Answer:
a. NADH and FADH₂ donate electrons to the electron transport chain
b. Molecular oxygen, O₂, is the final electron acceptor
c. The final products of the electron transport chain and oxidative phosphorylation are as follows: NAD+, FAD+, H₂O, and ATP
Explanation:
The citric cycle oxidize acetylCoA molecules to carbon dioxide and in the process produce the reduced coenzyme NADH and FADH₂. These reduced coenzymes then are able to donate their electrons to various complexes in the electron transport chain. The flow of these electrons through the electron transport chain is coupled to proton pumping out of the mitochondrial matrix into the intermembrane space. Ultimately, the energy of the proton motive force is used to drive synthesis of ATP from ADP and inorganic phospahte and the electrons are accepted by molecular oxygen to produce water. This process is known as oxidative phosphorylation.
Therefore, the answers to the given questions a, b and c are as follows:
a. NADH and FADH₂ donate electrons to the electron transport chain
b. Molecular oxygen, O₂, is the final electron acceptor
c. The final products of the electron transport chain and oxidative phosphorylation are as follows: NAD+, FAD+, H₂O, and ATP
Avagadro’s number:
A: Is constant irrespective of mass of the gases
B: Varies according to the mass of the gases
C: Varies according to the pressure on the gases
D: All of the Above
Answer:
A: Is constant irrespective of mass of the gases
Explanation:
Avagadro's number, denoted by nA, is a number that represents the units in one mole of any substance. The number is 6.02214076 × 10²³ and the units can be atoms, molecules, ions, formula units etc.
That is;
1 mole of a substance = 6.022 × 10²³atoms, molecules, ions, electrons etc.
It is important to note that the Avagyadro's number is constant irrespective of mass of the gases that are involved.
Kristy finds the mass of an object to be 20 grams and the volume to be 10 mL. What is the density of the object? (don't send me links, just give a straight answer)
Describe the three freezing points. Is there a relationship between the amount of solute in the solution and the freezing temperature
Answer:
The three freezing points will all be slightly different. It is given that a water solution has a freezing point of zero degrees Celsius, so water would have a freezing temperature below that. Salt will lower the freezing point, the more that is added.
Explanation:
A 3.06 gram sample of an unknown hydrocarbon with empirical formula CH2O was found to contain 0.0170 moles of the substance. What are the molecular mass and molecular formula, respectively, of the compound
Answer:
180 amu
C₆H₁₂O₆
Explanation:
Step 1: Determine the molecular mass of the compound
The sample has a mass (m) of 3.06 g and it contains (n) 0.0170 moles. The molar mass M is:
M = m/n = 3.06/0.0170 mol = 180 g/mol
Then, the molecular mass is 180 amu.
Step 2: Determine the molar mass of the empirical formula.
M(CH₂O) = 1 × M(C) + 2 × M(H) + 1 × M(O)
M(CH₂O) = 1 × 12 g/mol + 2 × 1 g/mol + 1 × 16 g/mol = 30 g/mol
Step 3: Determine the molecular formula
First, we will determine "n" according to the following expression.
n = molar mass molecular formula / molar mass empirical formula
n = 180 g/mol / 30 g/mol = 6
The molecular formula is:
n × CH₂O = 6 × CH₂O = C₆H₁₂O₆
13. What does the Law of Conservation of Mass state?
A worker gets paid 11.33 $/hour. The worker works on average 39.7 hours/week for 48 weeks per year. How much does the worker make in 1.7 years?
Answer:
36704 $
Explanation:
First we calculate how much the worker gets paid in one week:
11.33 $/hour * 39.7 hour/week = 449.80 $/weekThen we calculate how many weeks does the worker work in 1.7 years:
48 week/year * 1.7 years = 81.6 weeksFinally we calculate how much does the worker make in 1.7 years:
449.80 $/week * 81.6 weeks = 36704 $20. What is an irreversible change?
