Charlie has an annual salary of $75,000.00. He is paid every two weeks. What is the gross income amount for each paycheck?
Answer:
$2884.62
Step-by-step explanation:
A year has 52 weeks
The number of times Charlie will receive a paycheck will be 52w ÷ 2w = 26 times
Charlie's gross income each paycheck will be 7500÷26 = $2884.62 every two weeks
75000 ÷ (52 ÷2)
7500 ÷ 26
$2884.62
Question 4 (2 marks)
Justin works 14 hours at a normal pay rate of $24.80 per hour and 5 hours of overtime at
time and a half. How much should he be paid?
I
809 words
LE
English (Australia)
Answer:
554.7
Step-by-step explanation:
The pay=25.8*14+(25.8)*5*1.5=554.7
Solve for x step by step:
2(4x-3)-8=4+2x
Answer:
3
Step-by-step explanation:
2(4x-3)-8=4+2x
8x - 6 - 8 = 4 + 2x
8x - 2x = 4 + 6 + 8
6x = 18
x = 18/6
x = 3
Answer:
[tex]2(4x - 3) - 8 = 4 + 2x \\ 2 \times 4x + 2 \times - 3 - 8 = 4 + 2x \\ according \: to \: bodmas \: first \: \times then + or - \\ so \\ 8x - 6 - 8 = 4 + 2x \\ 8x - 14 = 4 + 2x \\ 8x - 2x = 4 + 14 \\ 6x = 18 \\ x = \frac{18}{6} \\ x = 3 \\ thank \: you[/tex]
0.003 is 1/10 of
Please help I need this for homework !!!!!!!!!!!!
Answer:
0.03
Step-by-step explanation:
Previous studies suggest that use of nicotine-replacement therapies and antidepressants can help people stop smoking. The New England Journal of Medicine published the results of a double-blind, placebo-controlled experiment to study the effect of nicotine patches and the antidepressant bupropion on quitting smoking. The target for quitting smoking was the 8th day of the experiment.
In this experiment researchers randomly assigned smokers to treatments. Of the 162 smokers taking a placebo, 28 stopped smoking by the 8th day. Of the 272 smokers taking only the antidepressant buproprion, 82 stopped smoking by the 8th day.
Calculate the 99% confidence interval to estimate the treatment effect of buproprion (placebo-treatment). (The standard error is about 0.0407. Use critical value z = 2.576.)
( ), ( )
Round your answer to three decimal places. Put lower bound in the first box and upper bound in the second box.
Using the z-distribution, it is found that the 99% confidence interval to estimate the treatment effect of buproprion (placebo-treatment) is (-0.234, -0.024).
What is a t-distribution confidence interval?The confidence interval is:
[tex]\overline{x} \pm zs[/tex]
In which:
[tex]\overline{x}[/tex] is the sample mean.z is the critical value.s is the standard error.In this problem, we are given that z = 2.576, s = 0.0407. The sample mean is the difference of the proportions, hence:
[tex]\overline{x} = \frac{28}{162} - \frac{82}{272} = -0.129[/tex]
Then, the bounds of the interval are given by:
[tex]\overline{x} - zs = -0.129 - 2.576(0.0407) = -0.234[/tex]
[tex]\overline{x} + zs = -0.129 + 2.576(0.0407) = -0.024[/tex]
The 99% confidence interval to estimate the treatment effect of buproprion (placebo-treatment) is (-0.234, -0.024).
More can be learned about the z-distribution at https://brainly.com/question/25890103
Look at image to see question
Answer:
Does the answer help you
I'm not sure how to do this
Answer:
1 and 5 sevenths of a bag
Step-by-step explanation:
2/7 males half to it takes 4/7 to make a full one multiply 4 by 3 and you get 12/7 so that makes 1 and 5/7
A researcher is interested in whether there is a significant difference between the mean age of marriage across three racial groups. Using the data provided below, conduct an F-test to determine whether you believe there is an association between race and average age at marriage.
