Step-by-step explanation:
x²-3y²=0x=√3y and x-√3yΔOAB is equilateral triangle∴ orthocentre and centroid of ΔOAB concides ∴ orthocentre =( 29/3 ,0)=( x1 + x2 + x3 / 3 , y1 + y2 + y3 / 3 )I NEED BRAINLIEST ✌️ PLZFind the values of x and y from the following equal ordered pairs. a) (x,-2) = (4,y) b) (3x, 4) = (6, 2y) c) (2x-1, y + 2) = (-1,2) d) (2x + 4, y + 5) = (3x + 3,6) e) (x + y,y + 3) = (6, 2y) f) (x + y, x - y) - (8,0)
Answer:
a)
x=4, y=-2
b)
x=2, y=2
c)
x=0, y=0
d)
x=1, y=1
e)
x=3, y=3
f)
x=4, y=4
Step-by-step explanation:
a) (x,-2) = (4,y)
x=4
y=-2
b) (3x, 4) = (6, 2y)
3x=6 => x=2
2y=4 => y=2
c) (2x-1, y + 2) = (-1,2)
2x-1 =-1 => x=0
y+2 = 2 => y=0
d) (2x + 4, y + 5) = (3x + 3,6)
2x+4 = 3x+3 => x=1
y+5 = 6 => y=1
e) (x + y,y + 3) = (6, 2y)
x+y = 6 => x+3 = 6 => x=3
y+3 = 2y => y=3
f) (x + y, x - y) - (8,0)
x+y = 8 => 2x=8 => x=4
x-y = 0 => x=y => y=4
Help please guysss will mark as brainliest!
please help asap
Find the volume of this cone.
Use 3 for TT.
5in
V =
Answer:
V=πr2h /3
V=πr2h /3=π·2.52·8 /3≈52.35988
so the volume is 52.36 inches
5 + 3bc =
9a + b =
cd + bc =
Answer:
You can't answer these questons
sorry
Hope This Helps!!!
There is money to send four of nine city council members to a conference in Honolulu. All want to go, so they decide to choose the members to go to the conference by a random process. How many different combinations of four council members can be selected from the nine who want to go to the conference
Answer:
126
Step-by-step explanation:
There are 9 city council members.
We have to choose 4 of them.
We have to use the combination as :
[tex]$^9C_4$[/tex]
where, 9 is the population size
4 is the sample size.
Therefore, the total number of possible samples without replacement is given as :
[tex]$^9C_4=\frac{9!}{4!(9-4)!}$[/tex]
[tex]$=\frac{9!}{5! \ 4!}$[/tex]
[tex]$=\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1}$[/tex]
= 126
Gabe went out to lunch with his best friend. The bill cost $16.40 before tax and tip. He paid a 9% tax and he left a 20% tip. How much did Gabe spend?
Hint: Tax and tip are both based on the original cost of the bill.
Don't forget to round to the nearest cent!
???????????????????????????
Answer: its 20 I think
Answer:
x = 50
I hope this help the side note also help me a lot as well
Write the equation of the line parallel to =12−6 that passes through (2,−3).
Answer:
y=2-3
Step-by-step explanation:
using a calculator
What are the coordinates of the point that 1/6 of the way from A to B
Answer:
D
Step-by-step explanation:
The distance from - 2 to 10 is 12. 12/6 is 2, so 2 spaces across
Six liters of paint will cover 50 square meters. How many square meters will nine liters cover?
Answer:
75 m²Step-by-step explanation:
Six liters of paint will cover 50 square meters.
6L ⇒ 50m²
then,
1L ⇒ 50/6 m²
9L ⇒ 50 × [tex]\frac{9}{6}[/tex] m²
⇒ 75 m²
Please help, im confused ;w;
Answer:
[tex]x=7\text{ and } m\angle KLM = 34^\circ[/tex]
Step-by-step explanation:
We are given ethat KM and JN are parallel.
