Answer:
x=4
Step-by-step explanation:
[tex]\frac{16}{12}= \frac{6x}{5x-2}[/tex]
assuming that the triangles are similar, we can create this ratio of 16 or 12+4 to 6x and 12 to 5x-2
we can cross multiply to get 16(5x-2)=6x(12)
that leaves you with 80x-32=72x
we can then subtract 80x to both sides to get -32= -8x
solve by diving -8 from both sides which means that x=4
Answer:
[tex]this \: triangles \: are \: similar \: so \\ sides \: must \: be \: in \: a \: ratio \\ \frac{16}{12} = \frac{6x}{5x - 2} \\ \frac{4}{3} = \frac{6x}{5x - 2} \\ 4(5x - 2) = 3 \times 6x \\ 20x - 8 = 18x \\ x \: terms \: togather \\ 20x - 18x = 8 \\ 2x = 8 \\ x = \frac{8}{2} \\ x = 4 \\ thank \: you[/tex]
Instructions: State what additional information is required in order
to know that the triangles in the image below are congruent for the
reason given
Reasory. AAS Postulate
Answer:
YWX = DFE
Step-by-step explanation:
AAS means angle angle side. so, we need 2 angles and 1 side.
we have 1 side and one angle confirmed.
so, we need one of the other two angles (W or Y vs. F or D) confirmed.
they probably want W and F as answer, as Y and D would make it a special case of AAS : ASA.
Drag each factor to the correct location on the image.
If p(1) = 3, p(-4) = 8, p(5) = 0, p(7) = 9, p(-10) = 1, and p(-12) = 0,
P(x).
Answer:
(x-7) and (x+12) are the factors and the rest are non factors...
How is the series 6+13+20+...+111 represented in summation notation?
Notice that
6 + 7 = 13
13 + 7 = 20
so if the pattern continues, the underlying sequence in this series is arithmetic with first term a = 6 and difference d = 7. This means the k-th term in the sequence is
a + (k - 1) d = 6 + 7 (k - 1) = 7k - 1
The last term in the series is 111, which means the series consists of 16 terms, since
7k - 1 = 111 ==> 7k = 112 ==> k = 16
Then in summation notation, we have
[tex]\displaystyle 6+13+20+\cdots+111 = \boxed{\sum_{k=1}^{16}(7k-1)}[/tex]
The length of the shadow of a flagpole was found to be 72 feet. The shadow of a 3 foot picket fence in line with the flagpole was 4 feet. What is the height of the flagpole.
Answer:
54ft
Step-by-step explanation:
if 3foot is 4ft tall
then a shadow of 72 ft will be how tall?= x
4x =3ft by 72ft
4x= 216ft
x= 216/4
×=54
3.06 as. a fraction PLEASE HELP
Answer:
153/50
Step-by-step explanation:
3.06
Rewriting as
There are two numbers after the decimal so we put the number over 100
306/100
Divide top and bottom by 2
153/50
To write 3.06 as a fraction you have to write 3.06 as numerator and put 1 as the denominator. Now you multiply numerator and denominator by 10 as long as you get in numerator the whole number.
3.06 = 3.06/1 = 30.6/10 = 306/100
And finally we have:
3.06 as a fraction equals 306/100
there is a 400 meter track. tom rides a bike at the speeed of 450 meters/minute. mike runs at the speed of 250 meters/minute. if both of them set out at the same time and same place, how soon will they meet for the first time?
Answer: Distance: 2250
Step-by-step explanation:
Find GCF of 450 and 250
There are two machines available for cutting corks intended for use in wine bottles. The first produces corks with diameters that are normally distributed with mean 3 cm and standard deviation 0.10 cm. The second machine produces corks with diameters that have a normal distribution with mean 3.04 cm and standard deviation 0.04 cm. Acceptable corks have diameters between 2.9 cm and 3.1 cm. What is the probability that the first machine produces an acceptable cork
Answer:
0.6827
Step-by-step explanation:
Given that :
Mean, μ = 3
Standard deviation, σ = 0.1
To produce an acceptable cork. :
P(2.9 < X < 3.1)
Recall :
Z = (x - μ) / σ
P(2.9 < X < 3.1) = P[((2.9 - 3) / 0.1) < Z < ((3.1 - 3) / 0.1)]
P(2.9 < X < 3.1) = P(-1 < Z < 1)
Using a normal distribution calculator, we obtain the probability to the right of the distribution :
P(2.9 < X < 3.1) = P(1 < Z < - 1) = 0.8413 - 0.1587 = 0.6827
Hence, the probability that the first machine produces an acceptable cork is 0.6827
Naomi invested $3,425 in an account that
pays 3% simple interest. what was the total
balance of the account after 15 years?