Answer:
A change is called irreversible if it cannot be changed back again. For example you cannot change a cake back into its ingredients again. Irreversible changes are permanent.
Explanation:
Hope this helps!! :))
The table shows the recipe and the available ingredients for making the maximum possible number of sandwiches.
Making Sandwiches
Recipe for One Sandwich:
2 cheese slices, 1 ham slice, 2 bread slices
Ingredients Available:
12 cheese slices, 10 ham slices, 12 bread slices
If the ingredients represent reactants of a chemical reaction, which of the following represents the leftover reactant?
A. 2 ham slices
B. 4 ham slices
C. 2 cheese slices
D. 4 cheese slices
Answer:
B. 4 ham slices
Explanation:
A chemical reaction involves one or more substances known as reactants combining chemically to give one or more substances known as products.
Reactants in chemical reactions combine in definite mole or mass ratios to give products. Therefore, when one substance is present in excess of what is required to combine with another to form products, that substance is known as the excess reagent. The other substance which is present in a smaller amount and which when used up, the reaction stops is known as the limiting reagent.
From the illustration of the sandwiches in the question, the recipe for one sandwich represents the chemical equation of a reaction. The equation form is given below:
2 cheese slices + 1 ham slice + 2 bread slices ---> 1 sandwich
The ratio of the reactant is 2 : 1 : 2
From the available ingredients, 12 cheese slices, 10 ham slices, 12 bread slices.
12 cheese slices will require 6 ham slices and 12 bread slices to produce 6 sandwiches.
However, since there are 10 ham slices, 4 ham slices will be left over unused. This is the excess or leftover reactant.
Answer:
B. 4 ham slices
Explanation:
Got it right on the test
What are fluids? Why are they so called?
Fluids are liquid and gases. They take the shape of their containers. They are called fluids because of their ability to flow.
A sample of a gas at 15°C and 2.50 atm pressure has a volume of 4.5 L. The pressure is lowered to 0.85 atm and the volume decreases to 2.5 L. What is the final temperature of the gas in K.
[tex]P_{1} = \text{2.50 atm}[/tex]
[tex]T_{1} = 15^{\circ}\text{C + 273 = 288 K}[/tex]
[tex]V_{1} = \text{4.5 L}[/tex]
[tex]P_{2} = \text{0.85 atm}[/tex]
[tex]V_{2} = \text{2.5 L}[/tex]
Unknown:[tex]T_{2}[/tex]
Solution:[tex]\dfrac{P_{1}V_{1}}{T_{1}} = \dfrac{P_{2}V_{2}}{T_{2}}[/tex]
[tex]T_{2} = T_{1} \times \dfrac{P_{2}}{P_{1}} \times \dfrac{V_{2}}{V_{1}}[/tex]
[tex]T_{2} = \text{288 K} \times \dfrac{\text{0.85 atm}}{\text{2.50 atm}} \times \dfrac{\text{2.5 L}}{\text{4.5 L}}[/tex]
[tex]\boxed{T_{2} = \text{54.4 K}}[/tex]
[tex]\\[/tex]
#ILoveChemistry
#ILoveYouShaina
A molecule or ion that donates the hydrogen in a hydrogen bond is a hydrogen bond donor
a. True
b. False
Answer:
True
Explanation:
Hydrogen bonding is a type of intermolecular interaction that occurs when hydrogen is bonded to a highly electronegative atom.
We define the term ''hydrogen bond donor'' as the molecule that supplies the hydrogen atom in the hydrogen bond.
Hence, it is true that the molecule or ion that donates the hydrogen in a hydrogen bond is a hydrogen bond donor
Having enough folic acid in your system by the early weeks of pregnancy is critical to prevent spina bifida.
Answer:
Yes.