Race N Mean
Black 113 25.39
White 904 22.99
Other 144 23.87
All Groups 1,161 23.33
Answer:
The P-value is < significance value ( 0.05 ) hence we reject the Null hypothesis ( i.e. There is an association between the race and average age at marriage )
Step-by-step explanation:
Conducting an F-test to determine association between race and average age at marriage
step 1 : State the hypothesis
H0 : ц1 = ц2 = ц3
Ha : ц1 ≠ ц2 ≠ ц3
step 2 : determine the mean square between
Given mean value of all groups = 23.33
SS btw = 113*(25.39 - 23.33)² + 904*(22.99 - 23.33)² + 144*(23.89 - 23.33)^2 = 113(4.2436) + 904(0.1156) + 144(0.3136)
= 629.1876
hence: df btw = 3 - 1 = 2
df total = 1161 - 1 = 1160
df within = 1160 - 2 = 1158
SS within = 36.87*1158 = 42695.46
Therefore the MS between = 629.19 / 2 = 314.60
The F-ratio = 314.59 / 36.87 = 8.53
using the values for Btw the P-value = 0.00021
The P-value is < significance value ( 0.05 ) hence we reject the Null hypothesis ( i.e. There is an association between the race and average age at marriage )
mr. jones has a patio in the sahpe of a trapezoid. a round fountain having a circumference of 14 pi linear feet is placed in the corner as showin in the accompanying diagram. to the nearest square foot, how much of the patio s area ins not taken up by the fountanin? reall tha the circumferencie of a circle is calculated using c = 2
The area of the patio not taken up by the fountain is 241ft²
Please find attached an image of the patio
Area of the patio not taken up by the fountain = area of patio - area of fountain
The patio is in a shape of a trapezoid. Thus, the area of the patio can be determined by using the formula for the area of a trapezoid
A trapezoid is a convex quadrilateral. A trapezoid has at least on pair of parallel sides. the parallel sides are called bases while the non parallel sides are called legs
Characteristics of a trapezoid
It has 4 vertices It has 4 edges If both pairs of its opposite sides of a trapezoid are parallel, it becomes a parallelogramArea of a trapezoid = 0.5 x (sum of the lengths of the parallel sides) x height
Taking a look at the image, we are not provided with the height of the trapezoid, just the parallel sides and the hypotenuse.
Pythagoras theorem can be used to determine the the height of the trapezoid
The Pythagoras theorem : a² + b² = c²
where a = height
b = base = 20 ft - 12 ft = 8ft
8ft / 2 = 4
c = hypotenuse
a² + 4² = 25²
a² = 625 - 16
a² = 609
√609 = 24.68 ft
Area of the trapezoid = 0.5 x (20 + 12) x 24.68 = 394.88 ft²
The fountain is in the shape of a circle.
Area of a circle = πr²
Where : = π = pi = 22/7
R = radius
The radius would have to determined from the circumference
circumference of a circle = 2πr
14π = 2πr
r = 14π / 2π
r = 7
Area of the circle = [tex]\frac{22}{7}[/tex] × 7²
[tex]\frac{22}{7}[/tex] × 49 = 154 ft²
Area of the patio not taken up by the fountain = 394.88 ft² - 154 ft² = 240.88ft²
To round off to the nearest square, look at the first number after the decimal, if it is less than 5, add zero to the units term, If it is equal or greater than 5, add 1 to the units term.
The tenth digit is greater than 5, so one is added to 0. The number becomes 241ft²
Learn more about how to determine the area of a trapezoid here : https://brainly.com/question/23814640?referrer=searchResults
A cell phone company charges a monthly fee of $18 plus five cents for each call. A
customer's total cell phone bill this month is $50.50. Use n to represent the number of
calls.
Answer:
650 calls
Step-by-step explanation:
so since you have 18$ per month plus 5 cents per call you would do
18+0.5n(n represent the number of calls)= the total fee of $50.50 cents.
thus,now you need to figure out how much the phone calls were without the monthly fee so you would do:
50.50-18=32.50
so 32.50 is the price of all the phone calls
then you divide 32.50 by 0.05 which equals to 650
meaning that n=650
hope I helped!