Answer:
$4,966.25
Step-by-step explanation:
3 x 15 = 45
After 15 years, Naomi would have earned a total of 45% interest rate.
3,425 x 1.45 = 4,966.25
Don't use .45 as the multiplier
3,425 x .45 = 1,541.25 <- incorrect
-5 + 3 and also what is 1/4 of 24
What is the answer i am struggling
Answer:
-5+3=-2
1/4 of 24 = 6
Step-by-step explanation:
Solve triangles: angle bisector theorem
DAC = BAD.
What is the length of CD?
Round to one decimal place.
Answer:
Step-by-step explanation:
CD/6.5 = 2.6/4.9 This is the result of the angle bisector theorem.
The theorem basically says that the side opposite the angle being bisected is divided the ratio of the sides enclosing the angle.
Multiply both sides of the proportion by 6.5
CD = 2.6 * 6.5 / 4.9
CD = 3.4489
CD = 3.4 rounded.
Evaluate:
[tex]{ \int \limits^\pi_{ \frac{1}{4}\pi}{ {e {}^{2 \sigma} (\sqrt{1 - { \sigma}^{2} } ) d \sigma}}}[/tex]
Answer:
hope this answer helps.
Add :-
a+2b-3c, -3a+b+2cand 2a -3b+c
Answer:
[tex]a + 2b -3 c + - 3a + b + 2c + 2a - 3b + c \\ = a - 3a + 2a + 2b + b - 3b - 3c + 2c + c \\ 0a + 0b + 0c \\ thank \: you[/tex]
a+2b-3c+(-3a+b+2c) +(2a-3b+c)
=a+2b-3c-3a+b+2c+2a-3b+c
=a-3a+2b+2b+b-3b-3c++2b+c
=0a+0b+0c
=0
Therefore, the addition of the expressions, a+2b-3c+(-3a+b+2c) +(2a-3b+c) is zero or 0.
To know more about algebraic expressions
https://brainly.com/question/28307605
PLEASEE HELP ME ASAPPP (geometry)
Answer:AE=EC và BF=FC => EF là đường trung bình của tam giác ABC
=> EF // và bằng 1/2 AB
=> AB = 16
Step-by-step explanation:
Answer:
AB=16
Step-by-step explanation:
Midsegment Theorem states that the segment connecting the midpoints of two sides of a triangle is parallel to the third side and half as long.
The mid-segment of a triangle, which joins the midpoints of two sides of a triangle, is parallel to the third side of the triangle and half the length of that third side of the triangle.
AD=DB
AD+DB=AB=2EF
AB=2×8=16
I need help Plz help
The average mileage per gallon for cars built since 1940 approximates to the following curve 0.0075*t^2-.2672*t+14.8 where t is year -1940.
Answer the following questions:
What is the expected MPG in 2025?
How about 2050?
Is this a valid function?
Is there a top end to MPG?
9514 1404 393
Answer:
46.3 in 202576.2 in 2050Step-by-step explanation:
The attached shows the predicted mileage for cars built in 2025 to be 46.3 mpg, 76.2 mpg for cars built in 2050.
__
No doubt, the function is valid over the time period used to derive it. It may or may not be valid for predicting MPG beyond that period.
Virtually any function that predicts future increases without bound will turn out to be unreliable at some point. In this universe, there are always limits to growth.
What is the value of x?
Answer:
x=30°
hopefully this answer can help you to answer the next question
A toddler is allowed to dress himself on Mondays, Wednesdays, and Fridays. For each of his shirt, pants, and shoes, he is equally likely to put it on correctly as incorrectly. Getting these articles of clothing on correctly are independent of each other. On the other days, the mother dresses the toddler with 100% accuracy. Given that the toddler is correctly dressed, what is the probability that today is Monday
Answer:
0.0286 = 2.86% probability that today is Monday.
