Answer:
g(x) = f(x) - 2
g(x) = f(x + 2)
Step-by-step explanation:
y-intercept of a function:
The y-intercept of a function is the value of y when x = 0.
Function f:
Graph given in this question
When [tex]x = 0, y = 6[/tex], so the y-intercept is 6.
Additionally, when [tex]x = -2, y = 4[/tex]
If g has a y-intercept at 4, which of the following functions could represent g?
Either we subtract 2 from f, that is:
[tex]g(x) = f(x) - 2[/tex]
Or we can also add 2 on the domain, that is, moving 2 units to the right, so:
[tex]g(x) = f(x+2)[/tex]
So the first two options are correct.
Answer:
the answer would be g(x)=f(x)-2
Step-by-step explanation:
i got it right
she sells 6adult tickets and 5 children tickets on the first day totaling $112.50 and on the second day she sells 8adult tickets and 4 childrens tickets totaling $130. write an equation for each day and use the elimination method
Answer:
Cost of adult ticket = $12.5
Cost of child ticket = $7.5
Step-by-step explanation:
Given:
Cost of 6 adult ticket and 5 child ticket = $112.5
Cost of 8 adult ticket and 4 child ticket = $130
Find:
Equation and solution
Computation:
Assume;
Cost of adult ticket = a
Cost of child ticket = b
So,
6a + 5b = 112.5....eq1
8a + 4b = 130 ......eq2
Eq2 x 1.25
10a + 5b = 162.5 .....eq3
eq3 - eq1
4a = 50
Cost of adult ticket = $12.5
8a + 4b = 130
8(12.5) + 4b = 130
Cost of child ticket = $7.5
Tasha needs 75 liters of a 40% solution of alcohol. She has a 20% and a 50% solution available. How many liters of the 20% and how many liters of the 50% solutions should she mix to make the 40% solution?
Answer:
25 liters of 20%
50 liters of 50%
Step-by-step explanation:
x = liters of 50%
75 - x = liters of 20%
50x + 20(75 - x) = 40(75)
50x + 1500 - 20x = 3000
30x = 1500
x = 50
75 - x = 25
How to solve and answer
Answer:
D. (-2, 0) and (3, 0).
Step-by-step explanation:
At the x -intercepts the function = 0, so
(2x + 4)(x - 3) = 0
2x + 4 = 0 and x - 3 = 0
x = -4/2 = -2 and x = 3.
So they are (-2, 0) and (3, 0).
x = 3 or x = -2
Step-by-step explanation:
f(x) = (2x + 4)(x - 3)
y = (2x + 4)(x - 3)
x - intercept occurs when y = 0
0 = (2x + 4)(x - 3)
0 = 2x² - 6x + 4x - 12
2x² - 2x - 12 = 0
(2x² - 2x - 12)/2 = 0/2
x² - x - 6 = 0
From the quadratic formula,
x = (-b +- √(b² - 4ac))/2a
x = (- ( -1 ) +- √(( -1)² - 4( 1 )( -6 )))/2( -1 )
x = (1 +- √(1 - ( -24)))/-2
x = (1 +- √25)/-2
x = (1 +- 5)/-2
x = 3 or x = -2
the volume of a cylinder is 44cm3. find the volume of another cylinder of the same height and double the base radius
Answer:
[tex]Volume \ of \ other\ cylinder = 176 \ cm^3[/tex]
Step-by-step explanation:
Let the volume of cylinder Vₐ = 44cm³
Let radius of cylinder " a " be = rₐ
Let height of cylinder " b" be = hₐ
[tex]Volume_a = \pi r_a^2 h_a\\\\44 = \pi r_a^2 h_a[/tex]
Given cylinder " b ", Radius is twice cylinder " a " , that is [tex]r_b = 2 r_a[/tex]
Also Height of cylinder " b " is same as cylinder " a " , that is [tex]h_b = h_a[/tex]
[tex]Volume_b = \pi r_b^2 h_b[/tex]
[tex]= \pi (2r_a)^2 h_a\\\\=4 \times \pi r_a^2 h_a\\\\= 4 \times 44\\\\= 176 \ cm^3[/tex]
Which type of parent function is f(x) =1/2
Answer:
I think you are missing something unless the answer is a horizontal line.