And we want to find the value of x.
Notice that ∠JKM and ∠LKM form a linear pair. Linear pairs total 180°. Therefore:
[tex]m\angle JKM + m\angle LKM = 180[/tex]
We know that ∠JKM measures (14x + 8). Substitute:
[tex](14x+8)+m\angle LKM =180[/tex]
Solve for ∠LKM:
[tex]m\angle LKM = 172-14x[/tex]
Next, since KM and JN are parallel, by the Corresponding Angles Theorem:
[tex]\angle JNM \cong \angle KML[/tex]
Since we know that ∠JNM measure (10x + 2), we can conclude that:
[tex]m\angle KML = 10x+2[/tex]
Next, recall that the three interior angles of a triangle must total 180°. Therefore:
[tex]m\angle KLM + m\angle LKM + m\angle KML = 180[/tex]
Substitute:
[tex](5x-1)+(172-14x)+(10x+2)=180[/tex]
Solve for x. Rewrite:
[tex](5x-14x+10x)+(-1+172+2)=180[/tex]
Combine like terms:
[tex](1x)+(173)=180[/tex]
Therefore:
[tex]x=7[/tex]
To find ∠KLM, substitute in 7 for x and evaluate. So:
[tex]m\angle KLM = 5(7) - 1 =34^\circ[/tex]
help me pls beestar is not fun
Answer:
C. 3/9
Step-by-step explanation:
First, you need to understand what the tree diagram means.
You spin a three-color spinner once. You can get one of three results:
green, blue, or yellow. This is shown in the figure under "1st spin."
Now you spin the spinner a second time. This second spin can also have three outcomes, green, blue, or yellow. For each of the three outcomes of the first spin, you can have 3 different outcomes of the second spin. That is shown under the "2nd spin."
That means there are 9 possible outcomes (numbered from 1 to 9 below):
1. green, green
2. green, blue
3. green, yellow
4. blue, green
5. blue, blue
6. blue, yellow
7. yellow, green
8. yellow, blue
9. yellow, yellow
Each of the 9 outcomes above shows the outcome of the first spin followed by the outcome of the second spin. As you can see there are 9 different outcomes of the two spins.
Now count the number of outcomes that have the same color for the first and second spin. They are shown in bold below.
1. green, green
2. green, blue
3. green, yellow
4. blue, green
5. blue, blue
6. blue, yellow
7. yellow, green
8. yellow, blue
9. yellow, yellow
3 out of 9 outcomes are the same color twice.
Answer: C. 3/9
measured the volume of an object and recorded it as 46 cubic cm
which was 15% high from the actual volume. Find the actual volume.
Answer:
[tex]40\ cm^3[/tex]
Step-by-step explanation:
Let the actual volume is V.
The measured volume of an object is 46 cubic cm which was 15% high from the actual volume.
According to the given condition,
[tex]V+\dfrac{15V}{100}=46\\\\\dfrac{115V}{100}=46\\\\V=\dfrac{4600}{115}\\\\V=40\ cm^3[/tex]
So, the actual volume was [tex]40\ cm^3[/tex].
If a circle has a diameter of 16 feet, which expression gives its area in square
feet?
A. 8^2•r
B. 16^2 •r
C.8•r
D. 16•r
Answer:
Area of a circle is denoted by: πr^2 where r is the radius of the circle. = 16/2 = 8 feet.
Step-by-step explanation:
Find all possible values of α+
β+γ when tanα+tanβ+tanγ = tanαtanβtanγ (-π/2<α<π/2 , -π/2<β<π/2 , -π/2<γ<π/2)
Show your work too. Thank you!