Step-by-step explanation:
Conditional Probability
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
In this question:
Event A: Dressed correctly
Event B: Monday
Probability of being dressed correctly:
100% = 1 out of 4/7(mom dresses).
(0.5)^3 = 0.125 out of 3/7(toddler dresses himself). So
[tex]P(A) = 0.125\frac{3}{7} + \frac{4}{7} = \frac{0.125*3 + 4}{7} = \frac{4.375}{7} = 0.625[/tex]
Probability of being dressed correctly and being Monday:
The toddler dresses himself on Monday, so (0.5)^3 = 0.125 probability of him being dressed correctly, 1/7 probability of being Monday, so:
[tex]P(A \cap B) = 0.125\frac{1}{7} = 0.0179[/tex]
What is the probability that today is Monday?
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.0179}{0.625} = 0.0286[/tex]
0.0286 = 2.86% probability that today is Monday.
QUESTION 3.1 POINT
An investment pays 25% interest compounded monthly. What percent, as a decimal, is the effective annual yied? Enter your
answer as a decimal rounded to four decimal places.
9514 1404 393
Answer:
0.2807
Step-by-step explanation:
The relationship between the effective annual yield (e) and the nominal annual interest rate (r) compounded n times per year is ...
e = (1 +r/n)^n -1
e = (1 +0.25/12)^12 -1 = 0.2807 . . . . . . about 28.07%
4. Manuel swims at a speed of 1 yard per second. How many feet per minute does he swim?
Answer:
180 Feet Per Minute
Step-by-step explanation:
Please mark me as brainliest and rate 5 stars!
If the lengths of the legs of a right triangle are 5 and 12, what is the length of the hypotenuse?
Answer:
13
Step-by-step explanation:
If we have a right triangle, we can use the Pythagorean theorem to find the hypotenuse
a^2+b^2 = c^2 where a and b are the legs and c is the hypotenuse
5^2 + 12^2 = c^2
25+144= c^2
169 = c^2
Take the square root of each side
sqrt(169) = sqrt(c^2)
13= c
Answer:
The length of the hypotenuse is 13.
Step-by-step explanation:
[tex]a^{2}[/tex] = [tex]b^2 + c^2[/tex]
[tex]a^2 = 12^2 + 5^2[/tex]
[tex]a^2 = 144 + 25[/tex]
[tex]a^2 = 169[/tex]
a=[tex]\sqrt{169}[/tex]
a= 13
Here we use the idea of the Pythagoras' theorem. Which suggests that [tex]a^{2}[/tex] = [tex]b^2 + c^2[/tex] in which [tex]a^{2}[/tex] is the hypotenuse of the triangle and [tex]b^2[/tex] and [tex]c^{2}[/tex] are the two other lengths of the triangle.
HOPE THIS HELPED
Samantha bought m candies at the store. There are n candies in a pound, and each pound costs c dollars. Write an expression for how much Samantha paid.
Answer:
total = m/n * c
m/n gives u the number of pounds u have bought, multplied by the cost of the candies per pound gives u the total amount of money she paid
Question 3 of 10
What is the value of p?
V140
140°
90-
A. 50°
ООО
B. 90°
C. 60°
D. 40°
Answer:
A. 50º
Step-by-step explanation:
we are given the exterior angles 140º and 90º
exterior angles + corresponding interior angles = 180º
that means the two other angles of the triangle are:
180 - 140 = 40º
and
180 - 90 = 90º
the sum of interior angles in a triangle = 180
p = 180 - (40 + 90)
p = 180 - 130
p = 50º
1->dương vô cùng 1/x*(9+lnx^2)dx
It looks like you are trying to compute the improper integral,
[tex]I = \displaystyle\int_1^\infty \dfrac{\mathrm dx}{x(9+\ln^2(x))}[/tex]
or some flavor of this. If this interpretation is correct, substitute u = ln(x) and du = dx/x. Then
[tex]I = \displaystyle\int_0^\infty \dfrac{\mathrm du}{9+u^2} \\\\ = \frac13\arctan\left(\frac u3\right)\bigg|_{u=0}^{u\to\infty} \\\\ = \frac13\lim_{u\to\infty}\arctan\left(\frac u3\right) \\\\ = \frac13\times\frac\pi2 = \boxed{\frac\pi6}[/tex]
A ball is thrown from an initial height of
1 meter with an initial upward velocity of
1 m/s. The ball's height h
(in meters) after t
seconds is given by the following. h=1+30t-5t^2
Find all values of t
for which the ball's height is 11
meters.
