Answer:
I think that you need the gravitational acceleration of mercury
so we will use Newton's gravitational law :
gravitational acceleration = G*m/2
G is the gravitational constant = G = 6.673×10^-11 N m^2 kg^-2
after substitution : m^7x r67 / 11
6.673×10^-11 * 3.2x10^23 / (2.43x10^6)^2
using calculator : 2.00007899999
gravitational acceleration of mercury = 3.61625 m/s^2
pls give me brainliest
Explanation:
Two Force 16N and 4N acts at rights angle each other calculate the resultant force
Calculate the potential difference across a 25-Ohm. resistor if a 0.3-A current is flowing through it.
Answer:
I=0.3 A
R=25 Ohm
V=?
V=IR
0.3X25=7.5
Answer:
7.5 V
Explanation:
current × resistance = voltage
Which layer is the igneous rock type?
options:
A
B
C
D
Please can someone solve this for me i will really appreciate it
Answer:
• Average current = 25,000 Amperes
• Time = 0.80 seconds
a)
[tex]{ \rm{quantity \: of \: charge = current \times time}} \\ { \rm{q = 25000 \times 0.80}} \\ { \boxed{ \mathfrak{answer : \: { \rm{quantity \: of \: charge = 20000 \: coulombs}} }}}[/tex]
b)
[tex]{ \rm{number \: of \: electrons = \frac{current}{charge \: quantity} }} \\ \\ { \rm{n = \frac{25000}{20000} }} \\ \\ { \boxed{ \mathfrak{ \: answer : \: { \rm{n = 1.25 \: }}}}}[/tex]
[tex]{ \underline{ \mathfrak{ \green{Good \: grace}} \: \:⚜ \: \: { \blue{ \mathfrak{Good \: God}}}}}[/tex]
could someone answer this
The given kinematic equations of motion are derived from Newton's Laws
of Motion.
A) The ball's speed the instant it left the soccer player's foot is approximately 11.074 m/s.B) The time it took the ball to rise to its maximum height is approximately 1.129 seconds.
Reasons:
The direction the ball is kicked = Upwards in the air
Maximum height to which the ball rises = 6.25 m
A) The speed of the ball the instant it left the soccer player's foot
Solution:
The equation to use is; v² = v₀² + 2·[tex]a_y[/tex]·(y - y₀)
[tex]a_y[/tex] = The acceleration due to gravity ≈ -9.81 m/s²
At the maximum height, y - y₀ = 6.25 m
The velocity at the maximum height, v = 0
v₀ = The speed of the ball the instant it left the soccer player's foot
Which gives;
v² = v₀² + 2·[tex]a_y[/tex]·(y - y₀)
0 = v₀² - 2 × 9.81 × (6.25) = v₀² - 122.625
v₀² = 122.625
v₀ = √(122.625) ≈ 11.074
The ball's speed the instant it left the soccer player's foot, v₀ ≈ 11.074 m/s.
B) Required:
The time it takes the soccer ball to rise to the maximum height.
Solution:
The equation of motion required is v = v₀ + [tex]a_y[/tex]·t
At the maximum height, v = 0
v₀ ≈ 11.074 m/s
v = v₀ + [tex]a_y[/tex]·t
Which gives;
0 = 11.074 - 9.81 × t
[tex]t \approx \dfrac{11.074}{9.81} \approx 1.129[/tex]
The time it took the ball to rise to its maximum height, t ≈ 1.129 seconds
Learn more here:
https://brainly.com/question/24458315
PLEASE HELP!!!!
1. Suppose a planet orbits a star at the same distance
as Earth (1 AU) but with a period of roughly 200
Earth days. The mass of the central star is:
a. less than the mass of our sun.
b. the same as the mass of our sun.
c.greater than the mass of our sun.
d. impossible to determine without
knowing the mass of the planet.
Since the period of the supposed planet is less than the period of the earth orbiting the sun, That means the mass of the central star is greater than the mass of the sun. The answer is option C
According to Kepler's third law of planetary motion for planets and satellites, he described circular orbit about the same center body stating that:
The squared of the period is directly proportional to the cube of the radius. That is,
[tex]T^{2} \alpha r^{3}[/tex]
The orbital period formula is expressed as :
[tex]T^{2}[/tex] = 4[tex]\pi ^{2}[/tex] [tex]r^{3}[/tex] ÷ GM
Suppose a planet orbits a star at the same distance as Earth (1 AU) but with a period of roughly 200 Earth days. The mass of the central star will be greater than the mass of our sun based on the formula given above.
In a geostationary orbit, whatever the mass of the satellite may be, they will travel at the same speed in a particular orbit. mass M in the above formula becomes the mass of the sun or the center mass.
Since the period of the supposed planet is less than the period of the earth orbiting the sun, That means the mass of the central star is greater than the mass of the sun.
Therefore, the correct answer is option C
Learn more here: https://brainly.com/question/19680441
How does the force block A exerts on block B compare to the force block B exerts on block A?
Draw and label a force diagram for each block, using equality marks on the vectors.
By Newton's third law, we will see that the force that block A exerts on block B is equal in magnitude but in opposite direction than the force that block B exerts on block A.