Answer:
[tex]\rm\displaystyle 0,\pm\pi [/tex]
Step-by-step explanation:
please note that to find but α+β+γ in other words the sum of α,β and γ not α,β and γ individually so it's not an equation
===========================
we want to find all possible values of α+β+γ when tanα+tanβ+tanγ = tanαtanβtanγ to do so we can use algebra and trigonometric skills first
cancel tanγ from both sides which yields:
[tex] \rm\displaystyle \tan( \alpha ) + \tan( \beta ) = \tan( \alpha ) \tan( \beta ) \tan( \gamma ) - \tan( \gamma ) [/tex]
factor out tanγ:
[tex]\rm\displaystyle \tan( \alpha ) + \tan( \beta ) = \tan( \gamma ) (\tan( \alpha ) \tan( \beta ) - 1)[/tex]
divide both sides by tanαtanβ-1 and that yields:
[tex]\rm\displaystyle \tan( \gamma ) = \frac{ \tan( \alpha ) + \tan( \beta ) }{ \tan( \alpha ) \tan( \beta ) - 1}[/tex]
multiply both numerator and denominator by-1 which yields:
[tex]\rm\displaystyle \tan( \gamma ) = - \bigg(\frac{ \tan( \alpha ) + \tan( \beta ) }{ 1 - \tan( \alpha ) \tan( \beta ) } \bigg)[/tex]
recall angle sum indentity of tan:
[tex]\rm\displaystyle \tan( \gamma ) = - \tan( \alpha + \beta ) [/tex]
let α+β be t and transform:
[tex]\rm\displaystyle \tan( \gamma ) = - \tan( t) [/tex]
remember that tan(t)=tan(t±kπ) so
[tex]\rm\displaystyle \tan( \gamma ) = -\tan( \alpha +\beta\pm k\pi ) [/tex]
therefore when k is 1 we obtain:
[tex]\rm\displaystyle \tan( \gamma ) = -\tan( \alpha +\beta\pm \pi ) [/tex]
remember Opposite Angle identity of tan function i.e -tan(x)=tan(-x) thus
[tex]\rm\displaystyle \tan( \gamma ) = \tan( -\alpha -\beta\pm \pi ) [/tex]
recall that if we have common trigonometric function in both sides then the angle must equal which yields:
[tex]\rm\displaystyle \gamma = - \alpha - \beta \pm \pi [/tex]
isolate -α-β to left hand side and change its sign:
[tex]\rm\displaystyle \alpha + \beta + \gamma = \boxed{ \pm \pi }[/tex]
when is 0:
[tex]\rm\displaystyle \tan( \gamma ) = -\tan( \alpha +\beta \pm 0 ) [/tex]
likewise by Opposite Angle Identity we obtain:
[tex]\rm\displaystyle \tan( \gamma ) = \tan( -\alpha -\beta\pm 0 ) [/tex]
recall that if we have common trigonometric function in both sides then the angle must equal therefore:
[tex]\rm\displaystyle \gamma = - \alpha - \beta \pm 0 [/tex]
isolate -α-β to left hand side and change its sign:
[tex]\rm\displaystyle \alpha + \beta + \gamma = \boxed{ 0 }[/tex]
and we're done!
Answer:
-π, 0, and π
Step-by-step explanation:
You can solve for tan y :
tan y (tan a + tan B - 1) = tan a + tan y
Assuming tan a + tan B ≠ 1, we obtain
[tex]tan/y/=-\frac{tan/a/+tan/B/}{1-tan/a/tan/B/} =-tan(a+B)[/tex]
which implies that
y = -a - B + kπ
for some integer k. Thus
a + B + y = kπ
With the stated limitations, we can only have k = 0, k = 1 or k = -1. All cases are possible: we get k = 0 for a = B = y = 0; we get k = 1 when a, B, y are the angles of an acute triangle; and k = - 1 by taking the negatives of the previous cases.
It remains to analyze the case when "tan "a" tan B = 1, which is the same as saying that tan B = cot a = tan(π/2 - a), so
[tex]B=\frac{\pi }{2} - a + k\pi[/tex]
but with the given limitation we must have k = 0, because 0 < π/2 - a < π.