Explanation:
Yes, enough folic acid in the body by the early weeks of pregnancy helps to prevent spina bifida. The body of woman uses folate during the pregnancy which produces red and white blood cells that help your baby to grow. Folate also lowers the risk of neural tube defect (NTD) in the unborn baby. Neural tube defect (NTDs) are the serious birth defects that greatly affect the spinal cord, brain and skull of the baby.
In this lab, you will be making solutions of potassium permanganate (KMnO4), which has a formula weight of 158.04 g/mole. Remember to show your calculations and include tne Correct unnits in your answers
a) How many grams of KMnO4 would you need to make 1 L of a 2M solution?
b) How many grams of KMnO4 would you need to make 350 mL of a 0.75 M solution?
c) How many grams of KMnO4 would you need to make 80 mL of a 0.01 M solution?
Answer:
A. Mass of KMnO₄ = 316.08 g
B. Mass of KMnO₄ = 41.49 g
C. Mass of KMnO₄ = 0.13 g.
Explanation:
A. Determination of the mass of KMnO₄
We'll begin by determining the number of mole of KMnO₄ in the solution. This can be obtained as follow:
Volume = 1 L
Molarity = 2 M
Mole of KMnO₄ =?
Mole = Molarity × Volume
Mole of KMnO₄ = 2 × 1
Mole of KMnO₄ = 2 moles
Finally, we shall determine the mass of KMnO₄. This can be obtained as follow:
Mole of KMnO₄ = 2 moles
Molar mass of KMnO₄ = 158.04 g/mole
Mass of KMnO₄ =?
Mass = mole × molar mass
Mass of KMnO₄ = 2 × 158.04
Mass of KMnO₄ = 316.08 g
B. Determination of the mass of KMnO₄
We'll begin by determining the number of mole of KMnO₄ in the solution. This can be obtained as follow:
Volume = 350 mL = 350/1000 = 0.35 L
Molarity = 0.75 M
Mole of KMnO₄ =?
Mole = Molarity × Volume
Mole of KMnO₄ = 0.75 × 0.35
Mole of KMnO₄ = 0.2625 mole
Finally, we shall determine the mass of KMnO₄. This can be obtained as follow:
Mole of KMnO₄ = 0.2625 mole
Molar mass of KMnO₄ = 158.04 g/mole
Mass of KMnO₄ =?
Mass = mole × molar mass
Mass of KMnO₄ = 0.2625 × 158.04
Mass of KMnO₄ = 41.49 g
C. Determination of the mass of KMnO₄
We'll begin by determining the number of mole of KMnO₄ in the solution. This can be obtained as follow:
Volume = 80 mL = 80/1000 = 0.08 L
Molarity = 0.01 M
Mole of KMnO₄ =?
Mole = Molarity × Volume
Mole of KMnO₄ = 0.01 × 0.08
Mole of KMnO₄ = 0.0008 mole
Finally, we shall determine the mass of KMnO₄. This can be obtained as follow:
Mole of KMnO₄ = 0.0008 mole
Molar mass of KMnO₄ = 158.04 g/mole
Mass of KMnO₄ =?
Mass = mole × molar mass
Mass of KMnO₄ = 0.0008 × 158.04
Mass of KMnO₄ = 0.13 g
(a) Describe the process by which Nitrogen is obtained from air on a large scale
The element nitrogen exists as a gas and is obtained from air on a large scale by fractional distillation of air.
What is an element?An element is defined as a substance which cannot be broken down further into any other substance. Each element is made up of its own type of atom. Due to this reason all elements are different from one another.
Elements can be classified as metals and non-metals. Metals are shiny and conduct electricity and are all solids at room temperature except mercury. Non-metals do not conduct electricity and are mostly gases at room temperature except carbon and sulfur.
The number of protons in the nucleus is the defining property of an element and is related to the atomic number.All atoms with same atomic number are atoms of same element.
Learn more about element,here:
https://brainly.com/question/14347616
#SPJ2
Which of the following natural hazards occur for a long period of time?
tornado
earthquake
drought
thunderstorm
Answer:
drought
Explanation:
droughts are long periods without water
Waves are generated when energy passes through causing them to move matter through ____ ?
