Answer:
[tex]\frac{a_{c1}}{a_{c2}} = 2.23[/tex]
Explanation:
The centripetal acceleration is given as follows:
[tex]a_c = \frac{v^2}{r}\\[/tex]
where,
ac = centripetal acceleration
v = linear speed = rω
r = radius
ω = angular speed
Therefore,
[tex]a_c = \frac{(r\omega)^2}{r}\\\\a_c = r\omega^2[/tex]
Therefore, the ratio will be:
[tex]\frac{a_{c1}}{a_{c2}} = \frac{r_1\omega^2}{r_2\omega^2}\\\\\frac{a_{c1}}{a_{c2}} = \frac{r_1}{r_2}\\\\[/tex]
where,
r₁ = 6.7 m
r₂ = 3 m
Therefore,
[tex]\frac{a_{c1}}{a_{c2}} = \frac{6.7\ m}{3\ m}\\\\[/tex]
[tex]\frac{a_{c1}}{a_{c2}} = 2.23[/tex]
A 55-kg block, starting from rest, is pushed a distance of 5.0 m across a floor by a horizontal force Fp whose magnitude is 140 N. Fp is parallel to the displacement of the block. The final speed of the block is 2.35 m/s.
a) How much work was converted to thermal energy? What work did friction do on the box?
b) What is the coefficient of friction?
Answer:
The answer is "151.25 J and -547.64 J".
Explanation:
[tex]u = 0\\\\v = 2.35\ \frac{m}{sec}\\\\d = 5.0 \ m\\\\[/tex]
Using formula:
[tex]v^2 = u^2 + 2 \times a \times d\\\\2.35^2 = 0^2 + 2 \times a \times 5\\\\a = \frac{2.35^2}{10} \\\\[/tex]
[tex]= 0.55 \ \frac{m}{sec^2}\\\\[/tex]
[tex]F_{net} = m \times a\\\\F_{net} = 55 \times 0.55 = 30.25\ N\\\\[/tex]
Calculating the Work by net force
[tex]W = F_{net}\times d\\\\W = 30.25 \times 5 = 151.25 \ J\\\\[/tex]
The above work is converted into thermal energy.
Now,
[tex]F_{net} = F_p - F_f\\\\F_p = 140 \ N\\\\F_f = u_k\times m \times g = u_k \times 55 \times 9.81\\\\F_f = 539.55 \times u_k\\\\30.25 = 140 - u_k \times 55 \times 9.81\\\\u_k = \frac{(140 - 30.25)}{(55\times 9.81)}\\\\uk = 0.203 = \text{Coefficient of friction}\\\\W_f = -F_f \times d\\\\W_f = -0.203 \times 55 \times 9.81 \times 5\\\\Work\ done\ by\ friction = -547.64 \ J[/tex]
Why is the force of attraction between the Earth and ourselves so huge compared to the attraction between two apples?
Answer:
Answer in explanation
Explanation:
The force of attraction between two bodies is governed by Newton's Law of Gravitation:
[tex]F = \frac{Gm_1m_2}{r^2}[/tex]
where,
G = Universal Gravitational Constant
m₁ = mass of the first body
m₂ = mass of the second body
r = distance between the two bodies
F = Force
Hence, it is clear from the formula that the magnitude of the force is directly proportional to the product of the masses of the objects. So in the case of the earth and ourselves, the mass of the earth is very large in order of 10²⁴ kg. Due to this huge mass, the attraction between the earth and ourselves is so huge as compared to the attraction between two apples. Because the masses of the apple are very small in grams.
There are two beakers of water on the table. We can compare the average kinetic energy of the water molecules in the two beakers by measuring their
A temperatures.
B volumes.
C densities.
D masses.
Answer: masses
Explanation:
Trust me
What is the total number of moles of products involved in the following reaction?
CaCO3 (s) + 2HCl (aq) - CaCl2 (aq) + CO2 (g) + H20 (g)
O 6
2.
3
5
Answer:
3
Explanation:
You must first make sure the equation is balanced. This one is. Then, you simply add up the coefficients of each compound on the products side of the equation. When the coefficient is not specified, you can assume it is 1 mole. So, in this equation, there is 1 mole of CaCl₂, 1 mole of CO₂, and 1 mole of H₂O = 3 moles.
The reactant side of the equation also has three moles:
1 mole of CaCO₃ and 2 moles of HCl.