On the other hand we also need "tan "a" + tan B = 0, so B = - a + kπ, but again
k = 0, so we obtain
[tex]\frac{\pi }{2} - a=-a[/tex]
a contradiction.
Instructions: Problem 2 ! Find the missing angle in the image below. Do not include spaces in your answers
Step-by-step explanation:
since angles in a triangle add up to 180
<vuw=180-(71+23)
=86°
since angles in a straight line add up to 180
<vuf=180-86
=94
When Zero added to any integer, what is the result?
Answer:
answer will be the integer only which was added to zero
The daily listening audience of an AM radio station is five times as large as that of its FM sister station. If 144,000 people listen to these two radio stations, how many listeners does the FM station have?
Answer:
The number of FM listereners are 24000.
Step-by-step explanation:
Let the listeners of FM are p and thus the istereners of AM are 5p.
According to the question,
p + 5 p = 144000
6 p = 144000
p = 24000
The number of FM listereners are 24000.
(1 + sin x)(1 – sin x) = cos^2x
Answer:
(1 + sin x)(1 – sin x) = cos^2x
1 - sin^2x = cos^2x
cos^2x = cos^2x
Step-by-step explanation:
Simplify the left hand side:
(1 + sin x)(1 – sin x) = cos^2x
1 - sin^2x = cos^2x
Using the Pythagorean Identity, we can see that the two sides are equivalent if you subtract sin^2x from both sides:
sin^2x + cos^2x = 1
cos^2x = 1 - sin^2x
Lastly, write it out:
(1 + sin x)(1 – sin x) = cos^2x
1 - sin^2x = cos^2x
cos^2x = cos^2x
Solve for x. Round to the nearest tenth, if necessary.
You are given the exponential function g(x)=3^x. Which ootion below gives the formula for the new function h created by stretching g by a factor of 3 along the y-axis?
Answer:
h(x) = 3^(x + 1)
Step-by-step explanation:
The exponential function is;
g(x) = 3^(x)
Now, in transformation of exponential functions of say f(x) = b^(x), when the new function g(x) is created by stretching by a factor of say c along the y-axis, we have;
g(x) = c•b^(x)
In this question, we are told it is stretched by a factor of 3 along the y-axis.
Thus, new function h is;
h(x) = 3 × 3^(x)
Using law of indices, we have;
h(x) = 3^(x + 1)
answer asap --------------
Answer:
h(n) = - 5.3 [tex](-11)^{n-1}[/tex]
Step-by-step explanation:
This is a geometric sequence with explicit formula
h(n) = h(1) [tex](r)^{n-1}[/tex]
where h(1) is the first term and r the common ratio
Here h(1) = - 5.3 and r = - 11 , then
h(n) = - 5.3 [tex](-11)^{n-1}[/tex]
I need who help .. who can be my lifesaver
Answer:
Q = G
Step-by-step explanation:
We are already given that angle P = angle H
We are also given that side QP = side GH
Remember if two sides are congruent then so are their opposite angles meaning that the opposite angle of GH ( which would be angle F ) would be congruent to the opposite angle of QP ( which would be angle R )
The remaining angles would be angle q and angle g so the additional information needed would be G = Q
Solve the equation to find a positive value of c: 3^2 + 4^2 = c^2
Answer:
The answer is c=5,-5
Question 8: Find the equation of the straight line that:
(a) has a gradient of 4 and passes through the point (1, 10)
Answer:
[tex]y=4x+6[/tex]
Step-by-step explanation:
Hi there!
