Force will become 2.25 x 10^N. because, According to Coulomb's Law, the force between two point charges is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.
Thus, if the distance between two point charges is doubled, the force between them will decrease by a factor of 4. This is because the inverse square relationship means that the force decreases rapidly with distance. Therefore, if the force between two point charges is 9 x 10^N when they are 1 meter apart, when the distance is doubled to 2 meters, the force will become 9 x 10^N / 4 = 2.25 x 10^N.
To know more about Coulomb's Law, here
brainly.com/question/506926
#SPJ4
When only one lightbulb blows out, an entire string of decorative lights goes out. The lights in this string must be connected in
a. parallel with one current pathway
b. parallel with multiple current pathways
c. series with one current pathway
d. series with multiple current pathways
When only one lightbulb blows out, an entire string of decorative lights goes out, which means that the lights in this string must be connected in series with one current pathway.
In a series circuit, the components are connected end to end in a single path, so the current flows through each component in turn. If one component, such as a lightbulb, fails, the circuit becomes incomplete, and the current cannot flow through any of the components downstream of the failed component. This results in all the lights in the series circuit going out when one lightbulb blows out.
In contrast, in a parallel circuit, the components are connected across multiple current pathways, so if one component fails, the current can still flow through the other components, and they will continue to function normally. Therefore, if one lightbulb blows out in a parallel circuit, the other lights will continue to work.
Learn more about the series circuit:
https://brainly.com/question/19865219
#SPJ11
In the context of the motor control process related to the speed-accuracy trade-off, the _____ phase of movement includes the beginning of limb movement in the direction of a target.
In the context of the motor control process related to the speed-accuracy trade-off, the initiation phase of movement includes the beginning of limb movement in the direction of a target.
What is motor control?Motor control is the ability to regulate and coordinate motor skills to achieve a desired outcome. The central nervous system (CNS) is in charge of regulating these skills. The CNS is divided into two parts: the peripheral nervous system (PNS) and the central nervous system (CNS). Motor skills are regulated by both parts of the nervous system. The CNS, on the other hand, is more involved in higher-level motor control.
A motor control system can be divided into three stages: planning, initiation, and execution. When the central nervous system processes the desired movement, it activates the motor program in the initiation stage, which produces the motor command sent to the muscles. Movement is initiated by the initiation stage. Following that, the movement is executed to meet the task's requirements. The motor program adjusts movement by making corrections based on previous trials and feedback. Therefore, the initiation phase is critical in the context of the motor control process related to the speed-accuracy trade-off.
Learn more about Motor control here:
https://brainly.com/question/29769703
#SPJ11
One object is placed on each shelf in the image above (W, X, Y, Z). The four objects have the same mass, 2.0 kg. Match each object to its potential energy.
Object W 7.84 J 15.7 J 13.4 J 0 J 23.5 J 5.62
Object X
Object Y
Object Z
Potential Energy of Object W, X, Y and Z are 0 J, 7.84 J, 15.7J and 23.5J, for better understand we have to know the meaning of potential energy.
What is Potential Energy?Potential energy in physics is the energy that an item retains as a result of its location in relation to other objects, internal tensions, electric charge, or other elements. Potential energy develops in systems having components whose configurations, or relative positions, determine the amount of the forces they apply to one another.
Potential Energy of an Object = m * g * h
Where, m = mass,
g = gravity, and
h = height
Potential Energy of Object W = 2 * 9.8 * 0
= 0 J
Potential Energy of Object X = 2 * 9.8 * 0.4
= 7.84 J
Potential Energy of Object Y = 2 * 9.8 * 0.8
= 15.68 J
≈ 15.7 J
Potential Energy of Object Z = 2 * 9.8 * 1.2
= 23.5 J
Therefore, Potential Energy of Object W, X, Y and Z are 0 J, 7.84 J, 15.7 J and 23.5 J.
To Learn more about Potential Energy, visit:
https://brainly.com/question/1242059
#SPJ1
Five docks are being tested in a laboratory. Exactly at noon, as determined by the WWV
Exactly at noon, as determined by the WWV time signal, on successive days of a week the clocks according to their relative value as good timekeepers, best to worst.
Time signals are also used in many everyday applications, such as GPS navigation, where precise timing is essential for calculating positions accurately. A time signal refers to any signal that provides information about the passage of time. Time signals are often used in experiments to measure the duration of events or to synchronize the timing of multiple processes.
One common type of time signal is a periodic signal, which repeats itself at regular intervals. This can be used to measure the period or frequency of a phenomenon, such as the oscillation of a pendulum or the vibration of a guitar string. Another type of time signal is a pulse signal, which provides a brief burst of energy at a specific time. This can be used to trigger the start or stop of a process or to measure the time delay between different events.
