Answer:
The volume of a solid hemisphere with radius r is given by the formula:
V = (2/3)πr^3
In this case, the radius of the hemisphere is 2 cm. Substituting this value into the formula, we get:
V = (2/3)π(2 cm)^3
V = (2/3)π(8 cm^3)
V = (16/3)π cm^3
Therefore, the volume of the solid hemisphere is (16/3)π cubic centimeters.
Answer:
(16/3)π cm³ ≈ 16.76 cm³ (nearest hundredth)
Step-by-step explanation:
The volume of a solid hemisphere is given by the formula:
[tex]\boxed{V = \dfrac{2}{3}\pi r^3}[/tex]
where r is the radius of the hemisphere.
Substitute the given radius, r = 2 cm, into the formula, and solve for V:
[tex]\begin{aligned}\implies V &= \dfrac{2}{3}\pi(2)^3\\\\&= \dfrac{2}{3}\pi \cdot 8\\\\&= \dfrac{16}{3}\pi\; \sf cm^3\end{aligned}[/tex]
Therefore, the volume of the solid hemisphere of radius 2 cm is (16/3)π cm³ or approximately 16.76 cm³ (nearest hundredth).
Who ever helps me, Get 100 points
Step-by-step explanation:
a) Area=144m²
side²= 144
side=12m
b) perimeter=32m
4×side=32
side=32/4
side=8m
I need help on this question(PLEASEEEE)
Answer:
Yes, No, No.
Explanation:
For the first system of equations, we substitute x=2 and y=1 into each equation and we see that both are satisfied. So (2, 1) is a solution for this system.For the second system of equations, substituting x=2 and y=1 into each equation, we get 1=-3 and 1=-2, which are not true, so (2, 1) is not a solution for this system.For the third system of equations, substituting x=2 and y=1 into each equation, we get -3=-2 and 1=-3, which are not true, so (2, 1) is not a solution for this system.
Answer:
Place an X for the first box as [Yes], [No], [No]
Step-by-step explanation:
When we enter x=2 and y=1 into the first system of equations, we can see that both conditions are met. Thus the answer to this system is (2, 1).
When x=2 and y=1 are substituted into the second system of equations, we obtain 1=-3 and 1=-2, which are false, and so (2, 1) is not a solution for this system.
When x=2 and y=1 are substituted into the third system of equations, the results are -3=-2 and 1=-3, which are false, hence (2, 1) is not a solution for this system.
find the area of a quadrilateral ABCD in each case.
The area of the quadrilateral ABCD for this case is of 4 square units.
How to obtain the area of the quadrilateral ABCD?The quadrilateral ABCD in the context of this problem represents a diamond, hence it's area is given by half the product of the diagonal lengths of the diamond.
The lengths for each diagonal of the diamond are given as follows:
Diagonal AC = 2 - 0 = 2.Diagonal BD = 4 - 0 = 4.The product of the diagonal lengths is given as follows:
AC x BD = 2 x 4 = 8 square units.
Hence half the product of these diagonal lengths, representing the area of the quadrilateral, is given as follows:
0.5 x 8 square units = 4 square units.
More can be learned about the area of a quadrilateral at https://brainly.com/question/14305742
#SPJ1
To celebrate Halloween, Florence's class is making candy necklaces. Florence is helping pass out string from a 50-yard-spool. She gives 30 inches of string to each student. If there are 24 students in her class, how many yards of string will be leftover?
There will be 30 yards of the string that will be leftover.
What are Arithmetic operations?
It is a field of mathematics that deals with the study of numbers and the operations on those numbers that are relevant to all other areas of mathematics. The basic operations included in it are addition, subtraction, multiplication, and division. The term "arithmetic operator" refers to the operator that does the calculation.
Given that,
Total Length of string = 50 yards.
The total number of students = 24.
Total used string = 24 × 30 = 720.
We know that 1 foot = 12 inches,
So, 150 feet = 1800 inches.
Therefore, yards of string leftover = (1800 - 720)/36
= 1080/36
= 30 yards.
Hence, there will be 30 yards of string that will be leftover.
To learn more about arithemetic operations, refer to:
https://brainly.com/question/25834626
#SPJ4
Our class is planning to paint a rectangular mural with an area of 60 square feet, it has to be at least 4 feet high but no more than 6 feet the length and width have to be hold numbers list of possible width for the
The possible widths for the rectangular mural are between 10 and 15 feet. We can also list the number of possible widths within this range, which is six. They are 10 feet, 11 feet, 12 feet, 13 feet, 14 feet, and 15 feet.