A clock rotated from 12 to 6 this is
Answer:
one half
Step-by-step explanation:
Because the rotation from 12 to 6 is one-half of a complete rotation, it seems reasonable to assume that the hour hand is moving continuously and has therefore moved one-half of the distance between the 2 and the 3. source- ck12.org
Fill in the blank with a number to make the expression a perfect squared… W squared + 6w +
Answer:
[tex](a+b)^{2} =a^{2}+2ab+b^{2}[/tex]
[tex](1)w^{2}+2(3)(1)w+3^{2}\\\\=(w+3)^{2}\\\\=(w+3)(w+3)[/tex]
Therefore, [tex]w^{2} +6w+9[/tex] makes a perfect squared.
Factorize cos²A+3cosA+2
Answer:
(cosA+2)(cosA+1)
Step-by-step explanation:
cos^2A+cosA+2cosA+2
=cos(A)(cosA+1)+2(cosA+1)
=(cosA+2)(cosA+1)
tan inverse X + tan inverse Y + tan inverse z=pie prove that X+Y+Z=xyz
Answer:
see explanation
Step-by-step explanation:
Given
[tex]tan^{-1}[/tex]x + [tex]tan^{-1}[/tex]y + [tex]tan^{-1}[/tex] z = π
let
[tex]tan^{-1}[/tex]x = A , [tex]tan^{-1}[/tex]y = B , [tex]tan^{-1}[/tex]z = C , so
x = tanA, y = tanB , z = tanC
Substituting values
A + B + C = π ( subtract C from both sides )
A + B = π - C ( take tan of both sides )
tan(A + B) = tan(π - C) = - tanC ( expand left side using addition identity for tan )
[tex]\frac{tanA+tanB}{1-tanAtanB}[/tex] = - tanC ( multiply both sides by 1 - tanAtanB )
tanA + tanB = - tanC( 1 - tanAtanB) ← distribute
tanA+ tanB = - tanC + tanAtanBtanC ( add tanC to both sides )
tanA + tanB + tanC = tanAtanBtanC , that is
x + y + z = xyz
Find the measure of each angle in the problem. TO contains point H.
Answer:
The angles are 45 and 135
Step-by-step explanation:
The two angles form a straight line, which is 180 degrees
c+ 3c = 180
4c = 180
Divide by 4
4c/4 =180/4
c = 45
3c = 3(45) = 135
The angles are 45 and 135
Answer:
45 and 135 ...
90:120 table to garbage can?
Answer:
wto
Step-by-step explanation:
2/8 of a rope is 28 meters.What is the length of the rope? A.32 B.42 C.4 D.21
let length be x
ATQ
[tex]\\ \sf\longmapsto \dfrac{2}{8}\times x=28[/tex]
[tex]\\ \sf\longmapsto \dfrac{2x}{8}=28[/tex]
[tex]\\ \sf\longmapsto \dfrac{x}{4}=28[/tex]
[tex]\\ \sf\longmapsto x=4(28)[/tex]
[tex]\\ \sf\longmapsto x=112[/tex]
Step-by-step explanation:
there is something wrong with your problem description.
the offered answer options do not fit to the solution as it is described.
2/8th of a rope is 28 meters long. how long is the whole rope ?
as the other answer said : 2/8 = 1/4
and 1/4th of the rope x = 28 m
1/4 × x = 28
x (the length of the whole rope) = 4×28 = 112 meters
but - maybe the original problem said that 7/8th (and not 2/8th) of a rope is 28 m.
7/8 × x = 28
1/8 × x = 4
x = 32 m
then A (32) would be the right answer !
Here is a number sequence. The rule for finding the next term is to add
a, where a is an integer. ! ! 8 ........! ! ........! ! 29 Work out the two
missing terms.
Answer:
8,15,22,29
Step-by-step explanation:
the interger a is 7,so to find the next term you have to add 7 plus the 8,
8+7=15
15+7=22
22+7=29
8,15,22,29
I hope this helps
Michelle would like to know how much of her loan payments will go toward interest. She has a $124,500 loan with a 5.9% interest rate that is compounded monthly. The loan has a term of 10 years. Calculate the total amount of interest that Michelle will pay over the course of the loan.
9514 1404 393
Answer:
$40,615.20
Step-by-step explanation:
The amortization formula will tell you Michelle's monthly payment.