To learn more about Time signal visit here:
brainly.com/question/28875779
#SPJ4
suppose the roller coaster had had an initial speed of 5 m/s uphill instead, and it coasted uphill, stopped, and then rolled back down to a final point 20 m below the start. we would find in that case that its final speed is the same as its initial. explain in terms of conservation of energy.
In this case, the roller coaster starts with kinetic energy because it has an initial speed of 5 m/s.
Since the roller coaster's total energy is conserved throughout the ride, its final speed when it reaches the bottom will be the same as its initial speed of 5 m/s.
As it goes uphill, the kinetic energy is gradually converted into potential energy, so its speed decreases until it reaches the top, where it has only potential energy. When it stops, all the kinetic energy has been converted to potential energy. As the roller coaster rolls back down, the potential energy is converted back to kinetic energy, and its speed increases until it reaches the bottom, where all the potential energy has been converted back to kinetic energy.
This is because the roller coaster's potential energy at the top is equal to the sum of its initial kinetic energy and the work done by gravity as it went uphill. The roller coaster then converts all of its potential energy back into kinetic energy as it rolls back down the hill.
For more similar questions on conservation of energy and physics:
brainly.com/question/381281
#SPJ11
A slingshot sends a stone vertically upward from a height of 20 feet above a pool of
water. The starting speed of the stone is 90 feet per second. Its distance in feet, d.
above the water is given by the equation:
d-20+90t-16t^2, where t is the time in seconds after the launch.
Drag statements to the table to show what each coordinate labeled on the graph
represents in this problem situation.
the height of the stone when it is launched
the time when the stone hits the water
the time when the stone is launched the maximum height of the stone
the time when the stone reaches its maximum height
Coordinate
A
the height of the stone when it hits the water
What the Coordinate Represents
DRAG AND DROP
AN ITEM HERE
DRAG AND DROP
AN ITEM HERE
DRAG AND DROP
DRAG AND DROP
Coordinate , A - the height of the stone when it hits the water. A slingshot sends a stone vertically upward from a height of 20 feet above a pool of water.
What the Coordinate Represents?The coordinate A represents the height of the stone when it hits the water. When the stone hits the water, its height above the water surface is zero.
So, we can set the expression for the stone's height equal to zero and solve for t to find the time when the stone hits the water. The height of the stone when it is launched is given as 20 feet, which is a fixed value in this problem.
The time when the stone is launched is also a fixed value, which is zero. The maximum height of the stone is the highest point the stone reaches above its initial height of 20 feet. The time when the stone reaches its maximum height is the time at which the vertical velocity of the stone becomes zero.
To know more about vertical velocity , visit :
https://brainly.com/question/11679227
#SPJ1
You stand 3.5 m in front of a large mirror, and your little sister stands 2.0 m directly in front of you. At what distance should you focus your camera if you want to take a picture of your sister in the mirror?
Answer:
D = 3.5 m to mirror
d = 1.50 m from mirror to sister
Total distance from camera to sister = d + D = 5.0 m
what would happen to the gravitational force between the sun and sirius, another main sequence star, if the mass of sirius were to triple?
Answer:
It would triple.
Explanation:
By Newtown's law of universal gravitation, the ration is 1:1
What do the areas labeled x, y, and z represent? constructive interference in which waves cancel each other out constructive interference in which waves strengthen each other destructive interference in which waves cancel each other out destructive interference in which waves strengthen each other
The correct option is B, the areas labeled X, Y, and Z represent constructive interference in which waves strengthen each other.
Interference is a phenomenon that occurs when two or more waves interact with each other. In physics, waves can be described as a disturbance that travels through a medium, such as water or air. When two waves meet, they can either reinforce or cancel each other out, depending on their amplitudes and phases.
Constructive interference occurs when the peaks of two waves coincide, creating a larger amplitude than either wave alone. Destructive interference occurs when the peak of one wave coincides with the trough of another, resulting in a cancellation of the waves. Interference is a fundamental concept in many areas of physics, including optics, acoustics, and electromagnetism.
To learn more about Interference visit here:
brainly.com/question/16098226
#SPJ4
Complete Question:
The diagram shows monochromatic light passing through two openings.
What do the areas labeled X, Y, and Z represent?
A). constructive interference in which waves cancel each other out
B). constructive interference in which waves strengthen each other
C). destructive interference in which waves cancel each other out
D). destructive interference in which waves strengthen each other
you are using a 1 cir pump which is producing 7.2 gal/min. the pump's shaft is being turned at 1,804 rpm. what is the volumetric efficiency of the pump (as a decimal)?
The Volumetric efficiency of the pump is the ratio of the actual capacity to the theoretical capacity of the pump.