To determine the possible widths for the rectangular mural with an area of 60 square feet, we can use the formula for the area of a rectangle, which is length multiplied by width. Since the area is given as 60 square feet and the length should be between 4 and 6 feet, we can set up inequality as follows:
4w ≤ 60 ≤ 6w
where w is the width of the mural in feet. Solving this inequality for w, we get:
10 ≤ w ≤ 15
It is important to consider the dimensions carefully to ensure that the mural meets the requirements and fits in the desired space. By having multiple possible widths, the class can select the most suitable one based on the available resources and space.
To learn more about rectangular murals
https://brainly.com/question/27846716
#SPJ4
Complete question:
Our class is planning to paint a rectangular mural with an area of 60 square feet, it should be at least 4 feet high but not more than 6 feet in length and width, and list a number of possible widths for our class. Planning to paint a rectangular mural with an area of 60 square feet, it should be at least 4 feet high but not more than 6 feet in length and width, and list the number of possible widths for it.
Line A has a gradient of -5. Line B is perpendicular to line A. a) What are the coordinates of the y-intercept of line B? b) What is the equation of line B? S Give your answer in the form y where m and c are integers or fractions written in their simplest form. mx + c,
The equation of line B is y = (1/5)x + 0, which can be simplified to y = (1/5)x.
What is equation?An equation is a statement that shows the equality between two expressions. It typically contains one or more variables and may involve mathematical operations such as addition, subtraction, multiplication, division, exponentiation, or roots. An equation can be solved by finding the value(s) of the variable(s) that make the equation true. Equations are used extensively in mathematics, science, engineering, and other fields to describe relationships between different quantities and to make predictions or solve problems.
Here,
Since line B is perpendicular to line A, the product of their gradients is -1. Therefore, the gradient of line B is 1/5.
a) To find the y-intercept of line B, we need to know a point on the line. Since we don't have one, we can use the fact that the y-intercept is the point where the line intersects the y-axis. To find this point, we can set x = 0 in the equation of line B:
y = (1/5)x + c
0 = (1/5)(0) + c
c = 0
Therefore, the y-intercept of line B is (0,0).
b) The equation of line B is y = (1/5)x + 0, which can be simplified to y = (1/5)x.
To know more about equation,
https://brainly.com/question/2228446
#SPJ1
help, please!
how do i complete the cumulative frequency table?
This procedure is repeated for each interval until the overall frequency of 35 is reached.
what is frequency distribution?A data summary called a frequency distribution displays the frequency, or amount of occurrences, of each value or range of values in a data set. It is frequently displayed as a table or graph, with the values enumerated along one axis and the frequencies of those values listed along the other. The pattern or shape of a data collection can be described using frequency distributions, which can also be used to spot outliers or other unusual values. They can also shed light on the data's central trend and variability.
given
To complete a cumulative frequency table:
Class interval Frequency Cumulative frequency
0-10 5 5
10-20 8 13
20-30 12 25
30-40 7 32
40-50 3 35
Total 35 35
The number of the first class interval is 5.
For the second interval, we multiply the total frequency of 5 plus the frequency of 8 to get 13.
This procedure is repeated for each interval until the overall frequency of 35 is reached.
To know more about frequency distribution visit:
https://brainly.com/question/14926605
#SPJ1
The missing value in the cumulative table is 36.
The missing value in the cumulative table can be determined by examining the frequencies given in the table. Let's analyze the frequencies step by step:
1. The frequency for scores less than 145 is given as 16.
2. The frequency for scores less than 150 is given as 26.
3. The frequency for scores less than 155 is given as 36.
4. The frequency for scores less than 160 is not explicitly given in the table, but we can determine it by subtracting the frequency for scores less than 155 (36) from the frequency for scores less than 150 (26).
This gives us a value of [tex]26 - 36 = -10.[/tex]
Since a frequency cannot be negative, we can conclude that there is an error in the given table. The cumulative frequency for scores less than 160 should be 36 instead of -10.