Question 2 of 10
Which of the following statements is true of an isolated system?
A.The system has energy but no matter.
B.Energy separates the matter in the system from outside matter.
C.The matter within the system does not interact with matter outside the system
D.The matter within the system does not interact with other matter in the system
Answer:
D
Explanation:
because it is system removed from system and it dosent interact with them
For waves moving through the atmosphere at a constant velocity, higher frequency waves must have proportionally longer wavelengths.
a) true
b) false
Answer:
false.
Explanation:
We know that for a wave that moves with velocity V, with a wavelength λ, and a frequency f, we have the relation:
V = λ*f
So, if the velocity is constant and we increase the frequency to:
f' > f
we will have a new wavelength λ'
Such that:
V = f'*λ'
And V = f*λ
Then we have:
f'*λ' = f*λ
Solvinf for λ', we get:
λ' =(f/f')*λ
And because:
f' > f
then:
(f/f') < 1
Then:
λ' =(f/f')*λ < λ
So, if we increase the frequency, we need to decrease the wavelength.
So, for higher frequency waves, we must have proportionally shorter wavelengths.
Then we can conclude that the given statement:
"or waves moving through the atmosphere at a constant velocity, higher frequency waves must have proportionally longer wavelengths"
is false.
65. The weight of a body when totally immersed in a liquid is 4.2N if he weight of the liquid displaced is 2.5N. Find the weight of the body in air.
Answer:
Given, Apparent weight(W₂)=4.2N
Weight of liquid displaced (u)=2.5N
Let weight of body in air = W₁
Solution,
U=W₁-W₂
W₁=4.2=2.5=6.7N
∴Weight of body in air is 6.7N
Betelgeuse (in Orion) has a parallax of 0.00451 + 0.00080 arcsec,as measured by the Hipparcos satellite. What is the distance to Betelgeuse, and what is the uncertainty in that measurement?
We have that the distance to Betelgeuse, and the uncertainty in that measurement is
[tex]d=(221.7\pm39.33)pc[/tex]Uncertainty U = 0.00080
From the Question we are told that
Betelgeuse (in Orion) has a parallax of 0.00451 + 0.00080
Generally
[tex]Distance\ in\ parsecs =\frac{ 1}{(parallax\ measured\ in\ arcseconds}[/tex]
Where
Parallax [tex]P =0.00451[/tex]
Uncertainty [tex]U = 0.00080[/tex]
Generally the equation for the distance is mathematically given as
[tex]d=(\frac{1}{P}pc\pm(\frac{U}{P}*100\%))[/tex]
Therefore
[tex]d=(\frac{1}{0.00451}pc\pm(\frac{0.00080}{0.00451}*100\%))[/tex]
[tex]d=(221.7\pm39.33)pc[/tex]
For more information on this visit
https://brainly.com/question/12319416?referrer=searchResults
recognizing forms of energy
Answer:
hi the question isn't obvious and need a photo I guess
Why does a compass give unreliable readings when used near electrical appliances
Answer:
Explanation:
Since the compass uses a magnetic field, if anything else magnetic is near it, the compass will start acting up. Making it unreliable so keep magnets away!
A block slides down a frictionless plane that makes an angle of 24.0° with the horizontal. What is the
acceleration of the block?