Answer:
sending heat waves and vibrations
PLSSS HELP MEEEEEEEE
It takes 5 seconds for a wave with a wavelength of 0.4 m to travel past you.
What is the frequency of the wave?
A. 2.0 Hz
B. 0.2 Hz
C. 5 Hz
D. 2.5 Hz
Answer:
A
Explanation:
frequency is the product of time and wave length
Answer:
(B) 0.2Hz
Explanation:
took the test and it for sure was not 2.0Hz
In what form is energy that is NOT used for life processes released from living things?
1. Thermal energy
2. Chemical energy
3. Light energy
4. Sound energy
Answer:
Correct answer would be Option 2, Chemical Energy
Hope this helps!
12. Which formula shows a substance that is not molecular?
H₂
H2O
н
CO2
Answer:
the answer is H ..............
Reaction of 2,3-dimethyl-1-butene with HBr leads to an alkyl bromide, C6H13Br. On treatment of this alkyl bromide with KOH in methanol, elimination of HBr occurs and a hydrocarbon that is isomeric with the starting alkene is formed. What is the structure of this hydrocarbon, and how do you think it is formed from the alkyl bromide
Answer:
See explanation and image attached
Explanation:
The image attached shows the entire scheme of reactions mentioned in the question.
The first reaction is an addition reaction which yields a tertiary alkyl halide as shown in accordance with Markovnikov rule.
The second reaction is a dehydrohalogenation in which the base abstracts a proton from the alkyl halide followed by loss of a bromide ion to yield the corresponding alkene.
This alkene is an isomer of the starting material.
A hot air balloon has an air vent that keeps the air pressure inside and outside the same. Allen observes that a hot air balloon rises up when the gas molecules inside it are heated. Which
of the following laws is used to understand the behavior of the gas and why?
a) The high temperature brings the gas molecules closer together according to Charles's law because this law describes how a gas will behave at constant pressure
b) The high temperature makes the gas molecules spread apart according to Charles's law because this law describes how a gas will behave at constant pressure.
c) The high temperature lowers volume according to Boyle's law because this law describes how a gas will behave when the number of moles remains constant.
d) The high temperature ralses volume according to Boyle's law because this law describes how a gas will behave when the number of moles remains constant.
Answer:
B - The high temperature makes the gas molecules spread apart according to Charles's law because this law describes how a gas will behave at constant pressure.
Explanation:
Charle's Law describes the relationship between temperature and volume, where increased temperature leads to increased volume. When volume is increased, that means the gas molecules are more spread apart and have more random motion. Therefore, the answer is B.
The high temperature causes the gas molecules to spread apart according to Charles's law because explain how a gas, behave at constant pressure.
What does Charles law state?The physical principle called Charles' law which states that the volume of a gas equals a constant value many by its temperature as measured on the Kelvin scale.
Volume regaled by a clinched amount of gas is directly proportional to its temperature and pressure if remains steady.
Thus, option "B" is correct, the volume of a gas equals a constant value.
To learn more about Charles law click here:
https://brainly.com/question/14842720
QUESTION 3 (a) Ammonium sulphate, (NH),50, is a soluble salt and it is used in agriculture as fertiliser. 5 g of ammonium sulphate is dissolved in 1 litre of water to produce ammonium sulphate solution. (Relative atomie mass: H = 1, N = 14,0 = 16, )
Calculate
(1) the number of inoles of dissolved ammonium sulphate
(ii) the number of molecules present in the ammonium sulphate solution.
