5.11 J, since there is no kinetic energy at the highest point because the ball is not moving (we neglect energy lost due to air resistance, heat, sound, etc.) ⚡||

So, we have:

[tex] \large{ \boxed{ \rm{P.E. = mgh}}}[/tex]

⇛ h = PE/(mg)

⇛ h = 5.11 J /(0.042 × 9.8)

⇛ h = 12.41 m

✏The ball will rise upto a height of 12.41 m

━━━━━━━━━━━━━━━━━━━━

A baseball (m=145g) traveling 35 m/s moves a fielder's glove backward 23 cm when the ball is caught. What was the average force exerted by the ball on the glove?

Answers

Answer:

386.13 N

Explanation:

The kinetic energy of the baseball is converted into workdone in moving the glove backward( work energy theorem).

Therefore, KE of the ball

[tex]\frac{1}{2} mv^2 =\frac{1}{2}(0.145)35^2\\ = 88.81 \text{J}[/tex]

Now, workdone in moving the glove

W= Fd

where F = Force applied, d = displacement of the glove= 0.23 cm.

88.81 = F×0.23

F= 88.81/0.23 = 386.13 N

light bulb is connected to a 110-V source. What is the resistance of this bulb if it is a 100-W bulb

Answers

Answer:

121ohms

Explanation:

Formula used for calculating power P = current * voltage

P = IV

From ohms law, V = IR where R is the resistance. Substituting V = IR into the formula for calculating power, we will have;

P = IV

P =(V/R)V

P = V²/R

Given parameters

Power rating of the bulb P = 100 Watts

Source voltage V = 110V

Required

Resistance of the bulb R

Substituting the given parameters into the formula for calculating power to get Resistance R;

P = V²/R

100 = 110²/R

R = 110²/100

R = 110 * 110/100

R = 12100/100

R = 121 ohms

Hence, the resistance of this bulb is 121 ohms

A red card is illuminated by red light. Part A What color will the card appear? What color will the card appear? a. Red b. Black c. White d. Green

Answers

Red light reflects off the card into your eyes and you see the red card as red. The light will just make the card brighter. So A

The color that is reflected when a red card is illuminated by red light is white.

The color an object is perceived to have, depends on the frequency of light it reflects.

If white light incidents on a red filter, red is transmitted while blue and green are absorbed.

Consequently, when a red card is illuminated by red light, the red card will  reflect back almost all the incident light on it, causing it to appear brighter which creates an  illusion of white color to the eyes.

Thus, we can conclude the color that is reflected when a red card is illuminated by red light is white.

Learn more here:https://brainly.com/question/3495999

A 58 g firecracker is at rest at the origin when it explodes into three pieces. The first, with mass 12 g , moves along the x axis at 37 m/s in the positive direction. The second, with mass 22 g , moves along the y axis at 34 m/s in the positive direction. Find the velocity of third piece.

Answers

Answer:

Explanation:

We shall apply conservation of momentum law in vector form to solve the problem .

Initial momentum = 0

momentum of 12 g piece

= .012 x 37 i since it moves along x axis .

= .444 i

momentum of 22 g

= .022 x 34 j

= .748 j

Let momentum of third piece = p

total momentum

= p + .444 i + .748 j

so

applying conservation law of momentum

p + .444 i + .748 j  = 0

p = - .444 i -  .748 j  

magnitude of p

= √ ( .444² + .748² )

= .87 kg m /s

mass of third piece = 58 - ( 12 + 22 )

= 24 g = .024 kg

if v be its velocity

.024 v = .87

v = 36.25 m / s .

If the rods with diameters and lengths listed below are made of the same material, which will undergo the largest percentage length change given the same applied force along its length?a. d, 3L b. 3d, L c. 2d, 2L d. 4d, L

Answers

Answer:

The highest percentage of change corresponds to the thinnest rod, the correct answer is a

Explanation:

For this exercise we are asked to change the length of the bar by the action of a force applied along its length, in this case we focus on the expression of longitudinal elasticity

               F / A = Y ΔL/L

where F / A is the force per unit length, ΔL / L is the fraction of the change in length, and Y is Young's modulus.