Answer:
F = m g sin theta force accelerating block
m a = m g sin theta
a = 9.8 sin 24 = 3.99 m/sec^2
what are the dynamic properties of a nucleus
How do the magnitudes of the currents through the full circuits compare for Parts I-III of this exercise, in which resistors are combined in series, in parallel, and in combination
Answer: hello tables and data related to your question is missing attached below are the missing data
answer:
a) I = I₁ = I₂ = I₃ = 0.484 mA
b) I₁ = 0.016 amps
I₂ = 0.0016 amps
I₃ = 7.27 * 10^-4 amps
c) I₁ = 1.43 * 10^-3 amp
I₂ = 0.65 * 10^-3 amps
Explanation:
A) magnitude of current for Part 1
Resistors are connected in series
Req = r1 + r2 + r3
= 3300 Ω ( value gotten from table 1 ) ,
V = 1.6 V ( value gotten from table )
hence I ( current ) = V / Req = 1.6 / 3300 = 0.484 mA
The magnitude of current is the same in the circuit
Vi = I * Ri
B) magnitude of current for part 2
Resistors are connected in parallel
V = 1.6 volts
Req = [ ( R1 * R2 / R1 + R2 ) * R3 / ( R1 * R2 / R1 + R2 ) + R3 ]
= [ ( 100 * 1000 / 100 + 1000) * 2200 / ( 100 * 1000 / 100 + 1000 ) + 2200]
= 87.30 Ω
For a parallel circuit the current flow through each resistor is different
hence the magnitude of the currents are
I₁ = V / R1 = 1.6 / 100 = 0.016 amps
I₂ = V / R2 = 1.6 / 1000 = 0.0016 amps
I₃ = V / R3 = 1.6 / 2200 = 7.27 * 10^-4 amps
C) magnitude of current for part 3
Resistors are connected in combination
V = 1.6 volts
Req = R1 + ( R2 * R3 / R2 + R3 )
= 766.66 Ω
Total current ( I ) = V / Req = 1.6 / 766.66 = 2.08 * 10^-3 amps
magnitude of currents
I₁ = ( I * R3 ) / ( R2 + R3 ) = 1.43 * 10^-3 amps
I₂ = ( I * R2 ) / ( R2 + R3 ) = 0.65 * 10^-3 amps
NEED HELP ASAP- Please show work
The angular position of an object is given by θ = 4t3 +10t −40 , where θ is in radians and t is in seconds what is:
(a) (5 points) The angular velocity at t = 2 s?
(b) (5 points) The angular acceleration at t = 2 s?
Answer:
Look at work
Explanation:
Θ= 4t^3+10t-40
a) In order to find ω, we need to find displacement so plug in t=2 to find Θ.
Θ= 4*8+20-40=12
use ω=Θ/t
Plug in values
ω=6 rad/s
b) In order to find α we use ω/t.
Plug in values
α=6/2= 3 rad/s^2
A disk rotates about its central axis starting from rest and accelerates with constant angular acceleration. At one time it is rotating at 10 rev/s; 60 revolutions later, its angular speed is 15 rev/s. Calculate
(a) the angular acceleration,
(b) the time required to complete the 60 revolutions,
(c) the time required to reach the 10 rev/s angular speed, and
(d) the number of revolutions from rest until the time the disk reaches the 10 rev/s angular speed.
Explanation:
Given:
[tex]\omega_0[/tex] = 10 rev/s = [tex]20\pi\:\text{rad/s}[/tex]
[tex]\omega[/tex] = 15 rev/s = [tex]30\pi\:\text{rad/s}[/tex]
[tex]\theta[/tex] = 60 rev = [tex]120\pi\:\text{rads}[/tex]
a) the angular acceleration [tex]\alpha[/tex] is given by
[tex]\alpha = \dfrac{\omega^2 - \omega_0^2}{2\theta}[/tex]
[tex]\:\:\:\:\:\:\:=\dfrac{(30\pi)^2 - (20\pi)^2}{240\pi} = 6.5\:\text{rad/s}^2[/tex]
b) [tex]t = \dfrac{\omega - \omega_0}{\alpha} = \dfrac{30\pi - 20\pi}{6.5} = 4.8\:\text{s}[/tex]
c) [tex]t = \dfrac{\omega - \omega_0}{\alpha}[/tex]
[tex]=\dfrac{20\pi - 0}{6.5} = 9.7\:\text{s}[/tex]
d)[tex]\theta = \frac{1}{2}\alpha t^2[/tex]
[tex]\:\:\:\:\:\:\:=\frac{1}{2}(6.5\:\text{rad/s}^2)(9.7\:\text{s})^2 = 305.8\:\text{rad}[/tex]
[tex]\:\:\:\:\:\:\:= 48.7\:\text{revs}[/tex]
Express the unit of force in terms of fundamental unit
Answer:
The fundamental unit of force is kg.m/s²
Explanation:
According to Newton's second law of motion, force is given as the product of mass and acceleration.