A = P(r/12)/(1 -(1 +r/12)^(-12t)) . . . . loan value P at interest rate r for t years
A = $124,500(0.059/12)/(1 -(1 +0.059/12)^(-12·10)) ≈ $1375.96
__
The total of Michelle's 120 monthly payments is ...
12 × $1375.96 = $165,115.20
This amount pays both principal and interest, so the amount of interest she pays is ...
$165,115.20 -124,500 = $40,615.20
Michelle will pay $40,615.20 in interest over the course of the loan.
__
A calculator or spreadsheet can figure this quickly.
A ball is dropped from a height of 14 ft. The elasticity of the ball is such that it always bounces up one-third the distance it has fallen. (a) Find the total distance the ball has traveled at the instant it hits the ground the fourth time. (Enter an exact number.)
Answer:
Hello,
742/27 (ft)
Step-by-step explanation:
[tex]h_1=14\\\\h_2=\dfrac{14}{3} \\\\h_3=\dfrac{14}{9} \\\\h_4=\dfrac{14}{27} \\\\[/tex]
[tex]d=14+2*\dfrac{14}{3} +2*\dfrac{14}{9} +2*\dfrac{14}{27} \\=14*(1+\dfrac{1}{3}+\dfrac{2}{9} +\dfrac{2}{27} )\\=14*\dfrac{53}{27} \\=\dfrac{742}{27} \\[/tex]
The total distance the ball has traveled at the instant it hits the ground the fourth time [tex]28ft.[/tex]
What is the total distance?
Distance is a numerical measurement of how far apart objects or points are. It is the actual length of the path travelled from one point to another.
Here given that,
A ball is dropped from a height of [tex]14[/tex] ft. The elasticity of the ball is such that it always bounces up one-third the distance it has fallen.
So, after striking with the ground it covers the distance [tex]14[/tex] ft. so it rebounds to the height is [tex]\frac{1}{3}(14)[/tex].
Then again it hits the ground and covers the distance [tex]\frac{1}{3}(14)[/tex] and again after rebounding it goes to the height is
[tex]\frac{1(1)}{3(3)}.(14)=\frac{(1)^2}{(3)^2}(14)[/tex]
Then it falls the same distance and goes back to the height
[tex]\frac{1}{3}[/tex] ×[tex](\frac{(1)^2}{(3)^2})[/tex] ×[tex]14[/tex] = [tex]\frac{(1)^3}{(3)^3}(14)[/tex]
So, the total distance travelled is
[tex]14+2[\frac{1}{3}(14)+(\frac{1}{3})^2(14)+(\frac{1}{3})^3(14)+...][/tex]
We take the sum is twice because it goes back to the particular height and falls to the same distance.
[tex]S=14+2(\frac{\frac{1}{3}(14)}{1-\frac{1}{3}})\\\\\\S=\frac{a}{1-r}\\\\\\S=14+2(\frac{\frac{14}{3}}{\frac{2}{3}})\\\\S=14+2(\frac{14}{2})\\\\S=14+2(7)\\\\S=14+14\\\\S=28ft[/tex]
Hence, the total distance the ball has traveled at the instant it hits the ground the fourth time [tex]28ft.[/tex]
To know more about thetotal distance
https://brainly.com/question/951637
#SPJ2
240) What term is 359 in the sequence 5, 12, 17, 23, 28, 29......?
Answer:
Check your question again
Step-by-step explanation:
The arithmetic equation of this sequence is an=5+(n-1)*7. Replace 359 with an and solve for n
359=5+(n-1)*7, 354/7=n-1. Wait you got the whole equation wrong, the first term should be 7 so that the common difference be equal to 5
Find the minimum sample size needed to be 99% confident that the sample's variance is within 30% of the population's variance.
The Minimum sample size table is attached below
Answer:
[tex]X=173[/tex]
Step-by-step explanation:
From the question we are told that:
Confidence Interval [tex]CI=99\%[/tex]
Variance [tex]\sigma^2=30\%[/tex]
Generally going through the table the
Minimum sample size is
[tex]X=173[/tex]
y varies directly as the cube of x. When x = 3, then y = 7. Find y when x = 4.