In this case the bars are made of the same material by which Young's modulus is the same for all

              ΔL / L = (F / A) / Y

the area of ​​the bar is the area of ​​a circle

               A = π r² = π d² / 4

               A = π / 4 d²

we substitute

              ΔL / L = (F / Y) 4 /πd²

changing length

               ΔL = (F / Y 4 /π) L / d²

The amount between paracentesis are all constant in this exercise, let's look for the longitudinal change

a) values ​​given d and 3L

               ΔL = cte 3L / d²

               ΔL = cte L /d²  3

To find the percentage, we must divide the change in magnitude by its value and multiply by 100.

                ΔL/L % = [(F /Y  4/π 1/d²) 3L ] / 3L 100

                ΔL/L  % = cte 100%

 

b) 3d and L value, we repeat the same process as in part a

               ΔL = cte L / 9d²

               ΔL = cte L / d² 1/9

               ΔL / L% = cte 100/9

               ΔL / L% = cte 11%

   

c) 2d and 2L value

               ΔL = (cte L / d ½ )/ 2L

               ΔL/L% = cte 100/4

               ΔL/L% = cte 25%

d) value 4d and L

               ΔL = cte L / d² 1/16

                ΔL/L % = cte 100/16

                ΔL/L % = cte 6.25%

   

The highest percentage of change corresponds to the thinnest rod, the correct answer is a

A 4.00-Ω resistor, an 8.00-Ω resistor, and a 24.0-Ω resistor are connected together. (a) What is the maximum resistance that can be produced using all three resistors? (b) What is the minimum resistance that can be produced using all three resistors? (c) How would you connect these three resistors to obtain a resistance of 10.0 Ω? (d) How would you connect these three resistors to obtain a resistance of 8.00 Ω?

Answers

Answer:a) 4+8+24=36

B) 1/4+1/8+1/24=10

C) yu will connect them in parallel connection.

D) you will connect two in parallel then the remaining one in series to the ons connected in parallel.

Explanation:

(a)The maximum resistance that can be produced using all three resistors will be 36 ohms.

(b)The minimum resistance that can be produced using all three resistors will be 10 ohms.

(c)The three resistors to obtain a resistance of 10.0 Ω will be in the parallel connection.

(d) You connect these three resistors to obtain a resistance of 8.00 Ω will be in parallel. Two will be linked in parallel, and the last one will be connected in series to the two that are connected in parallel.

What is resistance?

Resistance is a type of opposition force due to which the flow of current is reduced in the material or wire. Resistance is the enemy of the flow of current.

The maximum resistance that can be produced using all three resistors is obtained by adding all the given resistance;

[tex]\rm R_{max}=(4 +8+24 )\ ohms \\\\ R_{max}=36 \ ohms[/tex]

The minimum resistance that can be produced using all three resistors is obtained when connected in the parallel.

[tex]\rm R_{min}=\frac{1}{4} +\frac{1}{8} +\frac{1}{24} \\\\ R_{min}=10 \ ohm[/tex]

(c)The three resistors to obtain a resistance of 10.0 Ω will be in the parallel connection.

(d) You connect these three resistors to obtain a resistance of 8.00 Ω will be in parallel. Two will be linked in parallel, and the last one will be connected in series to the two that are connected in parallel.

Hence,the maximum resistance that can be produced using all three resistors will be 36 ohms.

To learn more about the resistance, refer to the link;

https://brainly.com/question/20708652

#SPJ2

The ancient Greek Eratosthenes found that the Sun casts different lengths of shadow at different points on Earth. There were no shadows at midday in Aswan as the Sun was directly overhead. 800 kilometers north, in Alexandria, shadow lengths were found to show the Sun at 7.2 degrees from overhead at midday. Use these measurements to calculate the radius of Earth.