(iii) the number of positive ions present in the ammonium sulphate solution
(iv) the number of negative ions present in the ammonium sulphate solution
(v) the total number of ions present in the ammonium sulphate solution
Answer:
The equation: (NH₄)₂SO₄ = 2NH4(+) + SO4(-2)
The number of moles = 5 g / 132.14 g/mol = 0.038 mol
The number of molecules = 0.038 X 6.022x10^23 = 2.29x10^23
the number of positive ions present in the ammonium sulphate solution:
2 positive ions for every 1 molecule of (NH₄)₂SO₄
so 2 x 2.29x10^23 = 4.58x10^23
the number of negative ions present in the ammonium sulphate solution
1 negative ion for every 1 molecule of (NH₄)₂SO₄
so 1 x 2.29x10^23 = 2.29x10^23
the total number of ions present in the ammonium sulphate solution
4.58x10^23 + 2.29x10^23 = 6.87x10^23
Describe the buffer capacity of the acetic acid buffer solution in relation to the addition of both concentrated and dilute acids and bases. Reference the results in Data Tables 1,2,3, and 4 in your answer.
Answer:
The more concentrated acetic acid buffer has a better buffer capacity because requires more moles of acid or base to change the pH than a more diluted acetic acid buffer.
Explanation:
Buffer capacity is defined as the moles of an acid or base that are needed to change the pH of a buffer in 1 unit.
A more concentrated solution of acetic buffer contains more moles of the acid per liter of solution. A solution that contains more moles of the acetic ion or the acetic acid requires more moles of base or acid to change the pH, that means:
The more concentrated acetic acid buffer has a better buffer capacity because requires more moles of acid or base to change the pH than a more diluted acetic acid buffer.
Which of the following explains the high boiling
point of water?
a Surface tension
b Polarity
C Capillary action
d Hydrogen bonding
Answer:
The correct answer is - d. hydrogen bonding.
Explanation:
Water has strong hydrogen bonds between its molecules that require a very high amount of energy in order to break. Water molecules are joined together or bound with a strong intermolecular force called hydrogen bonds.
These bonds require more kinetic energy which means more temperature or heat in order to break the bonds and turn into steam and this is the reason it has a high boiling point.
It took 2.30 minutes using a current of 3.00 A to plate out all the copper from 0.300 L of a solution containing Cu2 . What was the original concentration of Cu2
Answer:
7.16 × 10⁻³ M
Explanation:
Let's consider the reduction reaction of copper during the electroplating.
Cu²⁺(aq) + 2 e⁻ ⇒ Cu(s)
We can calculate the moles of Cu²⁺ present in the solution using the following relations.
1 A = 1 C/s.1 min = 60 s.1 mole of electrons has a charge of 96486 C (Faraday's constant).1 mole of Cu²⁺ is reduced when 2 moles of electrons are gained.The moles of Cu²⁺ reduced are:
[tex]2.30 min \times \frac{60s}{1min} \times \frac{3.00C}{s} \times \frac{1mole^{-} }{96486C} \times \frac{1molCu^{2+} }{2mole^{-} } = 2.15 \times 10^{-3} molCu^{2+}[/tex]
[tex]2.15 \times 10^{-3} moles[/tex] of Cu²⁺ are in 0.300 L of solution.
[Cu²⁺] = 2.15 × 10⁻³ mol/0.300 L = 7.16 × 10⁻³ M
rank in order the strongest to the weakest acid cbr3cooh, ch3cooh and ccl3cooh
Answer: Rank in order the strongest to the weakest acid is [tex]CCl_{3}COOH[/tex] > [tex]CBr_{3}COOH[/tex] > [tex]CH_{3}COOH[/tex].
Explanation:
More readily a substance is able to donate a hydrogen ion more will be its acidic strength. Hence, stronger will be the acid.
More is the electronegativity of atoms attached to the acid more easily it will donate a proton. Hence, more will be its acidic strength.
Chlorine is more electronegative in nature as compared to bromine. So,
[tex]CCl_{3}COOH[/tex] is more acidic than [tex]CBr_{3}COOH[/tex].