Remember that Newton's third law says that whenever two objects interact, they exert equal and opposite forces on each other.
The force that block B exerts on block A is equal to block B's weight, which is:
[tex]W_b = 0.05kg*9.8m/s^2 = 0.49 N[/tex]
Then the force that block A exerts on block B is equal in magnitude but in opposite direction, thus it will be equal to:
F' = -0.49N
Then the diagram is the one that you can see below.
If you want to learn more, you can read:
https://brainly.com/question/13952508
Why is it important to try to use as many renewable resources as possible?
Answer:
It is important to use renewal resources because we use so many non- renewable resources that we may lose the ability to make a lot of things like gasoline or power for our cities.
define longitudinal wave
longitudinal wave, wave consisting of a periodic disturbance or vibration that takes place in the same direction as the advance of the wave. ... Sound moving through air also compresses and rarefies the gas in the direction of travel of the sound wave as they vibrate back and forth.
FORMULA
[tex]y(x,t) = y0 \: cos \: (w(t - \frac{x}{c} ))[/tex]y = displacement of the point on the traveling sound wave
x = distance the point has traveled from the wave's source
y_0 = amplitude of the oscillations
\omega = angular frequency of the wave
t = time elapsed
c = speed of the wave
A 100g mass is attached to a string that is 75 cm long. The mass is swung in a horizontal circle that goes around once every 0.80 seconds.
What is the centripetal acceleration of the mass?
What is the tension in the string?
Answer:
Centripetal acceleration = 46.26m/s2
Tension = 4.6N
Explanation:
Centripetal acceleration is given by the following formula: [tex]a_c = \frac{v^2}{r}[/tex]
So, to calculate acceleration we first need velocity and radius.
The radius is given to us as 75cm = 0.75m, and we can find velocity from the following formula:[tex]v=r\omega[/tex] where w = the angular velocity given by: [tex]\omega = \frac{2\pi}{T}[/tex]
We are given a period of 0.80s, meaning that our angular velocity is:
[tex]\frac{2\pi}{0.80} = 7.85 rad s^{-1}[/tex]
Now we just need to multiply is by the radius to find the velocity:
[tex]0.75*7.85=5.89ms^{-1}[/tex]
Finally we square the velocity and divide by the radius to find the final centripetal acceleration: [tex]\frac{5.89^{2} }{0.75} =46.26ms^{-2}[/tex]
[tex]F=\frac{mv^{2} }{r}[/tex] so we just need to multiply the centripetal acceleration by mass to get the tension force of the string: [tex]46.26*0.1 = 4.6N[/tex]
Hope this helped!
why is all motion relative
Explanation:
All motions are relative to some frame of reference. Saying that a body is at rest, which means that it is not in motion, merely means that it is being described with respect to a frame of reference that is moving together with the body
Answer:
Motion is always described in relation to a reference point.
Explanation:
For example, if a car is driving at the speed of 30 miles per hour and you are standing by the road, to you, the car appears to be moving 30 miles per hour down the road. However, if you were in a car also driving at 30 miles per hour next to the truck, the same truck wouldn't appear to move.
most of the waves in the electromagnetic spectrum are
Answer:
The entire electromagnetic spectrum, from the lowest to the highest frequency (longest to shortest wavelength), includes all radio waves (e.g., commercial radio and television, microwaves, radar), infrared radiation, visible light, ultraviolet radiation, X-rays, and gamma rays.
1. A truck is traveling at a speed of 12 km/s is going to school. It took 10 seconds to get to school. What was the distance?
Answer:
120km
Explanation:
To get speed you divide distance by time.
Consider the following arrangement with a frictionless/massless pulley. Determine the force F required to move block A if the coefficient of static friction between block A and the floor is 0.35 and the coefficient of static friction between block A and block B is 0.25
Answer: The free - body diagrams for blocks A and B. frictionless surface by a constant horizontal force F = 100 N. Find the tension in the cord between the 5 kg and 10 kg blocks. The string that attaches it to the block of mass M2 passes over a frictionless pulley of negligible mass. The coefficient of kinetic friction Hk between M.
Explanation: Hope this helped :)
I AM GIVING BRAINLIEST!!!
Drag the tiles to the correct boxes to complete the pairs.
Match the synthetic materials with the processes used to make them.
Answer:
Mixing metals - alloy
Mixing clay & sand - ceramic
Mixing oil & gas - polymer
Answer:
I hope this helps
Explanation:
The net force on an object moving with constant speed in circular motion is in which direction
Answer:
the net force is the same direction as the acceleration
Explanation:
so toward the center of the circle about which the object is constantly moving.
I CANT COUNT FOR MY LIFE
Answer:
Lol it was the last one
Explanation
something
Answer:
D
Explanation:
Just count the dots
Name three other objects around you now that are displaying a balanced force
Answer:
Examples of balanced forces
Resting against a wall.
Lying down.
Aircraft in a steady-flight.
Floating in water.
Standing in ground.
Tug of war equally balanced teams.
Fruit hanging from a tree.
Ball hanging from a rope.
Which part of the planet had the highest concentration of ozone in 1989?