Step-by-step explanation:
Answer:
square root
Step-by-step explanation:
just took the test :)
Select the correct answer.
What is the solution to this equation?
g^x-1=2
A. -1/2
B. 1/2
C. 2
D. 1
9514 1404 393
Answer:
B. 1/2
Step-by-step explanation:
Maybe you want the solution to ...
[tex]9^x-1=2[/tex]
You can use logarithms, or your knowledge of powers of 3 to solve this.
[tex]9^x=3\qquad\text{add 1}\\\\3^{2x}=3^1\qquad\text{express as powers of 3}\\\\2x=1\qquad\text{equate exponents of the same base}\\\\\boxed{x=\dfrac{1}{2}}\qquad\text{divide by 2}[/tex]
Using logarithms, the solution looks like ...
[tex]x\cdot\log{9}=\log{3}\\\\x=\dfrac{\log{3}}{\log{9}}=\dfrac{1}{2}[/tex]
11 Roger has m toy cars. Don has twice as many cars as Roger. Larry has five more cars than Roger. Write down an expression, in terms of m, to complete each statement. Don has cars H Larry has cars
Step-by-step explanation:
Roger has m toy cars.→ Number of cars Roger has = m
Don has twice as many cars as Roger.→ Number of cars Don has = 2(Cars Roger has)
→ Number of cars Don has = 2m
Larry has five more cars than Roger.→ Number of cars Larry has = 5 + (Cars Roger has)
→ Number of cars Larry has = 5 + m
In a Louisiana chili cook-off, 18 of the 40 chilis included two types of beans.
A photo of multiple crock pots on a long table is shown. The caption says chili cook-off.
What percentage of the chilis did not include two types of beans?
Enter the correct answer in the box.
Answer:
55%
Step-by-step explanation:
18 out of 40 include chili.
So 22 has no chili
22/40 = 0.55 or 55%
Please show work thank you
Answer
No solution
Step-by-step explanation:
4y + 2x = 18
3x + 6y = 26
You need either the x's or the y's to have the same coefficients.
let's line things up first.
4y + 2x = 18 (multiply by 3)
6y + 3x = 26 (multiply by 2)
to keep numbers relatively small we will multiply the top equation by 3 and the bottom equation by 2. Multiply all terms. This will make the coefficients equal.
12y + 6x = 54
12y + 6x = 52
So, if you subtract them from each other you get :
0 = 2
When this happens the solution set is : no solution
Answer:
Impossible
Step-by-step explanation:
Ok, so we first rearrange for convenience:
2x+4y=18
3x+6y=26
We multiply the two equations to eliminate x:
2x+4y=18 * -3
3x+6y=26 * 2
So:
-6x-12y=-54
6x+12y=52
And now we add the two equations:
0+0= -2
Try multiplying the two equations by any other number which will lead to them cancelling, (eg. -9, 6), still the equation will not work.
Force: F = MA; Solve for m.
mass = force / area
this is second law of motion ( Newton's 2nd law)
[tex]\longrightarrow{\blue{ m = \frac{F}{a} }}[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\red{Explanation}}{\red{:}}}}}[/tex]
F = ma
➺ m = [tex]\frac{F}{a} [/tex]
where,
F = Force
m = mass
a = acceleration
"F = ma" is Newton's second law of motion, which states that force is equal to mass times acceleration.
The SI unit of force is newton, symbol N.
[tex]\bold{ \green{ \star{ \orange{Mystique35}}}}⋆[/tex]
A person invests $3,500 in an account that earns 7.5% interest compounded continuously. What is the value of the investment after 4 years?