Volumetric efficiency of the pump = Actual capacity of the pump / Theoretical capacity of the pump
Given Information
The provided information is,
1 cir pumpCapacity of the pump = 7.2 gal/minSpeed of the shaft = 1804 rpmFind
Volumetric efficiency of the pumpThe theoretical capacity of the pump is given by the following formula,
Theoretical capacity of the pump = π/4 x d² x l x n
where:
π = 3.14d = diameter of the pump l = length of the pump n = speed of the pumpFor the given problem,
Theoretical capacity of the pump = π/4 x d² x l x nπ = 3.14d = ?l = ?n = 1804 rpmWe need to find the diameter of the pump and length of the pump to calculate the theoretical capacity of the pump.
Now, we have the actual capacity of the pump.
Actual capacity of the pump = 7.2 gal/min = 7.2 x 0.13368 m³/min = 0.962496 m³/minVolumetric efficiency of the pump = Actual capacity of the pump / Theoretical capacity of the pumpAs we don't have the diameter and length of the pump, it is impossible to calculate the theoretical capacity of the pump.
Hence, the Volumetric efficiency of the pump cannot be calculated.
Learn more about Volumetric efficiency: https://brainly.com/question/14783214
#SPJ11
A 1500 kg car is moving to the right with a speed of 20.0 m/s when it collides with a wall and reboubds at a speed of 5.00 m/s.
If the collision lasts for 250 ms, then the magnitude of the average force acring on the car is _____ kN (the answer is 150 but I'm not sure how)
pls help!!
Answer:
See below.
Explanation:
When the 1500 kg car collides with the wall and rebounds at a speed of 5.00 m/s, we can calculate the change in the car's velocity using the following formula:
Δv = v2 - v1
Where Δv is the change in velocity, v2 is the final velocity, and v1 is the initial velocity. Substituting the given values, we get:
Δv = 5.00 m/s - 20.0 m/s
Δv = -15.0 m/s
The negative sign indicates that the direction of the car's velocity has reversed, or that the car is now moving to the left. To calculate the magnitude of the change in velocity, we take the absolute value:
|Δv| = |-15.0 m/s|
|Δv| = 15.0 m/s
Therefore, the magnitude of the change in velocity is 15.0 m/s.
Now,
To find the magnitude of the average force acting on the car during the collision, we can use the impulse-momentum theorem, which states that:
Impulse = change in momentum
Average force = Impulse / time
The change in momentum of the car is given by:
Δp = mΔv
where Δv is the change in velocity calculated in the previous answer and m is the mass of the car.
Δp = 1500 kg × (-15.0 m/s)
Δp = -22500 kg·m/s
The impulse acting on the car during the collision is equal to the change in momentum:
Impulse = Δp = -22500 kg·m/s
To find the magnitude of the average force acting on the car during the 250 ms collision, we divide the impulse by the duration of the collision:
Average force = Impulse / time
Average force = -22500 kg·m/s / 0.250 s
Average force ≈ -90,000 N
The negative sign indicates that the force is in the opposite direction of the car's motion, or to the left. Therefore, the magnitude of the average force acting on the car during the collision is approximately 90,000 N.
4. write all of the proper subset relations that are possible using the sets of numbers n, z, q, and r
The proper subset relations that are possible using the sets of numbers n, z, q, and r are:
n ⊆ z, q, and rz ⊆ n, q, and rq ⊆ n, z, and rr ⊆ n, z, and qAn improper subset comprises every element of the original set, while a valid subset only contains a fraction of the original set's numbers. A subset of a set A that is not equal to A is a proper subset of A. In other words, if B is a proper subset of A, then A has at least one element that is not in B but all of B's elements are in A.
Learn more about proper subset at brainly.com/question/17514113
#SPJ11
A car’s cooling system contains 25 kg of water. What is the increased change in temperature of the water if 872. 0 kJ of thermal energy is added?
When 872.0 kJ of thermal energy are injected, the temperature of the 25 kg of water in the car's cooling system changes by 35.0 degrees Celsius.
Water's specific heat capacity (J/(gK), or 4,180 J/ (kgK). Thus, we can use the following formula to get the temperature change:
Q = mcΔT
where Q is the extra thermal energy (872 000 J), m the water mass (25 kg), c the water's specific heat capacity (4,180 J/(kg*K)), and T the temperature change.
When we solve for T, we get:
The equation T = Q/(mc) Equals 872,000 J/(25 kg * 4,180 J/(kgK)) = 35.0 °C.
When 872.0 kJ of thermal energy are injected, the temperature of the 25 kg of water in the car's cooling system changes by 35.0 degrees Celsius.
learn more about energy here:
https://brainly.com/question/1932868
#SPJ4
1) A white dwarf is
A) a precursor to a black hole.
B) an early stage of a neutron star.
C) what most stars become when they die.
D) a brown dwarf that has exhausted its fuel for nuclear fusion.