Answer:
[tex]y \: \alpha \: {x}^{3} \ \\ y \: = k {x}^{3} \\ where \: y = 7 \: and \:x = 3 \\ y = k {x}^{3} \\ 7 = k ( {3)}^{3} \\ 7 = 27k \\ k = \frac{7}{27} \\ \\ so \: \: y = \frac{7}{27} {x}^{3} \\ \\ y = \frac{7}{27} {4}^{3} \\ y = \frac{448}{27} [/tex]
the required value of y at x = 4 is 16.64.
Given that,
y varies directly as the cube of x. When x = 3, then y = 7.To determine the y when x = 4.
Proportionality is defined as between two or more sets of values, and how these values are related to each other in the sense that are they directly proportional or inversely proportional to each other.
Here,
y is directly proportional to the cube of x i.e
y ∝ x³
y = kx³ - - - - - (1)
where k is proportionality constant,
At x = 3 y = 7
7 = k (3)³
7 / 27 = k
k = 0.26
Put k in equation 1
y = 0.26 x³
Now at x = 4
y = 0.26 * 4³
y = 0.26 * 64
y = 16.64
Thus, the required value of y at x = 4 is 16.64.
Learn more about proportionality here: https://brainly.com/question/22620356
#SPJ5
[infinity]
Substitute y(x)= Σ 2 anx^n and the Maclaurin series for 6 sin3x into y' - 2xy = 6 sin 3x and equate the coefficients of like powers of x on both sides of the equation to n= 0. Find the first four nonzero terms in a power series expansion about x = 0 of a general
n=0
solution to the differential equation.
У(Ñ)= ___________
Recall that
[tex]\sin(x)=\displaystyle\sum_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{(2n+1)!}[/tex]
Differentiating the power series series for y(x) gives the series for y'(x) :
[tex]y(x)=\displaystyle\sum_{n=0}^\infty a_nx^n \implies y'(x)=\sum_{n=1}^\infty na_nx^{n-1}=\sum_{n=0}^\infty (n+1)a_{n+1}x^n[/tex]
Now, replace everything in the DE with the corresponding power series:
[tex]y'-2xy = 6\sin(3x) \implies[/tex]
[tex]\displaystyle\sum_{n=0}^\infty (n+1)a_{n+1}x^n - 2\sum_{n=0}^\infty a_nx^{n+1} = 6\sum_{n=0}^\infty(-1)^n\frac{(3x)^{2n+1}}{(2n+1)!}[/tex]
The series on the right side has no even-degree terms, so if we split up the even- and odd-indexed terms on the left side, the even-indexed [tex](n=2k)[/tex] series should vanish and only the odd-indexed [tex](n=2k+1)[/tex] terms would remain.
Split up both series on the left into even- and odd-indexed series:
[tex]y'(x) = \displaystyle \sum_{k=0}^\infty (2k+1)a_{2k+1}x^{2k} + \sum_{k=0}^\infty (2k+2)a_{2k+2}x^{2k+1}[/tex]
[tex]-2xy(x) = \displaystyle -2\left(\sum_{k=0}^\infty a_{2k}x^{2k+1} + \sum_{k=0}^\infty a_{2k+1}x^{2k+2}\right)[/tex]
Next, we want to condense the even and odd series:
• Even:
[tex]\displaystyle \sum_{k=0}^\infty (2k+1)a_{2k+1}x^{2k} - 2 \sum_{k=0}^\infty a_{2k+1}x^{2k+2}[/tex]
[tex]=\displaystyle \sum_{k=0}^\infty (2k+1)a_{2k+1}x^{2k} - 2 \sum_{k=0}^\infty a_{2k+1}x^{2(k+1)}[/tex]
[tex]=\displaystyle a_1 + \sum_{k=1}^\infty (2k+1)a_{2k+1}x^{2k} - 2 \sum_{k=0}^\infty a_{2k+1}x^{2(k+1)}[/tex]
[tex]=\displaystyle a_1 + \sum_{k=1}^\infty (2k+1)a_{2k+1}x^{2k} - 2 \sum_{k=1}^\infty a_{2(k-1)+1}x^{2k}[/tex]
[tex]=\displaystyle a_1 + \sum_{k=1}^\infty (2k+1)a_{2k+1}x^{2k} - 2 \sum_{k=1}^\infty a_{2k-1}x^{2k}[/tex]
[tex]=\displaystyle a_1 + \sum_{k=1}^\infty \bigg((2k+1)a_{2k+1} - 2a_{2k-1}\bigg)x^{2k}[/tex]
• Odd:
[tex]\displaystyle \sum_{k=0}^\infty 2(k+1)a_{2(k+1)}x^{2k+1} - 2\sum_{k=0}^\infty a_{2k}x^{2k+1}[/tex]
[tex]=\displaystyle \sum_{k=0}^\infty \bigg(2(k+1)a_{2(k+1)}-2a_{2k}\bigg)x^{2k+1}[/tex]
[tex]=\displaystyle \sum_{k=0}^\infty \bigg(2(k+1)a_{2k+2}-2a_{2k}\bigg)x^{2k+1}[/tex]
Notice that the right side of the DE is odd, so there is no 0-degree term, i.e. no constant term, so it follows that [tex]a_1=0[/tex].
