one is 1800 and another is 1200
Step-by-step explanation:
let no's be A and B
so, A+B =3000
given, 8% = 8/100 = 2/25
12%= 12/100 = 3/25
As per question 8% of A is = 12% of B
so, (2/25)*A = (3/25)*B
now, multiply cross wise
then we get, (A/B) = 3:2
thus two numbers are in the ratio of 3:2
so, let A =3x, B=2x
cause sum of these is 3000 so, A+B =3000
3x+2x =3000
5x = 3000
x= 3000/5
.: x = 600
so, first no is 3x =3*600=1800
2nd no is 2x= 2*600= 1200
Hope this helps you
Please help I don't understand this at all
Answer:
The answer is 48in
Step-by-step explanation:
3x + y = 10 x - y = 2 2
help with this question please
The measure of an angle is eight times the measure of its supplementary angle. What is the measure of each angle?
Answer:
160°
Step-by-step explanation:
Let one angle be x
Let second angle be 8x
Sum of supplementary angles = 180°
x+ 8x = 180°
9x = 180
x = 180/9 = 20
First angle= x= 20°
Second angle = 8x = 8*20 = 160°
Solve for x.
Help me please
Answer:
x = 24
Step-by-step explanation:
Mathematically, in a cyclic quadrilateral; two opposite angles are supplementary
what this mean is that the opposite angles add up to equal 180 degrees
mathematically, we have this as;
(4x + 9) + (3x + 3) = 180
4x + 3x + 3 + 9 = 180
7x + 12 = 180
7x = 180-12
7x = 168
x = 168/7
x = 24
Between 20 to 35 degrees north latitude, and also between 20 to 35 degrees south latitude are found:
Answer:
Following are the solution to the given question:
Step-by-step explanation:
Its area includes all Sahara's locations in North Africa, South Arabia, Iran's and Iraq's larger parts, North-Western India, California throughout the United States, South Africa but most of Australia.
Half-arid temperatures include places like the Utah, Montana, and Gulf Coastal regions of sagebrush. Also, it comprises regions in Iceland, Russia, Scandinavia, Greenland, and Northeast India. Semi-arid thankless than tube called per year of rain and up to 20 inches per year at much more than arid deserts.
Regions from of the latitude of 25° to 35° usually develop desert, because air sinks and is heated under pressures in this area. The world's dry and semi-arid desert regions are between 20°C and 35°C north latitude and between 20°C and 35°C South latitude.
Find the perimeter of ΔJKL. Round your answer to the nearest tenth if necessary
Answer:
Step-by-step explanation:
as angles of two triangles are equal, so they are similar.
x/17 =35/14=40/16
x/17=35/14
x=35/14×17=85/2=42.5
perimeter of ΔJKL=40+35+42.5=117.5
URGENTT!!!! help quick please
Plss answer the bottom question
Answer:
200
Step-by-step explanation:
250/100=2.5
2.5*80=200
So the answer is 200
pls help, i have class rn :(
in how many ways can alice distribute 12 apples to 3 children (a child can have no apples)
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
Answer:
Falso.
Step-by-step explanation:
Sea [tex]d = \frac{a}{b}[/tex] un número racional, donde [tex]a, b \in \mathbb{R}[/tex] y [tex]b \neq 0[/tex], su opuesto es un número real [tex]c = -\left(\frac{a}{b} \right)[/tex]. En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:
(a) El exponente es cero.
(b) El exponente es un negativo impar.
(c) El exponente es un negativo par.
(d) El exponente es un positivo impar.
(e) El exponente es un positivo par.
(a) El exponente es cero:
Toda potencia elevada a la cero es igual a uno. En consecuencia, [tex]c = d = 1[/tex]. La proposición es verdadera.
(b) El exponente es un negativo impar:
Considérese las siguientes expresiones:
[tex]d' = d^{-n}[/tex] y [tex]c' = c^{-n}[/tex]
Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:
[tex]d' = \left(\frac{a}{b} \right)^{-n}[/tex] y [tex]c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}[/tex]
[tex]d' = \left(\frac{a}{b} \right)^{(-1)\cdot n}[/tex] y [tex]c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}[/tex]
[tex]d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}[/tex]y [tex]c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}[/tex]
[tex]d' = \left(\frac{b}{a} \right)^{n}[/tex] y [tex]c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}[/tex]
[tex]d' = \left(\frac{b}{a} \right)^{n}[/tex] y [tex]c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}[/tex]
[tex]d' = \left(\frac{b}{a} \right)^{n}[/tex] y [tex]c' = \left[-\left(\frac{b}{a} \right)\right]^{n}[/tex]
Si [tex]n[/tex] es impar, entonces:
[tex]d' = \left(\frac{b}{a} \right)^{n}[/tex] y [tex]c' = - \left(\frac{b}{a} \right)^{n}[/tex]
Puesto que [tex]d' \neq c'[/tex], la proposición es falsa.
(c) El exponente es un negativo par.
Si [tex]n[/tex] es par, entonces:
[tex]d' = \left(\frac{b}{a} \right)^{n}[/tex] y [tex]c' = \left(\frac{b}{a} \right)^{n}[/tex]
Puesto que [tex]d' = c'[/tex], la proposición es verdadera.
(d) El exponente es un positivo impar.
Considérese las siguientes expresiones:
[tex]d' = d^{n}[/tex] y [tex]c' = c^{n}[/tex]
[tex]d' = \left(\frac{a}{b}\right)^{n}[/tex] y [tex]c' = \left[-\left(\frac{a}{b} \right)\right]^{n}[/tex]
[tex]d' = \left(\frac{a}{b} \right)^{n}[/tex] y [tex]c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}[/tex]
[tex]d' = \left(\frac{a}{b} \right)^{n}[/tex] y [tex]c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}[/tex]
Si [tex]n[/tex] es impar, entonces:
[tex]d' = \left(\frac{a}{b} \right)^{n}[/tex] y [tex]c' = - \left(\frac{a}{b} \right)^{n}[/tex]
(e) El exponente es un positivo par.