The most appropriate option among the given options is C. A white dwarf is what most stars become when they die.What is a white dwarf?A white dwarf is a small, compact object that is the final stage of stellar evolution for most stars in the universe.
The star exhausts its fuel and begins to cool after it has used up all of the hydrogen fuel that powers its nuclear reactions. This phase of a star's evolution is referred to as a red giant. The star then sheds its outer layers of gas, exposing its core. The hot, glowing core of a star is exposed as a white dwarf once the outer layers have been ejected.What most stars become when they die is a white dwarf. This is one of the most fascinating phenomena in the universe, as well as one of the most intriguing. Furthermore, a white dwarf is a dense, compact object that is frequently composed of carbon and oxygen. It has no more nuclear fuel to burn, therefore it does not produce energy. As a result, it gradually fades away into the blackness of space, eventually turning into a black dwarf. However, it is believed that no black dwarfs have been observed yet.White dwarfs are not precursors to black holes or neutron stars, as those objects are formed from more massive stars that undergo different processes at the end of their lives. Brown dwarfs are also different objects, being failed stars that never achieved the temperature and pressure necessary for sustained nuclear fusion.
For more such questions one white dwarf
https://brainly.com/question/13914155
#SPJ11
Need help on my homework! Thanks.
Answer: Noble Gases (Blue)
Since moving charges create magnetic fields and magnetic fields exert forces on moving charges, devices that are used to measure field strengths often affect the system they are being used to measure. Consider the wire segment in the figure, which is used to measure the magnetic field by determining the foree exerted on the current flowing through it. Part (a) Estimate the field the loop creates by calculating the field strength, in teslas, at the center of a circular loop 20.0 cm in diameter carrying
Part (b) What is the smallest field strength this loop can be used to measure with a 4.5 -A current, if its field should alter the measured field by 0.0100% or less?
a) The magnetic field at the center of loop 20.0 cm in diameter carrying is equals to the 2.8274×10⁻⁵ T.
b) Smallest magnetic field that change measured value by 0.0100% is equals to the 2.8274×10⁻⁹ T.
We know that moving charges create magnetic fields and magnetic fields exert forces on moving charges, devices that are used to measure field strengths. Consider the wire segment present in above figure.
A) Diameter of wire segment, d = 20 cm or 0.2 m carrying current I = 4.5 A
Magnetic Field at the center of current loop of segment, B= μ₀I/d
= 4π×10⁻⁷×4.5/0.2
= 2.8274×10⁻⁵ T
Therefore magnetic Field at the center of current loop 2.8274×10⁻⁵ T.
B) Current in carrying wire, I = 4.5 A
The field should be less than the measured field by 0.0100%. So, smallest field that change measured value by 0.0100% = 0.0100% of 2.8274×10⁻⁵ T
= 2.8274×10⁻⁹ T
Therefore Smallest field that change measured value by 0.0100% = 2.8274×10⁻⁹ T
For more information about magnetic field, visit :
https://brainly.com/question/26257705
#SPJ4
Complete question:
The above figure completes the question.
Since moving charges create magnetic fields and magnetic fields exert forces on moving charges, devices that are used to measure field strengths often affect the system they are being used to measure. Consider the wire segment in the figure, which is used to measure the magnetic field by determining the foree exerted on the current flowing through it. Part (a) Estimate the field the loop creates by calculating the field strength, in teslas, at the center of a circular loop 20.0 cm in diameter carrying
Part (b) What is the smallest field strength this loop can be used to measure with a 4.5 -A current, if its field should alter the measured field by 0.0100% or less?
When Joselyn went to the store she bought 2.7kg of salt water taffy. What would Joselyn do to find out how many grams she bought?A. Divide by 1000B. Multiply by 1000C. Divide by 100D. Multiply by 100
At the shop, Joselyn purchased 2700 grammes of salt water taffy.
To convert kilograms (kg) to grams (g), Joselyn would need to multiply the weight in kilograms by 1000. This is because there are 1000 grams in 1 kilogram. Therefore, to find out how many grams of salt water taffy Joselyn bought, she would need to multiply 2.7kg by 1000.
The correct answer is (B) Multiply by 1000.
Multiplying 2.7kg by 1000 gives:
2.7kg x 1000 = 2700g
So Joselyn bought 2700 grams of salt water taffy at the store.
To learn more about salt water refer to:
brainly.com/question/6829606
#SPJ4
as noted in this chapter, plants help to reduce water runoff and soil erosion, both of which affect the health of streams and rivers by impacting water quality. soil erosion increases the silt load in water and this literally smothers living organisms, particularly plants and invertebrate species. runoff water can carry pollutants, particularly pesticides and herbicides from agricultural land. read the description of each landscape and rank them from best stream quality to worst stream quality. 1: streams cutting through small farms with several different crop types and natural vegetation buffers between the fields and the streams. 2: a large floodplain area covered with lowland forests and swamps full of emergent vegetation, with small streams cutting through the area. 3: an urban housing development where the trees growing along the streams were removed and replaced with lawns. 4: a system of large farms with no buffer vegetation between the fields and the streams that cut through the farms. question list (4 items) (drag and drop into the appropriate area) landscape 1 landscape 2 landscape 3 landscape 4 correct answer list best stream quality
Plants help to reduce water runoff and soil erosion, both of which affect the health of streams and rivers by impacting water quality.