Answers

Answer:

The  radius of the earth is [tex]r = 6365.4 \ km[/tex]

Explanation:

From the question we are told that

     The distance at  Alexandria is  [tex]d_a = 800 \ km = 800 *10^{3} \ m[/tex]

      The angle of the sun is  [tex]\theta = 7.2 ^o[/tex]

So we want to first obtain the circumference of the earth

   So let assume that the earth is  circular ([tex]360 ^o[/tex])

  Now from question we know that the sun made an angle of [tex]7.2 ^o[/tex] so with this we will obtain how many  [tex](7.2 ^o)[/tex]  are in [tex]360^o[/tex]

 i.e    [tex]N = \frac{360}{7.2}[/tex]

=>      [tex]N = 50[/tex]

     With this  value we can evaluate the circumference as

             [tex]c = 50 * 800[/tex]

              [tex]c = 40000 \ km[/tex]

Generally circumference is mathematically represented as

        [tex]c = 2\pi r[/tex]

         [tex]40000 = 2 * 3.142 * r[/tex]

=>        [tex]r = 6365.4 \ km[/tex]

Which is one criterion that materials of a technological design should meet? They must be imported. They must be affordable. They must be naturally made. They must be locally produced.

Answers

Answer:

they must be affordable because they have to pay for it or they wont get the stuff they are bying.

Explanation:

need a brainliest please.

Answer: B, they must be affordable.

Explanation:

Rod cells in the retina of the eye detect light using a photopigment called rhodopsin. 1.8 eV is the lowest photon energy that can trigger a response in rhodopsin. Part A What is the maximum wavelength of electromagnetic radiation that can cause a transition

Answers

Answer:

The maximum wavelength of the e-m wave is 6.9 x 10^-7 m

Explanation:

Energy required to trigger a response = 1.8 eV

we convert to energy in Joules.

1 eV = 1.602 x 10^-19 J

1.8 eV = [tex]x[/tex] J

[tex]x[/tex] = 1.8 x 1.602 x 10^-19 = 2.88 x 10^-19 J

The energy of an electromagnetic wave is gotten as

E = hf

where

h is the Planck's constant = 6.63 x 10^-34 J-s

and f is the frequency of the wave.

substituting values, we have

2.88 x 10^-19 = 6.63 x 10^-34 x f

f = (2.88 x 10^-19)/(6.63 x 10^-34)

f = 4.34 x 10^14 Hz

We know that the frequency of an e-m wave is given as

f = c/λ

where

c is the speed of light = 3 x 10^8 m/s

λ is the wavelength of the e-m wave

From this we can say that

λ = c/f

λ = (3 x 10^8)/(4.34 x 10^14)

λ = 6.9 x 10^-7 m

Terms to describe the opposition by a material.to being magnetised is

Answers

Answer:

Repulsion

Explanation:

Astronomers think planets formed from interstellar dust and gases that clumped together in a process called? A. stellar evolution B. nebular aggregation C. planetary accretion D. nuclear fusion

Answers

Answer:

C. planetary accretion

Explanation:

Astronomers think planets formed from interstellar dust gases that clumped together in a process called planetary accretion.

Answer:

[tex]\boxed{\sf C. \ planetary \ accretion }[/tex]

Explanation:

Astronomers think planets formed from interstellar dust and gases that clumped together in a process called planetary accretion.

Planetary accretion is a process in which huge masses of solid rock or metal clump together to produce planets.

If you wish to observe features that are around the size of atoms, say 5.5 × 10^-10 m, with electromagnetic radiation, the radiation must have a wavelength of about the size of the atom itself.


Required:

a. What is its frequency?

b. What type of electromagnetic radiation might this be?

Answers

Answer:

a) 5.5×10^17 Hz

b) visible light

Explanation:

Since the wavelength of the electromagnetic radiation must be about the size of the about itself, this implies that;

λ= 5.5 × 10^-10 m

Since;

c= λ f and c= 3×10^8 ms-1

f= c/λ

f= 3×10^8/5.5 × 10^-10

f= 5.5×10^17 Hz

The electromagnetic wave is visible light

Light of wavelength 520 nm is incident a on a diffraction grating with a slit spacing of 2.20 μm , what is the angle from the axis for the third order maximum?