Since there is no electronegative group attached to [tex]CH_{3}COOH[/tex] so it is least acidic than [tex]CCl_{3}COOH[/tex] and [tex]CBr_{3}COOH[/tex].
Thus, we can conclude that rank in order the strongest to the weakest acid is [tex]CCl_{3}COOH[/tex] > [tex]CBr_{3}COOH[/tex] > [tex]CH_{3}COOH[/tex].
Question 8 (5 points)
(08.02 MC)
A 10 M concentrated stock solution of NaCl was used to prepare 5 liters of diluted 1 M solution. Which of the following statements is true about
the
process used to achieve this required dilution? (5 points)
O a
The volume of stock solution used was less than 0.4 liters.
Oь
The volume of stock solution used was more than 5 liters.
Ос
The volume of the solvent used was less than 0.4 liters.
Od
The volume of the solvent used was less than 5 liters.
Answer:
d . The volume of the solvent used was less than 5 liters.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the volume of the stock (initial) solution by using the following equation:
[tex]M_1V_1=M_2V_2[/tex]
Thus, we solve for, V1, which stands for the aforementioned volume of stock solution:
[tex]V_1=\frac{M_2V_2}{M_1}[/tex]
Then, we plug in to obtain:
[tex]V_1=\frac{5L*1M}{10M}\\\\V_1=0.5L[/tex]
Now, since the final volume was 5 L, we can infer that the volume of solvent is 4.5 L and that of the stock solution 0.5 L for a total of 5 L of diluted solution; therefore, the correct reasoning is d . The volume of the solvent used was less than 5 liters.
Regards!
Answer:
The volume of the solvent is less than 5
Explanation:
Dichlorine monoxide, Cl2O is sometimes used as a powerful chlorinating agent in research. It can be produced by passing chlorine gas over heated mercury (II) oxide according to the following equation: HgO + Cl2 ????HgCl2 + Cl2O What is the percent yield, if the quantity of the reactants is sufficient to produce 0.86g of Cl2O but only 0.71 g is obtained?
Answer:
% yield = 82.5%
Explanation:
HgO + 2Cl₂ → HgCl₂ + Cl₂O
Our reactants are:
HgO and Cl₂Our products are:
HgCl₂ + Cl₂OWe do not have information about moles of reactants, but we do know the theoretical yield and the grams of product, in this case Cl₂O, we have produced.
Percent yield = (Yield produced / Theoretical yield) . 100
Theoretical yield is the mass of product which is produced by sufficent reactant. We replace data:
% yield = (0.71 g/0.86g) . 100 = 82.5%
The percent % yield = 82.5%
The balanced chemical equation will be:
HgO + 2Cl₂ → HgCl₂ + Cl₂O
The reactants participating in this reaction are: HgO and Cl₂
The products so formed are: HgCl₂ + Cl₂O
[tex]\text{ Percent yield} = \frac{\text{Yield produced}}{\text{Theoretical yield}} *100[/tex]
The theoretical yield is the maximum possible mass of a product that can be made in a chemical reaction.
[tex]\text{Percent yield}= \frac{0.71 g}{0.86g} * 100 \\\\\text{Percent yield}= 82.5\%[/tex]
Thus, the percent yield is 82.5%.
Learn more:
brainly.com/question/25996347
someone answer please
Answer:
A
Explanation:
Intramolecular forces of attraction are important in holding large molecules together.
a. True
b. False
Answer:
False. Intermolecular forces of attraction are important in holding large molecules together.
Explanation:
Within a molecule, atoms are held together by intramolecular forces. That is, intramolecular forces are the attractive forces that hold the atoms or ions that make up chemical substances (elements and compounds) together, forming a chemical bond.
On the other hand, intermolecular forces are those that act on different molecules or ions and that make them attract or repel each other. In other words, intermolecular forces are those that occur between the different molecules of a compound, and cause these molecules or ions to attract or repel each other.
So, intermolecular forces of attraction are important in holding large molecules together.