Soil erosion increases the silt load in the water, which can smother living organisms, particularly plants and invertebrate species. Runoff water can carry pollutants, particularly pesticides, and herbicides from agricultural land.
Landscape 1 (streams cutting through small farms with a variety of crop types and natural vegetation buffers between the fields and the streams) would be the best quality, followed by Landscape 2 (a large floodplain area covered in lowland forests and swamps full of emergent vegetation, with small streams cutting through the area) and Landscape 3 (an urban housing development where the streams are surrounded by emergent vegetation).
Learn more about water quality at brainly.com/question/20848502
#SPJ11
if the average arterial pressure at your heart is a typical 100 mmhg , what is the average arterial pressure in your hands when they are held at your side? assume your hands are 60 cm below your heart.
The average arterial pressure in your hands when they are held at your side is 47.5 mmHg.
The average arterial pressure in your hands when they are held at your side can be determined using the hydrostatic pressure formula, which is a function of height, gravity, and density. When the hands are held at the side, they are 60 cm below the heart, which means they are at a distance of 0.6 m.
The hydrostatic pressure formula is given by
P = ρgh
Where,
P is the pressure, ρ is the density, g is the acceleration due to gravity, and h is the height. We can assume that the density of blood is constant, and we can take the value of g to be 9.81 m/s², the standard acceleration due to gravity.
Therefore, the pressure at the heart is 100 mmHg, or 100/760 = 0.131 atm. The pressure in the hands can be calculated as follows:
P = ρghP = (1.06 × 10³ kg/m³) × (9.81 m/s²) × (0.6 m)
P = 6.26 × 10³ N/m²
P = 6.26 × 10³ Pa
P = 47.5 mmHg
Therefore, the average arterial pressure in the hands when they are held at the side is 47.5 mmHg.
Learn more about hydrostatic pressure at https://brainly.com/question/28206120
#SPJ11
A gas is compressed at a constant pressure from a volume of 10 m3 to a volume of 4 m3 , then work done on the system is:
a) nRT ln 1/6
b) nRT In2/5
c) nRT In 5/2
d) nRT In 6
None of the answer options provided are correct as they all involve calculations that assume certain values for the pressure, volume, and temperature of the gas.
What is Constant Pressure?
Constant pressure is a thermodynamic process in which the pressure of a system remains constant during the process. This means that any change in volume or temperature of the system must be accompanied by a corresponding change in some other property, such as the amount of heat added or removed from the system.
Since the gas is compressed at a constant pressure, the work done on the system can be calculated as:
W = -PΔV
In this case, P is constant, so we have:
W = -P(V2 - V1)
W = -P(4 m^3 - 10 m^3)
W = -P(-6 m^3)
W = 6P m^3
Since we are not given any information about the type of gas or its properties, we cannot use the ideal gas law to calculate the pressure P. Therefore, we cannot determine the exact value of the work done on the system.
Learn more about Constant Pressure from given link
https://brainly.com/question/2139620
#SPJ1
one electron collides elastically with a second electron initially at rest. after the collision, the radii of their trajectories are 0.00 cm and 3.00 cm. the trajectories are perpendicular to a uniform magnetic field of magnitude 0.0350 t. determine the energy (in kev) of the incident electron.
The energy of the incident electron is 26.3 keV. The energy is calculated from the conservation of energy which states that the initial energy is equal to the final energy of the electrons. Total energy is sum of kinetic energy and potential energy of the electrons.
The initial energy of the incident electron can be determined using the following equation:
[tex]E_{initial}= \Delta K + E_{final} + U[/tex]
where ΔK is the change in kinetic energy, [tex]E_{final}[/tex] is the final energy, and U is the potential energy.
Here, the second electron is initially at rest, and after the collision, the trajectories of the two electrons are at 90° to a uniform magnetic field. The magnetic force is perpendicular to the direction of motion, and hence, there is no work done. The potential energy U is, therefore, zero.
Initially, only the incident electron has energy, and hence, its initial energy is equal to its kinetic energy.
[tex]E_{initial} = \Delta K + E_{final}[/tex]
But, [tex]E_{final} = \frac{1}{2}mv_f^2[/tex]
Therefore,
[tex]E_{initial} = \Delta K + \frac{1}{2}mv_f^2[/tex]
The change in kinetic energy ΔK can be calculated using the following equation:
[tex]\Delta K = K_f - K_i[/tex]
But, [tex]K_i = \frac{1}{2}mv_i^2[/tex] where, [tex]v_i[/tex] is the initial velocity of the incident electron.