Answers

Answer:

θ = 45.15°

Explanation:

We need to use the grating equation in this question. The grating equation is given as follows:

mλ = d Sin θ

where,

m = order number = 3

λ = wavelength of light = 520 nm = 5.2 x 10⁻⁷ m

d = slit spacing = 2.2 μm = 2.2 x 10⁻⁶ m

θ = angle from the axis = ?

Therefore,

(3)(5.2 x 10⁻⁷ m) = (2.2 x 10⁻⁶ m) Sin θ

Sin θ = (3)(5.2 x 10⁻⁷ m)/(2.2 x 10⁻⁶ m)

Sin θ = 0.709

θ = Sin⁻¹(0.709)

θ = 45.15°

A 2.0 m × 4.0 m flat carpet acquires a uniformly distributed charge of −10 μC after you and your friends walk across it several times. A 5.0 μg dust particle is suspended in midair just above the center of the carpet.

Required:
What is the charge on the dust particle?

Answers

Answer:

The  charge on the dust particle is  [tex]q_d = 6.94 *10^{-13} \ C[/tex]

Explanation:

From the question we are told that

    The length is  [tex]l = 2.0 \ m[/tex]

    The width is  [tex]w = 4.0 \ m[/tex]

   The charge is  [tex]q = -10\mu C= -10*10^{-6} \ C[/tex]

    The mass suspended in mid-air is [tex]m_a = 5.0 \mu g = 5.0 *10^{-6} \ g = 5.0 *10^{-9} \ kg[/tex]

   

Generally the electric field on the carpet is mathematically represented as

           [tex]E = \frac{q}{ 2 * A * \epsilon _o}[/tex]

Where [tex]\epsilon _o[/tex] is the permittivity of free space with value [tex]\epsilon_o = 8.85*10^{-12} \ \ m^{-3} \cdot kg^{-1}\cdot s^4 \cdot A^2[/tex]

substituting values

           [tex]E = \frac{-10*10^{-6}}{ 2 * (2 * 4 ) * 8.85*10^{-12}}[/tex]

           [tex]E = -70621.5 \ N/C[/tex]

Generally the electric force keeping the dust particle on the air  equal to the force of gravity acting on the particles

        [tex]F__{E}} = F__{G}}[/tex]

=>     [tex]q_d * E = m * g[/tex]

=>      [tex]q_d = \frac{m * g}{E}[/tex]

=>      [tex]q_d = \frac{5.0 *10^{-9} * 9.8}{70621.5}[/tex]

=>     [tex]q_d = 6.94 *10^{-13} \ C[/tex]

A resistor and a capacitor are connected in series to an ideal battery of constant terminal voltage. At the moment contact is made with the battery, the voltage across the resistor is

Answers

Answer:

At the moment contact is made with the battery, the voltage across the resistor is equal to the batteries terminal voltage

Explanation;

Because at series connection the battery and resistor have equal voltage

2. The nuclear model of the atom held that
a. electrons were randomly spread through "a sphere of uniform positive
electrification."
b. matter was made of tiny electrically charged particles that were smaller than the
atom
C. matter was made of tiny, indivisible particles.
d. the atom had a dense, positively charged nucleus.​

Answers

Answer:

the atom had a dense, positively charged nucleus.​

Explanation:

Ernest Rutherford, based on the experiment carried out by two of his graduate students, established the authenticity of the nuclear model of the atom.

According to the nuclear model, an atom is made up of a dense positive core called the nucleus. Electrons are found to move round this nucleus in orbits. This is akin to the movement of the planets round the sun in the solar system.