Round your answer(s) to the nearest hundredth.
Answer:
Step-by-step explanation:
If we are looking for the times that the ball was 11 meters off the ground, we sub in 11 for the height on the left and solve for t:
[tex]11=-5t^2+30t+1[/tex] and
[tex]0=-5t^2+30t-10[/tex] and factor this however it is you are factoring in class to solve for t to get
t = .35 seconds and t = 5.6 seconds
Because the ball reaches this point in its way up and then passes it again on its way down, the ball will have 2 times at this height.
PLS HELP QUICK IM BEGGINGGGG!!!!! PLEASE HELP ME!!
The following box plot represents the heights of the students in Mr. Taylor's fourth grade math class.
In a complete sentence, answer the following question:
One of the values in this data set is 138. In this box plot, what does this value mean?
Answer:
The value 138 means that this height (138cm) is less than the average height of a 4th grader.
Answer: No credit wanted
Step-by-step explanation:
The other guy is completely right.
I will give brainliest if you answer properly.
Answer:
See below
Step-by-step explanation:
a)
[tex]2\sin(x) +\sqrt{3} =0 \implies 2\sin(x)=-\sqrt{3} \implies \boxed{\sin(x)=-\dfrac{\sqrt{3}}{2} }[/tex]
[tex]\therefore x=\dfrac{4\pi }{3}[/tex]
But note, as sine does represent the [tex]y[/tex] value, [tex]\dfrac{5\pi }{3}[/tex] is also solution
Therefore,
[tex]x=\dfrac{4\pi }{3} \text{ and } x=\dfrac{5\pi }{3}[/tex]
This is the solution for [tex]x\in[0, 2\pi ][/tex], recall the unit circle.
Note: [tex]\sin(x)=-\dfrac{\sqrt{3}}{2} \implies \sin(x)=\sin \left(\pi +\dfrac{\pi }{3} \right)[/tex]
b)
[tex]\sqrt{3} \tan(x) + 1 =0 \implies \tan(x) = -\dfrac{1}{\sqrt{3} } \implies \boxed{ \tan(x) = -\dfrac{\sqrt{3} }{3} }[/tex]
Once
[tex]\tan(x) = -\dfrac{\sqrt{3} }{3} \implies \sin(x) = -\dfrac{1}{2} \text{ and } \cos(x) = \dfrac{\sqrt{3} }{2}[/tex]
As [tex]\tan(x) = \dfrac{\sin(x)}{\cos(x)}[/tex]
[tex]\therefore x=-\dfrac{\pi }{6}[/tex]
c)
[tex]4\sin^2(x) - 1 = 0 \implies \sin^2(x) = \dfrac{1}{4} \implies \boxed{\sin(x) = \pm \dfrac{\sqrt{1} }{\sqrt{4} } = \pm \dfrac{1}{2}}[/tex]
Therefore,
[tex]\sin(x)=\dfrac{1}{2} \implies x=\dfrac{\pi }{6} \text{ and } x=\dfrac{5\pi }{6}[/tex]
[tex]\sin(x)=-\dfrac{1}{2} \implies x=\dfrac{7\pi }{6} \text{ and } x=\dfrac{11\pi }{6}[/tex]
The solutions are
[tex]x=\dfrac{\pi }{6} \text{ and } x=\dfrac{5\pi }{6} \text{ and }x=\dfrac{7\pi }{6} \text{ and } x=\dfrac{11\pi }{6}[/tex]
The resistors produced by a manufacturer are required to have an average resistance of 0.150 ohms. Statistical analysis of the output suggests that the resistances can be approximated by a normal distribution with known standard deviation of 0.005 ohms. We are interested in testing the hypothesis that the resistors conform to the specifications.