The even series vanishes, so that
[tex](2k+1)a_{2k+1} - 2a_{2k-1} = 0[/tex]
for all integers k ≥ 1. But since [tex]a_1=0[/tex], we find
[tex]k=1 \implies 3a_3 - 2a_1 = 0 \implies a_3 = 0[/tex]
[tex]k=2 \implies 5a_5 - 2a_3 = 0 \implies a_5 = 0[/tex]
and so on, which means the odd-indexed coefficients all vanish, [tex]a_{2k+1}=0[/tex].
This leaves us with the odd series,
[tex]\displaystyle \sum_{k=0}^\infty \bigg(2(k+1)a_{2k+2}-2a_{2k}\bigg)x^{2k+1} = 6\sum_{k=0}^\infty (-1)^k \frac{x^{2k+1}}{(2k+1)!}[/tex]
[tex]\implies 2(k+1)a_{2k+2} - 2a_{2k} = \dfrac{6(-1)^k}{(2k+1)!}[/tex]
We have
[tex]k=0 \implies 2a_2 - 2a_0 = 6[/tex]
[tex]k=1 \implies 4a_4-2a_2 = -1[/tex]
[tex]k=2 \implies 6a_6-2a_4 = \dfrac1{20}[/tex]
[tex]k=3 \implies 8a_8-2a_6 = -\dfrac1{840}[/tex]
So long as you're given an initial condition [tex]y(0)\neq0[/tex] (which corresponds to [tex]a_0[/tex]), you will have a non-zero series solution. Let [tex]a=a_0[/tex] with [tex]a_0\neq0[/tex]. Then
[tex]2a_2-2a_0=6 \implies a_2 = a+3[/tex]
[tex]4a_4-2a_2=-1 \implies a_4 = \dfrac{2a+5}4[/tex]
[tex]6a_6-2a_4=\dfrac1{20} \implies a_6 = \dfrac{20a+51}{120}[/tex]
and so the first four terms of series solution to the DE would be
[tex]\boxed{a + (a+3)x^2 + \dfrac{2a+5}4x^4 + \dfrac{20a+51}{120}x^6}[/tex]
In a certain animal species, the probability that a healthy adult female will have no offspring in a given year is 0.24, while the probabilities of 1, 2, 3, or 4 offspring are respectively 0.25, 0.19, 0.17, and 0.15. Find the expected number of offspring.
Answer:
The expected number of offspring is 2
Step-by-step explanation:
The given parameters can be represented as:
[tex]\begin{array}{cccccc}x & {0} & {1} & {2} & {3} & {4} \ \\ P(x) & {0.24} & {0.25} & {0.19} & {0.17} & {0.15} \ \end{array}[/tex]
Required
The expected number of offspring
This implies that we calculate the expected value of the function.
So, we have:
[tex]E(x) = \sum x * P(x)[/tex]
Substitute known values
[tex]E(x) = 0 * 0.24 + 1 * 0.25 + 2 * 0.19+ 3 * 0.17 + 4 * 0.15[/tex]
Using a calculator, we have:
[tex]E(x) = 1.74[/tex]
[tex]E(x) = 2[/tex] --- approximated
What is the approximate length of arc s on the circle below? Use 3.14 for Pi. Round your answer to the nearest tenth.