Other Questions
A normal distribution has a mean of 30 and a variance of 5.Find N such that the probability that the mean of N observations exceeds 30.5 is 1%. What are the dimensions of the matrix? In decision making under ________, there are several possible outcomes for each alternative, and the decision maker knows the probability of occurrence of each outcome Nestro has admired Monica for a long time and has wanted to date her but is too shy around girls to ask. He is a football player with a reputation of being the toughest player on the team. Monica is scared of Nestro because of his size and reputation. One day Nestro summons the courage and approaches Monica, who has her back to him and doesn't know he's there. He puts his arms around her and gives her a gentle kiss before letting go. He can't believe what he did, apologizes, and runs away. Monica is slightly shaken but physically unharmed. Nestro has committed Multiple Choice conversion. nothing, because he apologized and she was unharmed. battery. intentional infliction of emotional distress. What is the equation, in point-slope form, of the linethat is parallel to the given line and passes through thepoint (-3, 1)?y-1=- (x+3)y-1=-{(x + 3)y-1= {(x+3)y-1= {(x+3) which is the solution set of 18 - 3n + 2 = n + 20 - 4n 0 all reals frolic Corporation has budgeted sales and production over the next quarter as follows: July August September Sales in units 41,500 53,500 ? Production in units 42,550 53,800 58,150 The company has 4,300 units of product on hand at July 1. 10% of the next month's sales in units should be on hand at the end of each month. October sales are expected to be 73,000 units. Budgeted sales for September would be (in units): Factor the following expression completely:32z4+8z34z2 You have been put in charge of planning a family wedding. In Spanish, listsome of the arrangements you would have to make. What is the value of x in the equation 3x-4y=65, when y=4?x=13 1/4 x=21 2/3x =23x = 27 When you read a work and then identify and organize the key points, what can you find?O The central ideaThe publication dateThe response topicO The discussion board (NO TROLLS 3 TIMES THE CHARM) In ABC, AB = BC = 20 and DE 9.28. Approximate BD. Prove that for all integers m and n, m - n is even if, and only if, both m and n are even or both m and n are odd. Look at The Flight into Egypt by Annibale Carracci. The main feature of thispainting is its:SetA. contrast between peace and war.B. asymmetrical compositionO c. idealized landscape.O D. focus on human suffering Enum fruit_tag {BLUEBERRY,BANANA,PINEAPPLE,WATERMELON};typedef enum fruit_tag fruit_t;void printFruit(fruit_t myFruit) {switch(myFruit) {case BLUEBERRY:printf("a blueberry");break;case BANANA:printf("a banana");break;case PINEAPPLE:printf("a pineapple");break;case WATERMELON:printf("a watermelon");break;}}void compareFruit(fruit_t fruit1, fruit_t fruit2) {if (fruit1 > fruit2) {printFruit(fruit1);printf(" is larger than ");printFruit(fruit2);}else {printFruit(fruit1);printf(" is smaller than ");printFruit(fruit2);}}int main(void) {fruit_t myFruit = PINEAPPLE;fruit_t otherFruit = BLUEBERRY;compareFruit(myFruit, otherFruit);return 0;What is the output? ASAP PLS I'M TIMED!!!!!!!!!!!!!!!!Which societal changes occurred in the US as a result of the Vietnam War? Select TWO options. The mandatory draft ended. The voting age was lowered to 18. Military engagements overseas stopped. Immigration from Vietnam was eliminated. Mass protests opposing US government policies ended. Assume that the Measurable interface is defined with a static sum method that computes the sum of the Measurable objects passed in as an array, and that BankAccount implements the Measurableinterface. Also assume that there is a variable branchAccounts that is an object reference to a populated array of BankAccount objects for a bank branch. Which of the following represents a correct invocation of the sum method to find the total balance of all accounts at the branch? A) Arrays.sum(branchAccounts) B) Measurable.sum(branchAccounts) C) BankAccount.sum(branchAccounts) D) branchAccounts.sum() is the basic unit of structure and function of living things. WILLL GIVE ALL MY POINT PLUS MARK BRAILIEST PLS HELP ASAP TY Which of these are likely benefits of abstinence ? Select three answers No worries about acquiring sti Better social health More focused on platonic relationships Possible unwanted pregnancy