Mathematically, force can be expressed as; F = ma
where;
F is the force
M is mass of the object, unit of mass = kg
a is acceleration of the object, unit of acceleration = m/s²
Force = kg x m/s²
Force = kg.m/s² = Newton [N]
Therefore, the fundamental unit of force is kg.m/s²
The drawings show (in cross section) two solid spheres and two spherical shells. Each object is made from copper and has a net charge, as the plus and minus signs indicate. Which drawing correctly shows where the charges reside when they are in equilibrium?
a) shows a lot of negative signs in the interior of circle
b) shows a lot of positive signs in the interior of circle
c) shows a hollowed out "hole" in the interior of the circle, with negative signs surrounding the opening.
d) shows a hollowed out "hole" in the interior of the circle, with positive signs surrounding the exterior edge
Answer:
d
Explanation:
The minimum energy configuration in electrostatics states that Charges always reside on the surface of a conductor. If anyhow they were inside, an electric field would exist inside and would act to move them to the surface,
Therefore, the drawing that shows where the charges reside when they are in equilibrium is a hollowed-out "hole" in the interior of the circle, with positive signs surrounding the exterior edge. This means that the d part is the correct answer.
how did kepler discoveries contribute to astronomy
Answer:
They established the laws of planetary motion. They explained how the Sun rises and sets. They made astronomy accessible to people who spoke Italian.
Explanation:
I need help with this physics question.
The acceleration will increase by 61.3%.
Explanation:
The centripetal acceleration [tex]a_c[/tex] is given by
[tex]a_c = \dfrac{v^2}{r}[/tex]
If the velocity of the object increases by 27.0%, then its new velocity v' becomes
[tex]v' = 1.270v[/tex]
The new centripetal acceleration [tex]a'_c[/tex] becomes
[tex]a'_c = \dfrac{(1.270v)^2}{r} = 1.613 \left(\dfrac{v^2}{r} \right)[/tex]
[tex]\:\:\:\:\:\:\:\:\:= 1.613a_c[/tex]
~~~~~NEED HELP ASAP~~~~~
A point on a rotating wheel (thin loop) having a constant angular velocityy of 300 rev/min, the wheel has a radius of 1.5m and a mass of 30kg. (I = mr^2)
a.) Determine the linear regression
b.) At this given angular velocity, what is the rotational kinetic energy?
Answer:
Centripetal Acceleration 18.75 m/s^2, Rotational Kinetic Energy 843.75 J
Explanation:
a Linear acceleration (we cant find tangential acceleration with the givens so we will find centripetal)
a= ω^2*r
ω= 300rev/min
convert into rev/s
300/60= 5rev/s
a= 18.75m/s^2
b) use Krot= 1/2 Iω^2
plug in gives
1/2(30*2.25)(25)= 843.75 J
Light energy is part of a larger form of energy known as __________.
Light energy is part of a larger form of energy known as electromagnetic energy. Details about electromagnetic energy can be found below.
What is electromagnetic radiation?Electromagnetic spectrum is the entire range of wavelengths of all known electromagnetic radiations extending from gamma rays through visible light, infrared, and radio waves, to X-rays.
Visible light is the part of the electromagnetic spectrum, between infrared and ultraviolet, that is visible to the human eye.
Therefore, Light energy is part of a larger form of energy known as electromagnetic energy.
Learn more about electromagnetic spectrum at: https://brainly.com/question/23727978
#SPJ1
In order to keep a leaking ship from sinking, it is necessary to pump 12.0 lb of water each second from below deck up a height of 2.00 m and over the side. What is the minimum horse-
power motor that can be used to save the ship?
Answer:
P = 0.14 hp
Explanation:
The power required by the ship is given as:
[tex]P = \frac{Work}{Time} = \frac{Potential\ Eenrgy}{t}\\\\P = \frac{mgh}{t}[/tex]
where,
P = Power = ?
m = mass to pump = (12 lb)(1 kg/2.20 lb) = 5.44 kg
g = acceleration due to gravity = 9.81 m/s²
h = height = 2 m
t = time = 1 s
Therefore,
[tex]P = \frac{(5.44\ kg)(9.81\ m/s^2)(2\ m)}{1\ s}\\\\P = 106.8\ W[/tex]
Converting to horsepower (hp):
[tex]P = (106.8\ W)(\frac{1\ hp}{746\ W})[/tex]
P = 0.14 hp
Wood is an example of
A. Metalloid
B. Insulator
C. Nonmetal
D. Conductor
boat carrying people more than its capacity is attributes of sinking why
Answer:
Upthrust on boat becomes lesser than Weight of boat
Explanation:
When there are more people than the capacity, The weight of the boat acting downwards increases. However, the upthrust acting on the submerged part of the boat is constant. Since Weight > Upthrust, there is a net force downwards, leading to sinking.
What is the work done if a Boulder of mass 100 kilogram is rolled 40 meter up slope an angle of 20 degrees assuming the force of friction is negligible
Answer:
The work done is 13680.8 J.