Therefore,
[tex]\Delta K = K_f - K_i= \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2[/tex]
Substituting the given values,
[tex]\Delta K = \frac{1}{2}(9.11 \times 10^{-31} kg)(4.24\times 10^5 m/s)^2 - \frac{1}{2}(9.11\times10^{-31} kg)(3\times10^8 m/s)^2\\= -4.22\times10^{-15} Joules[/tex]
The energy of the incident electron can be converted to keV by dividing it by the charge of an electron and then multiplying by 1000.eV .
Therefore,
[tex]E_{initial} = 4.22 \times 10^{-15} J / (1.602 \times 10^{-19} C/eV)\\ = 26.3 keV[/tex]
Thus, the energy of the incident electron is 26.3 keV.
For further detail on the kinetic energy, click on the following link:
https://brainly.com/question/18461965
#SPJ11
A Nichrome wire 75 cm long and 0.25 mm in diameter is connected to a 1.7 volt flashlight battery.
A) What is the electric field inside the wire?
B) Next the Nichrome wire is replaced by a wire of the same length and diameter, and same mobile electron density but with electron mobility 4 times as large as that of Nichrome. Now what is the electric field inside the wire?
The electric field inside the wire is still about 2.27 V/m, even though the electron mobility is 4 times higher. This is because the resistance of the wire remains the same, and Ohm's law still applies. The higher conductivity only means that a higher current flows through the wire for the same voltage, but the electric field remains the same.
We can use Ohm's law to find the electric field inside the Nichrome wire:
V = IR
where
V = 1.7 volts (battery voltage)
I = current
R = resistance of the wire
The resistance of a wire can be calculated using the formula:
R = (ρL) / A
where
ρ = resistivity of the material
L = length of the wire
A = cross-sectional area of the wire
The resistivity of Nichrome is about 1.10 x 10^-6 Ωm, and the cross-sectional area of the wire can be calculated using the formula for the area of a circle:
A = πr^2
where
r = radius of the wire = 0.125 mm = 0.000125 m
So, A = π(0.000125 m)^2 = 4.91 x 10^-8 m^2
Substituting the values, we get:
R = (1.10 x 10^-6 Ωm)(0.75 m) / (4.91 x 10^-8 m^2)
R ≈ 0.017 Ω
Now we can find the current:
I = V / R
I = 1.7 volts / 0.017 Ω
I ≈ 100 amps
The electric field inside the wire can be calculated using the formula:
E = V / L
where
E = electric field
V = potential difference
L = length of the wire
Substituting the values, we get:
E = 1.7 volts / 0.75 m
E ≈ 2.27 volts/meter or 2.27 V/m
So the electric field inside the Nichrome wire is about 2.27 V/m.
Next, we can repeat the calculations for the wire with the higher electron mobility. Since the mobile electron density and the length and diameter of the wire are the same, the resistance of the wire will also be the same as before. However, the higher electron mobility means that the wire will have a higher conductivity, which in turn means that the current will be higher for the same voltage.
Let's assume that the electron mobility is 4 times higher than that of Nichrome. Since the resistivity of the material remains the same, the conductivity will be 4 times higher as well. Therefore, the current will be 4 times higher than before:
I = 4 x 100 amps = 400 amps
Using the same formula as before, the electric field inside the wire can be calculated:
E = V / L
E = 1.7 volts / 0.75 m
E ≈ 2.27 volts/meter or 2.27 V/m
So, the electric field inside the wire is still about 2.27 V/m, even though the electron mobility is 4 times higher. This is because the resistance of the wire remains the same, and Ohm's law still applies. The higher conductivity only means that a higher current flows through the wire for the same voltage, but the electric field remains the same.
For such more questions on Ohm's law
https://brainly.com/question/14634041
#SPJ11
what's the correct answer.
The coordinated functions of the Nervous, Endocrine, and Reproductive systems are:
D. CerebrumN. Wernicke's AreaF. Occipital LobeH. HypothalamusJ. ThalamusH. HypothalamusC. CerebellumL. Superior ColliculusA. AmygdalaM. Pineal GlandWhat are coordinated functions?Coordinated functions refer to the integration and communication between different organs, systems, and tissues in the body to achieve a common goal or purpose. In biological terms, coordinated functions often involve multiple physiological systems working together to maintain homeostasis, respond to stimuli, or carry out complex behaviors or processes.
Examples of coordinated functions include the regulation of blood glucose levels by the pancreas and liver, the coordination of movement by the nervous and musculoskeletal systems, and the release of hormones by the endocrine system to control various physiological processes.