I think it's: 4,674.14$
Answer:
A = $4724.36
Step-by-step explanation:
P = $3500
r = 7.5% = 0.075
t = 4years
n = 365
[tex]A = P(1 + \frac{r}{n})^{nt}\\\\[/tex]
[tex]=3500(1 + \frac{0.075}{365})^{365 \times 4}\\\\=3500(1.00020547945)^{365\times4}\\\\= 3500 \times 1.34981720868\\\\= 4724.36023037\\\\= \$ 4724.36[/tex]
What number is missing here?
2, 3, 5, 8, 13. ?
Answer:
2, 3, 5, 8, 13 missing number is 18.
Find the missing segment in the image below
Student researchers investigated whether balsa wood is less elastic after it has been immersed in water. They took 60 pieces of balsa wood and randomly assigned half to be immersed in water and the other half not to be. They measured the elasticity by seeing how far (in inches) the piece of wood would project a dime into the air.
Required:
​Does the p-value obtained using the theory-based method (p < 0.0001) agree with that obtained using the randomization/simulation-based method (p < 0.0001)?
Yes, they are quite similar. the p-value obtained using the theory-based method (p < 0.0001) agree with that obtained using the randomization/simulation - based method (p < 0.0001)
P- value is the probability of obtaining a value of test statistic more extreme in the direction of alternative hypothesis than the observed one. In easy words if p -value < level of significance we reject H0 in favor of H1.
Here:
p-value < 0.0001 => we reject H0.
If the statistical software renders a p value of 0.000 it means that the value is very low, with many "0" before any other digit.
So the interpretation would be that the results are significant, same as in the case of other values below the selected threshold for significance.
Therefore, yes they are quite similar.
Learn more about balsa wood here:
https://brainly.com/question/33256379
#SPJ2
Incomplete Question:
Student researchers investigated whether balsa wood is less elastic after it has been immersed in water. They took 60 pieces of balsa wood and randomly assigned half to be immersed in water and the other half not to be. They measured the elasticity by seeing how far (in inches) the piece of wood would project a dime into the air.
Does the p-value obtained using the theory-based method (p < 0.0001) agree with that obtained using the randomization/simulation-based method (p < 0.0001)?
A. No, they are different.
B. Yes, they are quite similar.
A park, in the shape of a quadrilateral ABCD has angle B=900 , AB=9m, BC=40m, CD=15m, DA=28m. How much area does it occupy?
Given:
In quadrilateral ABCD, angle B=90° , AB=9m, BC=40m, CD=15m, DA=28m.
To find:
The area of the quadrilateral ABCD.
Solution:
In quadrilateral ABCD, draw a diagonal AC.
Using Pythagoras theorem in triangle ABC, we get
[tex]AC^2=AB^2+BC^2[/tex]
[tex]AC^2=9^2+40^2[/tex]
[tex]AC^2=81+1600[/tex]
[tex]AC^2=1681[/tex]
Taking square root on both sides, we get
[tex]AC=\sqrt{1681}[/tex]
[tex]AC=41[/tex]
Area of the triangle ABC is:
[tex]A_1=\dfrac{1}{2}\times base\times height[/tex]
[tex]A_1=\dfrac{1}{2}\times BC\times AB[/tex]
[tex]A_1=\dfrac{1}{2}\times 40\times 9[/tex]
[tex]A_1=180[/tex]
So, the area of the triangle ABC is 180 square m.
According to the Heron's formula, the area of a triangle is
[tex]Area=\sqrt{s(s-a)(s-b)(s-c)}[/tex]
where,
[tex]s=\dfrac{a+b+c}{2}[/tex]
In triangle ACD,
[tex]s=\dfrac{28+15+41}{2}[/tex]
[tex]s=\dfrac{84}{2}[/tex]
[tex]s=42[/tex]
Using Heron's formula, the area of the triangle ACD, we get
[tex]A_2=\sqrt{42(42-28)(42-15)(42-41)}[/tex]
[tex]A_2=\sqrt{42(14)(27)(1)}[/tex]
[tex]A_2=\sqrt{15876}[/tex]
[tex]A_2=126[/tex]
Now, the area of the quadrilateral is the sum of area of the triangle ABC and triangle ACD.