Learn more about cumulative table:
https://brainly.com/question/31126348
#SPJ11
What is the gradient of the line segment between the points 2,4 and 4,6
Answer:
1
Step-by-step explanation:
Given values are:
x1 y1=(2,4)
x2 y2=( 4,6)
slop=(6-4)divide (4-2)=1
brainest please
thanks
find the smallest positive integer $n$ so that \[\renewcommand{\arraystretch}{1.5} \begin{pmatrix} -\frac{\sqrt{2}}{2}
The smallest positive integer n so that,
$$\renewcommand{\arraystretch}{1.5} \begin{pmatrix} -\frac{\sqrt{2}}{2} \frac{1}{n} \\ \frac{\sqrt{2}}{2} \frac{1}{n} \end{pmatrix}$$is a column matrix that contains integers,
we can write it as follows. $$\begin{pmatrix} -\frac{\sqrt{2}}{2} \frac{1}{n} \\ \frac{\sqrt{2}}{2} \frac{1}{n} \end{pmatrix} = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \frac{1}{n}.$$Since n has to be an integer, we have to find the smallest positive integer n for which the right-hand side is a column matrix containing integers. Since the left-hand side has a factor of 1/n, we can see that the smallest value of n must be a divisor of the denominator of the left-hand side. The denominator of the left-hand side is $\sqrt{2}/2$. If we multiply this by 100, we get 70.710678.
Therefore, the smallest positive integer n that satisfies the equation is the smallest divisor of 70.710678. This is 2, and it gives us the column matrix $$\begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}.$$Therefore, the smallest positive integer n is 2.
for such more questions on integers
https://brainly.com/question/929808
#SPJ11
Put these numbers in order, from least to greatest. If you get stuck, consider using the number line. 3.5, -1, 4.8, -1.5, -0.5, -4.2, 0.5, -2.1, -3.5
The numbers are as follows, going from lowest to highest:
-4.2, -3.5, -2.1, -1.5, -1, -0.5, 0.5, 3.5, 4.8.
How are numbers on a number line determined?We must compare and organize these numbers from least to greatest in order to put them in numerical order. The two smallest figures, which are -4.2 and -3.5, can be used as a starting point. Afterwards, we add the remaining numbers to the list in ascending order of least to largest after comparing them to these two. We arrive at the list above after continuing this approach.
Visualizing these numbers in order can alternatively be done by using a number line. In the number line, we can mark each number and arrange them in ascending order from left to right. We can see from the number line that the least number is -4.2.
Learn more about number line here:
brainly.com/question/16191404
#SPJ1
The average mass of six people is 58kg. The lightest person has a body mass of 43kg. What is the average mass of the other 5 people.
Answer: 61 kg
Step-by-step explanation:
To find the average mass of the other 5 people, we need to subtract the mass of the lightest person from the total mass of all six people and then divide by 5 (since we're looking for the average of the other 5 people). Here are the steps:
Find the total mass of all six people:
To find the total mass of all six people, we can multiply the average mass by 6:
Total mass of all six people = 58 kg/person x 6 people = 348 kg
Subtract the mass of the lightest person:
We need to subtract the mass of the lightest person (43 kg) from the total mass of all six people:
Total mass of the other 5 people = Total mass of all six people - Mass of the lightest person
Total mass of the other 5 people = 348 kg - 43 kg = 305 kg
Find the average mass of the other 5 people:
Finally, we divide the total mass of the other 5 people by 5 to find the average mass:
Average mass of the other 5 people = Total mass of the other 5 people / 5
Average mass of the other 5 people = 305 kg / 5 = 61 kg
Therefore, the average mass of the other 5 people is 61 kg.
Use the equation, 8^2x = 32^x+3, to complete the following problems.
(a) Rewrite the equation using the same base.
(b) Solve for x. Write your answer in simplest form.
Given: ,8^2x= 32^x+3
a: (2³)^2x = (2⁵)^x+3
b: Solving, we get
2^6x = 2^5x+15
Since bases are same, we have
=>6x=5x+15
=> x = 15
use the ka values for weak acids to identify the best components for preparing buffer solutions with the given ph values. name formula ka phosphoric acid h3po4 7.5 x 10-3 acetic acid ch3cooh 1.8 x 10-5 formic acid hcooh 1.8 x 10-4
To prepare a buffer solution with a given pH, we need to choose a weak acid and its conjugate base, such that the pKa of the weak acid is close to the desired pH.
The pKa is related to the Ka value as follows:
pKa = -log(Ka)
So, for each of the weak acids given, we can calculate the pKa:
Phosphoric acid (H3PO4): Ka = 7.5 x 10^-3, so pKa = -log(7.5 x 10^-3) = 2.12
Acetic acid (CH3COOH): Ka = 1.8 x 10^-5, so pKa = -log(1.8 x 10^-5) = 4.74
Formic acid (HCOOH): Ka = 1.8 x 10^-4, so pKa = -log(1.8 x 10^-4) = 3.74
Now, let's consider the desired pH values and choose the best components for buffer solutions:
For a pH of 2.5, the best choice would be phosphoric acid (pKa = 2.12).