Linear equations are typically organized in slope-intercept form: [tex]y=mx+b[/tex] where m is the slope (also called the gradient) and b is the y-intercept (the value of y when x is 0)
1) Plug the gradient into the equation (b)
[tex]y=mx+b[/tex]
We're given that the gradient of the line is 4. Plug this into [tex]y=mx+b[/tex] as m:
[tex]y=4x+b[/tex]
2) Determine the y-intercept (b)
[tex]y=4x+b[/tex]
Plug in the given point (1,10) as (x,y) and solve for b
[tex]10=4(1)+b\\10=4+b[/tex]
Subtract 4 from both sides to isolate b
[tex]10-4=4+b-4\\6=b[/tex]
Therefore, the y-intercept of the line is 6. Plug this back into [tex]y=4x+b[/tex] as b:
[tex]y=4x+6[/tex]
I hope this helps!
answer = y = 4x + 6
y = mx + b
gradient = slope = m = 4
(1,10) = (x,y)
plug in the values
10 = 4 (1) + b
10 = 4 + b
b = 6
y = 4x + 6
use the substitution method to find the value of y in the given system of equations y=2x+5 x+y=4
Answer:
y = 13/3
Step-by-step explanation:
substitute y=2x+5 in x+y = 4
x+2x+5 = 4
3x+5=4
3x= -1
x= -1/3
substitute x= 1-/3 in x+y = 4
-1/3 +y = 4
y = 13/3
A standard six-sided die is rolled $6$ times. You are told that among the rolls, there was one $1,$ two $2$'s, and three $3$'s. How many possible sequences of rolls could there have been? (For example, $3,2,3,1,3,2$ is one possible sequence.)
Answer:
Step-by-step explanation:
Answer:
Sequence = 120
Step-by-step explanation:
Given
6 rolls of a die;
Required
Determine the possible sequence of rolls
From the question, we understand that there were three possible outcomes when the die was rolled;
The outcomes are either of the following faces: 1, 2 and 3
Total Number of rolls = 6
Possible number of outcomes = 3
The possible sequence of rolls is then calculated by dividing the factorial of the above parameters as follows;
Sequence = \frac{6!}{3!}
Sequence = \frac{6 * 5 * 4* 3!}{3!}
Sequence = 6 * 5 * 4
Sequence = 120
Hence, there are 120 possible sequence.
Step-by-step explanation:
Hope this helps
If z varies jointly as x and y and inversely as w^2?, and
z = 72 when x = 80, y = 30 and
w=5, then find z when x = 20, y = 60 and w=9.
Answer:
Step-by-step explanation:
z = (k*x*y) / w²
Where,
k = constant of proportionality
z = 72 when x = 80, y = 30 and w = 5
z = (k*x*y) / w²
72 = (k * 80 * 30) / 5²
72 = 2400k / 25
Cross product
72 * 25 = 2400k
1800 = 2,400k
k = 2,400/1800
k = 24/18
= 4/3
k = 1 1/3
k = 1.33
find z when x = 20, y = 60 and w=9
z = (k*x*y) / w²
z = (1.33 * 20 * 60) / 9²
z = (1596) / 81
Cross product
81z = 1596
z = 1596/81
z = 19.703703703703
Approximately,
z = 19.7
Please help me with this one
Answer:
240
Step-by-step explanation:
well do *
so 8x6x5 = 240 there's your answer
Answer:
[tex]S.A=1/2(8+8)(9^{2})+8\times 6+8\times 5[/tex]
[tex]=26\times2+48+40[/tex]
[tex]=140 ~cm^{2}[/tex]
-------------------------
HOPE IT HELPS
HAVE A GREAT DAY!!
solve for
1) a
2) f
3) e
Answer:
Step-by-step explanation:
b + 70 = 180 {Supplementary angles}
b = 180 - 70
b = 110
a +b = 180 {Linear pair}
a + 110 = 180
a = 180 - 110
a = 70
d + 60 = 180 {linear pair}
d = 180 - 60
d = 120
c + d + 60 = 360 {one point angle}
c + 120 + 60 = 360
c + 180 = 360
c = 360 - 180
c = 180
f + 60 = 180 {Supplementary angles}
f = 180 - 60
f = 120