[tex]A=A_1+A_2[/tex]
[tex]A=180+126[/tex]
[tex]A=306[/tex]
Therefore, the area of the quadrilateral ABCD is 306 square meter.
NEED HELP ASAP!!! Giving brainliest!!!!!!!
C.(f-g)(x) = 4x^3 +5x²-7x-1
Step-by-step explanation:
Given information :
[tex]f(x) = 4 {x}^{3} + 5 {x}^{2} - 3x - 6 \\ g(x) = 4x - 5[/tex]
Find :
[tex](f - g)(x) = \\ (4 {x}^{3} + 5 {x}^{2} - 3x - 6) \\ - 4x -5[/tex]
Open bracket and Simplify
[tex]4 {x}^{3} + 5 {x}^{2} - 3x - 6 - 4x + 5 \\ 4 {x}^{3} + 5 {x}^{2} - 7x - 1[/tex]
The quotient of 36 and 9 multiplied by 7
Answer:
6
Step-by-step explanation:
6*9 = 54
6*6 = 36
6*7 = 42
The set (AB) (B-C) is equal to
Answer:
AB^2- AC.
Step-by-step explanation:
I'm not sure if this question is complete, but when two separate variables are placed in brackets side by side, then it means they need to be expanded.
Therefore, expanding the bracket gives us:
(AB) (B-C)=
AB^2- AC.
This is the answer, if the only task needed is to expand the brackets.
Help please which option
Answer:
Step-by-step explanation:
-1<x<3. I hope it helpful!
Solve the equation.
(X-5)(x + 7) = 0
X=
-D
(Use a comma 6 separate answers as needed.)
9514 1404 393
Answer:
x = -7, 5
Step-by-step explanation:
The equation is written as a product equal to zero. The "zero product rule" tells us that a product is zero if and only if one or more factors are zero. Each factor will be zero when x takes on a value equal to the opposite of the constant in that factor.
x -5 = 0 ⇒ x = 5
x +7 = 0 ⇒ x = -7
The solutions to the equation are x = -7, 5.
Point V is located at -16. Points W and X are each 7 units away from Point V. Where are W and X located?
Answer:
Location of W is - 23, location of X is - 9.
Step-by-step explanation:
location of V = - 16
Points W and X are each 7 units away from Point V.
Let the W is at left of V and X is right of V.
location of W = -16 - 7 = - 23
location of X = - 16 + 7 = - 9
So are you good at maths then what is
[tex]4 \times 6 + 9 - 46 + 54 - 13[/tex]
1. 71
2. 42
3. 63
4. 28
5. 35
6. 14
maybe 28 is the answer...
After reading the directions to paint, on the paint drum, the information
indicated two coats of paint is required when using the 5 litre paint
and one coat with the 20 litre drum. With both paints 1 litre of paint
covers 9 m2
1.3.1 There are 28 rooms to be painted. Show with calculations which
will be the cheaper paint to buy.
(1
Step-by-step explanation:
jnx-avkj-uup p.l.z join
Which region represents the solution to the given system of inequalities?
Answer:
The intersection region shown in the graph attached is the solution of the system of inequalities
A cyclist travels 3 miles in 15 minutes and then a further 7 miles in 25 minutes without stopping.
Calculate the cyclist's average speed in mph.
Answer:
15 mph
Step-by-step explanation
i used a calculator but correct me if im wrong pls
The harmonic mean of two real numbers x and y equals 2xy/(x + y). By computing the harmonic and geometric means of different pairs of positive real numbers, formulate a conjecture about their relative sizes and prove your conjecture.