Learn more on coordinated functions here: https://brainly.com/question/15686131
#SPJ1
The question is:
"COORDINATED FUNCTIONS OF THE NERVOUS, ENDOCRINE, AND REPRODUCTIVE SYSTEMS"
Directions: Identify the part of the brain that is involved in each situation below. Write only the letter of your answer.
A. Amygdala
B. Brocka's Area
C. Cerebellum
D. Cerebrum
E. Hippocampus
F. Occipital Lobe
G. Hippocampus
H. Hypothalamus
I. Inferior Colliculus.
J. Thalamus
K. Pons
L Superior Colliculus
M. Pineal Gland
N. Wernicke's Area
O. Pituitary Gland
1. "My heart tells me that you are the one. I love you so much!"
2. "IAOCEVOY! I don't know what that means. It's all Greek to me!"
3. "Chartreuse, Olive,Turquoise, and Mint are all shades of green."
4. "Janna always wakes up at 4 in the morning, regardless of whether she uses an alarm clock or not."
5. "I don't remember the way going to Myla's house. Can you accompany me there?"
6. Jenny's mother is about to give birth, she complains about contraction and pain usually when the baby is kicking
7. "Anthony is a very skilled dancer. He just won the school hip hop dance competition last week."
8. "As Nica was walking on the road she readily moved to the side for she heard an incoming ambulance"
9. "Elsa loves making faces whenever she talks to her friends."
10. "Ryan usually talks about how happy his high school days were to his grandchildren."
If you stand on one foot while holding your other leg up behind you, your muscles apply a force to hold your leg in this raised position. We can model this situation as in Figure 1). The leg pivots at the knee joint, and the force that holds the leg up is provided by a tendon attached to the lower leg as shown Assume that the lower leg and the foot have a combined mass of 3.6kg, and that the combined center of gravity is at the center of Figure he knot What is the magnitude of this force? The london provides you hold your leg in this position the upper legeerts a force Express your answer with the appropriate units the lower le TARO? Value Units Sube
To keep the leg in the raised position, the tendon should provide 160N force.
The rotating force or moment of a force around a particular axis or pivot point is measured by torque. The tendency of a force to cause an object to spin along an axis is described as a vector quantity, torque.
Given: combined mass of the lower leg and the foot, m = 3.6kg
position of the center of gravity, r1 = 25cm
r = 0.25m
distance between tendon and lower leg, r2 = 5cm = 0.05m
torque applied will be τ = 3.6 × 10 × 0.25
τ = 8 N-m
the force applied by tendon
F = τ/ r2
F = 8/ 0.05
F = 160N
Therefore, To keep the leg in the raised position, the tendon should provide 160N force.
To know more about torque, click here:
https://brainly.com/question/29024338
#SPJ12
a missile of mass 1.20 102 kg is fired from a plane of mass 4.80 103 kg initially moving at a speed of 3.25 102 m/s. if the speed of the missile relative to the plane is 1.06 103 m/s, what is the final velocity of the plane?
The final velocity of the plane after a missile of mass 1.20 102 kg is fired from the plane is 0.255 m/s.
To find the final velocity of the plane when a missile of mass 1.20 x 10² kg is fired from a plane of mass 4.80 x 10³ kg initially moving at a speed of 3.25 x 10² m/s, and the speed of the missile relative to the plane is 1.06 x 10³ m/s, we can use the conservation of momentum.The initial momentum of the system is given by:
m1v1 + m2v2 = (m1 + m2)vf
where m1 = mass of missile, m2 = mass of the plane, v1 = velocity of the missile, v2 = velocity of the plane, and vf = final velocity of the system
Substituting the given values, we get:(1.20 x 10² kg) (1.06 x 10³ m/s) + (4.80 x 10³ kg) (3.25 x 10² m/s) = (1.20 x 10² kg + 4.80 x 10³ kg) vf
Simplifying, we get:1284 = (5.04 x 10³ kg) vf
Therefore, vf = 1284 / (5.04 x 10³ kg) = 0.255 m/s. So, the final velocity of the plane is 0.255 m/s.
More on velocity: https://brainly.com/question/20038545
#SPJ11
true or false? a faraday bag stops any electromagnetic emanations from passing into or out of the bag, preventing a mobile device from communicating with the outside world. true false
True. A Faraday bag (also known as an electromagnetic bag) is a container made from metal or a special material that blocks any electromagnetic emanations from passing into or out of the bag, preventing a mobile device from communicating with the outside world.
This is because Faraday bags are electromagnetic bags that are designed to isolate electronic devices from external electromagnetic influence. They are also known as radiofrequency shielding bags, Faraday cage bags, signal blocker bags, or electromagnetic pulse (EMP) bags.
What are Faraday bags?