Answer:
earth
sorry I need points but I don’t know the answer again I’m really sorry
Tommy, who has a mass of 30 kg, sits 4.0 meters from the center of a
merry-go-round that is rotating with a period of 10 seconds. What is the
centripetal force acting on Tommy?
Answer:
Fc= 47.363 N
Explanation:
First, you need tangential velocity because they don't give that to you in the problem.
So, the formula for tangential velocity is υ=2πr/t.
For this problem its v=2π4/10= 2.513 m/s
Then we plug this into our equation for centripetal force
Fc= 30*(2.513)^2/4=47.363 N
Fc=47.363 N
The centripetal force acting on Tommy is 47.36 N if Tommy, who has a mass of 30 kg, sits 4.0 meters from the center of a merry-go-round that is rotating for a period of 10 seconds.
What is mass?A tangible body's mass is the amount of matter it possesses. It's also a metric of inertia or the resistance to velocity when a net force is exerted.
It is given that:
Tommy, who has a mass of 30 kg, sits 4.0 meters from the center of a merry-go-round that is rotating for a period of 10 seconds.
As we know the formula for the centripetal force:
Fc = mv²/r
m = 30 kg
r = 4 meters
First, find the tangential velocity:
The formula for tangential velocity is:
v = 2πr/t
v = 2π4/10
v = 2.513 m/s
Plug the values in the formula:
Fc= 30(2.513)²/4
Fc = 47.36 N
Thus, the centripetal force acting on Tommy is 47.36 N if Tommy, who has a mass of 30 kg, sits 4.0 meters from the center of a merry-go-round that is rotating for a period of 10 seconds.
Learn more about the mass here:
https://brainly.com/question/15959704
#SPJ6
The sandbox of the previous exercises had 10kg of sand. It was initially at 15°C and the specific heat of this sand is 830 j/(kg°C). What will be the final temperature of the sand? (-8100J=|0kg)
Answer:
Sorry I need points [tex] \boxed{}[/tex]
See screen shot...momentum in collision
Please find attached photographs for your answer.
Hope it helps.
Do comment if you have any query.
How far did Michael Phelps swim, if he swam at a speed of 10m/s in 30 seconds?
Answer: his total speed would be 3 seconds
Explanation: because if you mulimply 10 x 3 you get 30 meaning that your answer would be 3
what is the formula of parallelogram method to work out the sum of two vectors
Answer:
The sum of vectors P and Q is given by the vector R, the resultant sum vector using the parallelogram law of vector addition. If the resultant vector R makes an angle ϕ with the vector P, then the formulas for its magnitude and direction are: |R| = √(P2 + Q2 + 2PQ cos θ) β = tan-1[(Q sin θ)/(P + Q cos θ)]
A 4,000-kg wrecking ball is hoisted 20 m above Earth's surface. What will the wrecking ball's gravitational potential energy be?
Answer:
784,000 JExplanation:
The gravitational potential energy of a body can be found by using the formula
GPE = mgh
where
m is the mass
h is the height
g is the acceleration due to gravity which is 9.8 m/s²
From the question we have
GPE = 4000 × 9.8 × 20 = 784,000
We have the final answer as
784,000 JHope this helps you
Who is most likely to be offered a higher auto loan rate based on their credit-
to-debt ratio?
A. Juan has $10,000 in credit and owes $6,000.
B. Chester has $5,000 in credit and owes $750
C. Jalissa has $5000 in credit and owes $500.
credjtar
D. Nancy has $10,000 in credit and owes $2,000.
SUBMIT
HELP ME PLEASE
Answer:
A - Juan
Explanation:
I took the test!
A 9.0V battery is connected across a 2.2kilo ohms and 6.8kilo omhs resistors connected in series. what is the potential differences across 2.2kilo ohms resistor.
Answer:
[tex]V_{2.2} =2.2V[/tex]
Fast and loose: that's a classic voltage divider. the drop from the i-th resistor is [tex]R_i \over {\sum R}[/tex] of the drop across the whole series. In our situation, it's [tex]2.2\cdot 10^3 \over {2.2\cdot10^3 + 6.8\cdot 10^3[/tex] of 9 V. By plugging numbers in a calculator, it's 22/90 of 9V, or 2.2V
With Ohm's Law
The series is equivalent of a single resistor of Resistance [tex]2.2\cdot 10^3+6.8\cdot 10^3 \Omega = 9.0 k\Omega[/tex]. By Ohm's first Law ([tex]V=Ri[/tex]) the current flowing through the resistor is [tex]9V = 9*10^3\Omega i \rightarrow i=1mA[/tex]. At this point, the drop across the first resistor is, again by Ohm's law[tex]V = 2.2 \cdot 10^3 \Omega \cdot 1\cdot 10^{-3} A = 2.2V[/tex]
Do Small objects exert no gravitational force ? True or false
Answer:
False -
F = G M1 M2 / R^2
So F depends on M1 and M2 and as long either is not zero there will be a gravitational force between them.
True or false: Only people that hold opinions of the group should get to express their opinion.
Answer:
true
Explanation:
this is fair to other people
this is about the magnet fields. thanks in advance.