For a pH of 4.5, the best choice would be formic acid (pKa = 3.74) or a mixture of acetic acid and acetate ion (CH3COOH/CH3COO-, pKa = 4.76).
For a pH of 6.5, the best choice would be a mixture of acetic acid and acetate ion (CH3COOH/CH3COO-, pKa = 4.76).
Note that a buffer solution can be prepared by mixing a weak acid and its conjugate base in roughly equal amounts, so the appropriate salt can be added to the acid to form the buffer solution. For example, to prepare an acetate buffer, one could mix acetic acid with sodium acetate.
Learn more about buffer solutions visit:
https://brainly.com/question/13169083
#SPJ11
Suppose you roll a special 37-sided die. What is the probability that one of the following numbers is rolled? 35 | 25 | 33 | 9 | 19 Probability = (Round to 4 decimal places) License Points possible: 1 This is attempt 1 of 2.
Answer:
5/37
Step-by-step explanation:
There are 37 possible outcomes when rolling a 37-sided die, so the probability of rolling any one specific number is 1/37.
To find the probability of rolling any of the given numbers (35, 25, 33, 9, or 19), we need to add the probabilities of rolling each individual number.
Probability of rolling 35: 1/37
Probability of rolling 25: 1/37
Probability of rolling 33: 1/37
Probability of rolling 9: 1/37
Probability of rolling 19: 1/37
The probability of rolling any one of these numbers is the sum of these probabilities:
1/37 + 1/37 + 1/37 + 1/37 + 1/37 = 5/37
So the probability of rolling any of the given numbers is 5/37, which is approximately 0.1351 when rounded to four decimal places.
Write a quadratic function in standard form that passes through the points (-8,0), (-5,-3), and (-2,0)
A quadratic function in standard form that passes through the points (-8,0), (-5,-3), and (-2,0) is equals to the f(x) = (1/3)( x² + 10x + 16).
A quadratic function is a polynomial function with one or more variables, the highest degree of the variable is two. It is also called the polynomial of degree 2. The form of quadratic function is
f(x) = ax² + bx + c ----(1)
is determined by three points and must be a≠ 0. That is for determining the f(x) we have to determine value of three values a, b, and c. Now, we have three ordered pairs (-8,0), (-5,-3), and (-2,0) and we have to determine quadratic function passing through these points. So, firstly, plug the coordinates of point ( -8,0), x = -8, y = f(x) = 0 in equation (1),
=> 0 = a(-8)² + b(-8) + c
=> 64a - 8b + c = 0 --(2)
Similarly, for second point ( -5,-3) , f(x) = -3, x = -5
=> - 3 = a(-5)² + (-5)b + c
=> 25a - 5b + c = -3 --(3)
Continue for third point (-2,0)
=> 0 = a(-2)² + b(-2) + c
=> 4a -2b + c = 0 --(4)
So, we have three equations and three values to determine.
Subtract equation (4) from (2)
=> 64 a - 8b + c - 4a + 2b -c = 0
=> 60a - 6b = 0
=> 10a - b = 0 --(5)
subtract equation (4) from (3)
=> 21a - 3b = -3 --(6)
from equation (4) and (5),
=> 3( 10a - b) - 21a + 3b = -(- 3)
=> 30a - 3b - 21a + 3b = 3
=> 9a = 3
=> a = 1/3
from (5) , b = 10a = 10/3
from (4), c = 2b - 4a = 20/3 - 4/3 = 16/3
So, f(x)= (1/3)( x² + 10x + 16)
Hence, required values are 1/3, 10/3, and 16/3.
For more information about quadratic function, visit :
https://brainly.com/question/25841119
#SPJ4
Is this a compound?
First, Gabriel planted the geraniums in a clay pot, and then he placed the pot on a sunny windowsill in his kitchen
A. YES
B. NO
Answer:
yes it is right now you can write it
Josiah kept track of how many songs of each genre were played in an hour from his MP3 player. The counts are displayed in the table below. He has a total of 1,500 songs on his player. Josiah predicted the number of rock songs on his MP3 player to be 300 songs. Which statements about his solution are true? Select three choices. Josiah’s Music Sample 1 Sample 2 R & B 5 R & B 4 Pop 4 Pop 3 Classical 3 Classical 5 Jazz 2 Jazz 4 Rock 6 Rock 4 Josiah’s work: StartFraction 10 over 20 EndFraction = StartFraction x over 1,500 EndFraction. StartFraction 10 times 30 over 20 times 30 EndFraction = StartFraction x over 1,500 EndFraction. 300 = x. He should have found the average of the number of rock songs by averaging 4 and 6 to get 5. He did not multiply the numerator and denominator by the correct number to equal 1,500. His answer will be one-half of what he got because he did not divide 10 by 2 when setting up the proportion. He can only solve the proportion by multiplying the numerator and denominator by a common multiple. He should have multiplied the numerator and denominator by 75, not 30, because 20 times 75 = 1,500
Answer:
The following statements about Josiah's solution are true:
He found the proportion of rock songs to the total number of songs correctly: StartFraction 10 over 20 EndFraction = StartFraction x over 1,500 EndFraction.