Considérese las siguientes expresiones:
[tex]d' = \left(\frac{a}{b} \right)^{n}[/tex] y [tex]c' = \left(\frac{a}{b} \right)^{n}[/tex]
Si [tex]n[/tex] es par, entonces [tex]d' = c'[/tex] y la proposición es verdadera.
Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.
Factor -1.8 out of 3.6b-9
=================================================
Explanation:
Consider something like 2b+6 factoring to 2(b+3). When we distribute that outer 2 back inside the parenthesis, we're multiplying that 2 by everything inside. Factoring goes in reverse of this and we divide each term of 2b+6 by the GCF 2.
The same thing applies to this current problem as well.
Divide each term by the -1.8 we want to factor out.
(3.6b)/(-1.8) = -2b(-9)/(-1.8) = 5The results -2b and 5 will go inside the parenthesis. That's how we end up with -1.8(-2b+5)
You can use distribution to verify this
-1.8(-2b+5)
-1.8*(-2b) - 1.8*(5)
3.6b - 9
Which inequality is true?
A.
|-15| > |-19|
B.
|-16| < |13|
C.
|-15| > |12|
D.
|12| < |-8|
E.
|-19| > |-20|
Answer:
I don't know I don't know about question
how do i answer this?
Step-by-step explanation:
here is the answer. Hope that helps.
Which shape has the greatest number of lines of symmetry?
A. rhombus
B. square
C. rectangle
D. parallelogram
What is the product?
PLZZ HELPPPPPP I NEED TO FINISH THIS IN 8 MINS
Answer:
$29.69
Step-by-step explanation:
23.52 * 1.1 = $25.872 so this is the marked up price. ----- (1.1 = 110%)
25.872 * 0.1475 = $3.81612 is the sales tax.
Total is 25.872 + 3.81612 ~ $29.69
Explain what you would do first to simplify the expression below. Justify why, and then state the result of performing this step.
A bag contains 6 apples and 4 oranges. If you select 5 pieces of fruit without
looking, how many ways can you get 5 apples?
Answer:
6 I think
Step-by-step explanation:
please help! I cant figure this out!
At the beginning of year 1, Matilda invests $450 at an annual simple interest rate of 5%. She makes no deposits to or withdrawals from the account. Which explicit formula can be used to find the account's balance at the beginning of year 15? What is the balance?
Answer:
$765
Step-by-step explanation:
[tex]interest \: = \frac{prt}{100} \\ = \frac{(450)(5)(14)}{100} \\ = 315 \\ total \: money \: = 315 + 450 \\ = 765[/tex]
A(n) = 450 + (n – 1)(0.05 • 450); $765.00
(Algebra ll) Given the function below
Answer: B
Step-by-step explanation:
To find the values of x, we first need to write the function into an equation. We can derive 2 equations from the problem.
Equation 1: y=2|x+6|-4
Equation 2: y=6
Now, we can substitute.
2|x+6|-4=6
Let's solve for x.
2|x+6|-4=6 [add both sides by 4]
2|x+6|=10 [divide both sides by 2]
|x+6|=5 [subtract both sides by 6]
x=-1
Now that we know x=-1 is one of the solutions, we can eliminate C and D.
We know that the absolute value makes the number inside positive always. Therefore, let's solve for x with -5 instead.
|x+6|=-5 [subtract both sides by 6]
x=-11
Therefore, we know that B is the correct answer.
Graph the image of T(
–
10,
–
7) after a rotation 270° counterclockwise around the origin.
Answer:
[tex]T' = (-7,10)[/tex]
Step-by-step explanation:
Given
[tex]T = (10,7)[/tex]
[tex]r = 270^o[/tex] counterclockwise
Required
Graph of T'
The rule to this is:
[tex](x,y) \to (-y,x)[/tex]
So, we have:
[tex]T(10,7) \to T' (-7,10)[/tex]
Hence:
[tex]T' = (-7,10)[/tex]
See attachment for graph
Which number line model represents the expression 3.5+(-5)
Answer:
D.
Step-by-step explanation:
.
The probability distribution for a
random variable x is given in the table.
-5
-3
-2
0
2
3
Probability
.17
.113
.133
.16
.11
.10
Find the probability that -2
Note: The values in the table are not correct because the sum of the probability of all events is not equal to one. The should be 0.13 and 0.33 instead of 0.113 and 0.133 respectively.
Given:
The probability distribution for a random variable x is given in the table.
x : -5 -3 -2 0 2 3
P(x) : 0.17 0.13 0.33 0.16 0.11 0.10
To find:
The probability of -2.
Solution:
From the given probability distribution for a random variable x, it is clear that the value of the probability is 0.33 corresponding to -2.
[tex]P(-2)=0.33[/tex]
Therefore, the probability of -2 is 0.33.
Find the area of circle Q in terms of x
Answer:
The answer is C 100πcm^3
Is the function g(x)= –5x+4 linear or nonlinear
What is the equation of the following line?
Answer:
c. y = -4x
Step-by-step explanation:
use slope formula
what is the ratio of Sin 45°?
Answer:
1/√2
Step-by-step explanation:
The value of sin 45 is 1/√2
I need to find angle BAC
Answer:
m<BAC = 60°
Step-by-step explanation:
Theorem:
In a triangle, the measure of an exterior angle equals the sum of the measures of its remote interior angles.
m<ACD = m<A + m<B
130° = m<A + 70°
m<A = 60°
m<BAC = 60°