-5.8 ft
-6.3 ft
-27.5 ft
-69.1 ft
9514 1404 393
Answer:
69.1 ft
Step-by-step explanation:
The diameter of the circle is 24 ft. The length of the arc is more than twice the diameter, so cannot be less than about 50 ft. The only reasonable choice is ...
69.1 ft
__
The circumference of the circle is ...
C = 2πr = 2(3.14)(12 ft) = 75.36 ft
The arc length of interest is 330° of the 360° circle, so is 330/360 = 11/12 times the circumference.
s = (11/12)(75.36 ft) = 69.08 ft ≈ 69.1 ft
Answer:D
Step-by-step explanation:
There are two rectangles Jared is examining. He knows the width of the first rectangle measures
2.48 cm, and the length is twice its width.
Jared also knows that the width of the second rectangle is equal to the length of the first rectangle,
and that the area of the second rectangle is 9.92. Given this information, find the length of the
second rectangle for Jared.
1st rectangle:
width: 2.48cm
length: 4.96
2nd rectangle:
width: 4.96 (equals to the length of the 1st rectangle)
area: 9.92
length: 9.92/4.96 = 2
[tex]5(x-6)+3=3/4(2x-8)[/tex]
It is known that the variance of a population equals 1,936. A random sample of 121 has been selected from the population. There is a .95 probability that the sample mean will provide a margin of error of _____. Group of answer choices 31.36 or less 1,936 or less 344.96 or less 7.84 or less
Answer:
Option d (7.84 or less) is the right alternative.
Step-by-step explanation:
Given:
[tex]\sigma^2=1936[/tex]
[tex]\sigma = \sqrt{1936}[/tex]
[tex]=44[/tex]
Random sample,
[tex]n = 121[/tex]
The level of significance,
= 0.95
or,
[tex](1-\alpha) = 0.95[/tex]
[tex]\alpha = 1-0.95[/tex]
[tex]Z_{\frac{\alpha}{2} } = 1.96[/tex]
hence,
The margin of error will be:
⇒ [tex]E = Z_{\frac{\alpha}{2} }(\frac{\sigma}{\sqrt{n} } )[/tex]
By putting the values, we get
[tex]=1.96(\frac{44}{\sqrt{121} } )[/tex]
[tex]=1.96(\frac{44}{11} )[/tex]
[tex]=1.96\times 4[/tex]
[tex]=7.84[/tex]
write the expression as a decimal , 6 x 1 + 9 x 1/10 + 8 x 1/100 + 6 x 1/1000 =__
Answer:
6.986.
Step-by-step explanation:
6 x 1 + 9 x 1/10 + 8 x 1/100 + 6 x 1/1000
We do the multiplications first ( according to PEMDAS):-
= 6 + 9 * 0.1 + 8 * 0.01 + 6 * 0.001
= 6 + 0.9 + 0.08 + 0006
= 6.9 + 0.086
= 6 986.
The value of the equation in the decimal form is A = 6.986
What is an Equation?
Equations are mathematical statements with two algebraic expressions flanking the equals (=) sign on either side.
It demonstrates the equality of the relationship between the expressions printed on the left and right sides.
Coefficients, variables, operators, constants, terms, expressions, and the equal to sign are some of the components of an equation. The "=" sign and terms on both sides must always be present when writing an equation.
Given data ,
Let the equation be represented as A
Now , the value of A is
A = 6 x 1 + 9 x 1/10 + 8 x 1/100 + 6 x 1/1000
On simplifying the equation , we get
The value of 6 x 1 = 6
The value of 9 x 1/10 = 0.9
The value of 9 x 1/100 = 0.08
The value of 6 x 1/1000 = 0.006
So , substituting the values in the equation A , we get
A = 6 + 0.9 + 0.08 + 0.006
On simplifying the equation , we get
A = 6.986
Therefore , the value of A is 6.986
Hence , the value of the equation is 6.986
To learn more about equations click :
https://brainly.com/question/19297665
#SPJ2