Answer:
Conjecture : 2xy / ( x + y ) ≤ √xy
Step-by-step explanation:
Harmonic mean of x and y = 2xy/( x + y )
Formulate a conjecture about their relative sizes
we will achieve this by computing harmonic and geometric means
Geometric mean = √xy
harmonic mean = 2xy/( x + y )
Conjecture : 2xy / ( x + y ) ≤ √xy
attached below is the proof
At the end of a snowstorm, Jamal had 18 inches of snow on his lawn. The temperature then increased and the snow began to melt at a constant rate of 2.5 inches per hour. Assuming no more snow was falling, how much snow would Jamal have on his lawn 5 hours after the snow began to melt? How much snow would Jamal have on his lawn after tt hours of snow melting?
Answer:
Part 1)
5.5 inches.
Part 2)
[tex]y=-2.5t+18[/tex]
Step-by-step explanation:
We can write a linear equation to model the function.
Let y represent the inches of snow and let t represent the number of hours since the end of the snowstorm.
A linear equation is in the form:
[tex]y=mt+b[/tex]
Since there was 18 inches of snow in the beginning, our y-intercept or b is 18.
Since it melts at a constant rate of 2.5 inches per hour, our slope or m is -2.5.
Substitute:
[tex]y=-2.5t+18[/tex]
This equation models how much snow Jamal will have on his lawn after t hours of snow melting.
So, after five hours, t = 5. Substitute and evaluate:
[tex]y=-2.5(5)+18=5.5\text{ inches}[/tex]
After five hours, there will still be 5.5 inches of snow.
Answer the following: a) 2x32 =
b) (2 x 3)2 =
Answer:
a) 64 b) 12
Step-by-step explanation:
32 + 32 = 64
2*3 = 6
6*2 = 12
Answer:
a) 64 b) 12
Step-by-step explanation:
The answer for a is simple the answer is 64 just multipy 32 with 2 and the second one first you have to solve he answer iin the bracket then the answer you get from the bracket you will have to multiply with the number outside the bracket which is 2 and the answer you get will be 12.
When choosing a four-number PIN.
(personal identification number)
how many different PINS are possible?
(The choice of digits 0-9 are available for each number.)
Answer:
10,000 different PINS are possible
Step-by-step explanation:
Fundamental counting principle:
States that if there are p ways to do a thing, and q ways to do another thing, and these two things are independent, there are p*q ways to do both things.
In this question:
Four each digit on the PIN, there are 10 possible outcomes. The digits are independent. So, by the fundamental counting principle:
[tex]T = 10^4 = 10000[/tex]
10,000 different PINS are possible
Solve the equation by using the quadratic formula.
3 x squared minus 1 = 7 x
Answer:
b. [tex]\frac{7+\sqrt{61} }{6} ,\frac{7-\sqrt{61} }{6}[/tex]
Step-by-step explanation:
[tex]3x^{2} -1=7x[/tex]
Quadratic equations are suppose to be written as: [tex]ax^2+bx+c=0[/tex]
so the new quadratic equation for this problem will be: [tex]3x^{2} -1-7x=0[/tex]
Now rearrange the terms: [tex]3x^{2} -7x-1=0[/tex]
Then use the Quadratic Formula to Solve for the Quadratic Equation
Quadratic Formula = [tex]x=\frac{-b±}{} \frac{\sqrt{b^2-4ac} }{2a}[/tex]
Note: Ignore the A in the quadratic formula
Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.
[tex]3x^{2} -7x-1=0[/tex]
a = 3
b = -7
c = -1
[tex]x=-(-7)±\frac{\sqrt{(-7)^2-4(3)(-1)} }{2(3)}[/tex]
Evaluate The Exponent
[tex]x=\frac{7±\sqrt{(49)-4(3)(-1)} }{2(3)}[/tex]
Multiply The Numbers
[tex]x=\frac{7±\sqrt{49+12} }{2(3)}[/tex]
Add The Numbers
[tex]x=\frac{7±\sqrt{61} }{2(3)}[/tex]
Multiply The Numbers
[tex]x=\frac{7±\sqrt{61} }{6}[/tex]