Explanation:
The work done can be calculated as follows:
[tex] W = F*d [/tex]
Where:
F: is the force
d: is the displacement = 40 m
The force acting on the boulder is given by:
[tex] F = mgsin(\theta) [/tex]
Where:
m: is the mass = 100 kg
g: is the acceleration due to gravity = 10 m/s²
θ: is the angle = 20°
Then, the work is:
[tex] W = mgsin(\theta)d = 100 kg*10 m/s^{2}*sin(20)*40 m = 13680.8 J [/tex]
Therefore, the work done is 13680.8 J.
I hope it helps you!
The weight of a hydraulic barber's chair with a client is 2100 N. When the barber steps on the input piston with a force of 44 N, the output plunger of a hydraulic system begins to lift the chair. Determine the ratio of the radius of the output plunger to the radius of the input piston.
Answer:
[tex]\frac{r_1}{r_2}=6.9[/tex]
Explanation:
According to Pascal's Law, the pressure transmitted from input pedal to the output plunger must be same:
[tex]P_1 = P_2\\\\\frac{F_1}{A_1}=\frac{F_2}{A_2}\\\\\frac{F_1}{F_2}=\frac{A_1}{A_2}\\\\\frac{F_1}{F_2}=\frac{\pi r_1^2}{\pi r_2^2}\\\\\frac{F_1}{F_2}=\frac{r_1^2}{r_2^2}[/tex]
where,
F₁ = Load lifted by output plunger = 2100 N
F₂ = Force applied on input piston = 44 N
r₁ = radius of output plunger
r₂ = radius of input piston
Therefore,
[tex]\frac{r_1^2}{r_2^2}=\frac{2100\ N}{44\ N}\\\\\frac{r_1}{r_2}=\sqrt{\frac{2100\ N}{44\ N}} \\\\\frac{r_1}{r_2}=6.9[/tex]
A point charge of -3.0 x 10-5C is placed at the origin of coordinates. Find the electric field at the point 3. r= 50 m on the x-axis
Answer: -5×10-3
Explanation:
E=kq/r
A farmhand pushes a 26-kg bale of hay 3.9 m across the floor of a barn. If she exerts a horizontal force of 88 N on the hay, how much work has she done
Answer:
W = 343.2 J
Explanation:
Given that,
Mass of bale of hay = 26 kg
Horizontal force exerted = 88 N
Distance moved, d = 3.9 m
Work done, W = Fd
Put all the values,
W = 88 N × 3.9 m
= 343.2 J
So, the work done is 343.2 J.
A 1.0 ball moving at 2.0 / perpendicular to a wall rebounds from the wall at 1.5 /. If the ball was in contact with the wall for 0.1 , what force did the wall impart onto the ball?
Answer:
5N
Explanation:
We have a simple problem of momentum here.
ΔMomentum= mΔv= FΔt
Solve for F
mΔv/Δt=F
Plug in givens
1*(2-1.5)/0.1=F
F=5N
The amount of force that the wall imparts on the ball is 5.0N
According to Newton's second law, the formula for calculating the force applied is expressed as:
[tex]F=ma[/tex]
m is the mass of the object
a is the acceleration of the object
Since acceleration is the change in velocity of an object, hence [tex]a=\frac{\triangle v}{t}[/tex]
The applied force formula becomes [tex]F=\frac{m\triangle v}{t}[/tex]
Given the following parameters
m = 1.0kg
[tex]\triangle v=2.0-1.5\\\triangle v=0.5m/s[/tex]
t = 0.1sec
Substitute the given parameter into the formula
[tex]F=\frac{1.0\times 0.5}{0.1}\\F=\frac{0.5}{0.1}\\F=5N[/tex]
Hence the amount of force that the wall imparts on the ball is 5.0N
Learn more here: https://brainly.com/question/17811936
Receptor elétrico 5 pontos Dispositivo que converte energia elétrica em outra forma de energia, não exclusivamente térmica. Exemplos: motores elétricos, ventiladores, liquidificadores, geladeiras, aparelhos de sons, vídeos, celulares, computadores?
Answer:
Electromechanical transducer and Electrical receiver.
Explanation:
Electromechanical transducer is the part of a communication system which converted electrical waves or electrical energy into sound waves. The most common example loudspeaker while on the other hand, Electrical receiver is a device that converts electrical energy into another form of energy, except thermal. Examples are cell phones, computers and television.