Requied:
a. Determine whether a random sample of 10 resistors yielding a sample mean of 0.152 ohms indicates that the resistors are conforming. Use alpha = 0.05.
b. Calculate a 95% confidence interval for the average resistance. How does this interval relate to your solution of part (a)?
Answer:
a) The p-value of the test is 0.2076 > 0.05, which means that the sample indicates that the resistors are conforming.
b) The 95% confidence interval for the average resistance is (0.147, 0.153). 0.152 is part of the confidence interval, which means that as the test statistic in item a), it indicates that the resistors are conforming.
Step-by-step explanation:
Question a:
The resistors produced by a manufacturer are required to have an average resistance of 0.150 ohms.
At the null hypothesis, we test if this is the average resistance, that is:
[tex]H_0: \mu = 0.15[/tex]
We are interested in testing the hypothesis that the resistors conform to the specifications.
At the alternative hypothesis, we test if it is not conforming, that is, the mean is different of 0.15, so:
[tex]H_1: \mu \neq 0.15[/tex]
The test statistic is:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, [tex]\sigma[/tex] is the standard deviation and n is the size of the sample.
0.15 is tested at the null hypothesis:
This means that [tex]\mu = 0.15[/tex]
Sample mean of 0.152, sample of 10, population standard deviation of 0.005.
This means that [tex]X = 0.152, n = 10, \sigma = 0.005[/tex]
Value of the test statistic:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]z = \frac{0.152 - 0.15}{\frac{0.005}{\sqrt{10}}}[/tex]
[tex]z = 1.26[/tex]
P-value of the test and decision:
The p-value of the test is the probability of the sample mean differing from 0.15 by at least 0.152 - 0.15 = 0.002, which is P(|z| > 1.26), given by two multiplied by the p-value of z = -1.26.
Looking at the z-table, z = -1.26 has a p-value of 0.1038.
2*0.1038 = 0.2076
The p-value of the test is 0.2076 > 0.05, which means that the sample indicates that the resistors are conforming.
Question b:
We have to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.95}{2} = 0.025[/tex]
Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].
That is z with a p-value of [tex]1 - 0.025 = 0.975[/tex], so Z = 1.96.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
[tex]M = 1.96\frac{0.005}{\sqrt{10}} = 0.003[/tex]
The lower end of the interval is the sample mean subtracted by M. So it is 0.15 - 0.003 = 0.147.
The upper end of the interval is the sample mean added to M. So it is 0.15 + 0.003 = 0.153.
The 95% confidence interval for the average resistance is (0.147, 0.153). 0.152 is part of the confidence interval, which means that as the test statistic in item a), it indicates that the resistors are conforming.
Part E
1e. Subtract the binomial 12y2 – 4y3 from the trinomial 7y - 2y3 + 5y2
Answer:
2y^3-7y^2+7y
Step-by-step explanation:
7y - 2y^3 + 5y^2 - ( 12y^2 – 4y^3)
Distribute the minus sign
7y - 2y^3 + 5y^2 - 12y^2 + 4y^3
Combine like terms
2y^3-7y^2+7y
5 less than three times a number is 37 what is the number
Answer:
x = 14
General Formulas and Concepts:
Pre-Algebra
Equality Properties
Multiplication Property of Equality Division Property of Equality Addition Property of Equality Subtraction Property of EqualityStep-by-step explanation:
Step 1: Define
Identify
3x - 5 = 37
Step 2: Solve for x
[Addition Property of Equality] Add 5 on both sides: 3x = 42[Division Property of Equality] Divide 3 on both sides: x = 14Use the tables to answer the question.
How can you determine which store offers a better price on guitar lessons?
A. You cannot determine this from the information given.
B. Compare the most expensive price from each store’s table.
C. Compare the least expensive price from each store’s table.
D. Find the cost of 1 week of guitar lessons for each store and compare.
Answer:
D. Find the cost of 1 week of guitar lessons for each store and compare.
Step-by-step explanation:
Find the cost for 1 week of guitar lessons by finding the slope of the data.
[tex]\frac{y_2-y_1}{x_2-x_1}\\\\ A.)\frac{132-66}{6-3}=\frac{66}{3}=22\\\\ B.)\frac{168-84}{8-4}=\frac{84}{4}=21[/tex]
Therefore, Store B would be the best choice.