Faraday bags are made of a combination of metal or metal-coated fabrics that are designed to block electromagnetic signals from entering or leaving the bag. They are usually used to keep mobile devices such as smartphones and tablets from communicating with the outside world, especially in situations where an individual is worried about their privacy or security. They are also used by law enforcement agencies to prevent suspects from remotely wiping or deleting evidence on their devices.
How do Faraday bags work?
Faraday bags work by using a principle known as the Faraday effect, which states that any electric field in a conductor is shielded from the conductor's interior by the presence of an electric field. Faraday bags use this principle to block incoming and outgoing signals by creating an electrically conductive enclosure around the device. This means that when a mobile device is placed inside a Faraday bag, the bag acts as a Faraday cage, which shields the device from electromagnetic radiation. As a result, the device cannot communicate with the outside world.
For further details about Faraday bag, click on the below link:
https://brainly.com/question/23083952
#SPJ11
an incompressible substance with a density of 1000 kg/m3 is isothermally compressed from 100 to 1000 kpa. determine the change in enthalpy. multiple choice question. 0 kj/kg 0.9 kj/kg 10 kj/kg 900 kj/kg
The change in enthalpy of an incompressible substance with a density of 1000 kg/m³ that is isothermally compressed from 100 to 1000 kPa is 0 kJ/kg.
What is enthalpy?Enthalpy is a measure of the total energy of a thermodynamic system. In addition, it incorporates the energy that is supplied to the system as heat, as well as any energy that is used as work. Enthalpy is represented by the symbol H and is usually calculated in units of joules (J).
What is an incompressible substance?An incompressible substance is one that cannot be compressed or compressed to a significant degree. Liquids are examples of such materials. They are often described as having a constant density because, unlike gases, they do not easily change in volume in response to pressure or temperature changes. Therefore, the change in enthalpy is 0 kJ/kg.
Learn more about Enthalpy here: https://brainly.com/question/16985375.
#SPJ11
what factor does not determine how much gravitational potential energy is in an object-earth system?
The factor that does not determine how much gravitational potential energy is in an object-earth system is the object's mass.
An object-earth system is a system in which an object interacts with the earth by exerting a force of attraction. The object's energy is derived from the work done by gravitational forces when the object is moved away from the earth's surface.
An object in an object-earth system's gravitational potential energy is the work done by gravitational forces on the object when it is moved from a lower position to a higher one in the object-earth system. The factor that does not determine how much gravitational potential energy is in an object-earth system is the object's mass. The gravitational potential energy of an object in the earth-object system is determined by the distance between the object and the earth's surface. The gravitational potential energy of an object increases as the distance between it and the earth's surface increases.
Learn more about the gravitational potential at brainly.com/question/19768887
#SPJ11
a fixed amount of a molecular substance in the liquid phase is placed in a flask at constant temperature. the flask is closed and is allowed to come to equilibrium. select all the statements that correctly describe the processes occurring in the flask. multiple select question. a. the relative amounts of liquid and vapor in the flask remain constant. b. molecules are leaving and entering the liquid phase at the same rate. c. no changes are occurring because the system is at equilibrium. d. the amount of liquid remains the same because evaporation is no longer occurring.
The statements that correctly describe the processes occurring in the flask are A and B. C and D are incorrect statetment.
a) States that the relative amounts of liquid and vapor in the flask remain constant, which is true as equilibrium has been reached, meaning that the rate of evaporation equals the rate of condensation. b) states that molecules are leaving and entering the liquid phase at the same rate, which is also true as equilibrium has been reached.
c) and d) are incorrect because they do not accurately describe the processes occurring in the flask; while the system is at equilibrium, it is still in a state of change with molecules leaving and entering the liquid phase at the same rate.
Learn more about term of equilibrium: brainly.com/question/517289
#SPJ11
a ceiling fan is turned on and a net torque of 2.3 n*m applied to the blades. the blades have a total moment of inertia of 0.39 kg*m^2. what is the angular acceleration of the blades?
The angular acceleration of the blades is 5.897 rad/s². It can be calculated using the formula α as the ratio of torque to moment of Inertia.
The torque is a rotational or twisting force. Angular acceleration is the rate at which the angular velocity of an object changes, measured in radians per second squared (rad/s²).
Given the torque and moment of inertia, we may utilize the following formula to find the angular acceleration of the blades:
[tex]\alpha= \dfrac{Torque}{Moment \; of \; inertia}\\\alpha= \dfrac{\tau}{I}[/tex]
where τ is the torque in newton-meters (N-m),I is the moment of inertia in kg-m², α is the angular acceleration in radians per second squared (rad/s²).
Rearranging the formula to solve for α gives:
[tex]\alpha=2.3/0.39\\=5.897 rad/s^2[/tex]
Therefore, the angular acceleration of the blades is 5.897 rad/s².
For further information about angular acceleration click on below link:
https://brainly.com/question/30238727
#SPJ11