He solved the proportion correctly: StartFraction 10 times 30 over 20 times 30 EndFraction = StartFraction x over 1,500 EndFraction.
He correctly determined that the number of rock songs on his MP3 player is 300 (x = 300).
Therefore, the statements that are true are:
He found the proportion of rock songs to the total number of songs correctly.
He solved the proportion correctly.
He correctly determined that the number of rock songs on his MP3 player is 300 (x = 300).
Tiana has a new beaded necklace. The necklace has 3 blue beads and 17 white beads. What percentage of the beads on Tiana's necklace are blue?
Therefore, 15% of the beads on Tiana's necklace are blue.
What is percentage?Percentage is a way of expressing a fraction or a proportion out of 100. It is denoted by the symbol "%". For example, if we say that 50% of the students in a class are girls, it means that 50 out of every 100 students are girls.
Percentage can be calculated by dividing the given quantity by the total and multiplying by 100. For example, if there are 20 girls out of a total of 40 students in a class, the percentage of girls in the class can be calculated as follows:
Percentage of girls = (number of girls / total number of students) x 100%
= (20 / 40) x 100%
= 50%
by the question.
Tiana's necklace has a total of 3 + 17 = 20 beads.
To find the percentage of blue beads, we need to divide the number of blue beads by the total number of beads and then multiply by 100 to get the percentage:
percentage of blue beads = (number of blue beads / total number of beads) x 100
percentage of blue beads = (3 / 20) x 100
percentage of blue beads = 15
To learn more about percentage:
https://brainly.com/question/29306119
#SPJ1
Elouise finds a woodlouse that is 8 mm long. When she views it under the microscope it
appears 12 cm long.
What is the magnification?
Answer:
Step-by-step explanation:
This can be solved by taking X as the magnification
8*x = 12cm *10
x= 120/8
x= 30/2= 15
the magnification = 15 times
two fifths of 60 is what number
Answer:
I hope this helps please rate my answer
Step-by-step explanation:
2/5×60
2×12=24
Sarah is a healthy baby who was exclusively breast-fed for her first 12 months. Which of the following is most likely a description of her weights (at 3, 6, 9, and 12 months of age) as percentiles of the CDC growth chart reference population? 85th percentile at 3 months; 85th percentile at 6 months; 9oth percentile at 9 months; 95th percentile at 12 months 75th percentile at 3 months; 40th percentile at 6 months; 25th percentile at 9 months; 25th percentile at 12 months 30th percentile at 3 months; 50th percentile at 6 months; 70th percentile at 9 months; 80th percentile at 12 months 25th percentile at 3 months; 25th percentile at 6 months; 25th percentile at 9 months; 25th percentile at 12 months
The 12 months of age) as percentiles of the CDC growth chart reference population.
The most likely description of Sarah's weights (at 3, 6, 9, and 12 months of age) as percentiles of the CDC growth chart reference population is: 85th percentile at 3 months; 85th percentile at 6 months; 90th percentile at 9 months; 95th percentile at 12 months.What is percentile in statistics?In statistics, a percentile is a value below which a specific percentage of observations in a group falls. It is used to split up data into segments that represent an equal proportion of the entire group, resulting in a data set split into 100 equal portions, with each portion representing one percentage point. Sarah's weight is in the 85th percentile at 3 months, 85th percentile at 6 months, 90th percentile at 9 months, and 95th percentile at 12 months is a most likely description of her weights (at 3, 6, 9, and 12 months of age) as percentiles of the CDC growth chart reference population.
Learn more about Percentiles
brainly.com/question/28800128
#SPJ11
Show that, the sum of an infinite arithmetic progressive sequence with a positive common difference
is +∞
Answer:
Show that, the sum of an infinite arithmetic progressive sequence with a positive common difference
is +∞
Step-by-step explanation:
To show that the sum of an infinite arithmetic progressive sequence with a positive common difference is +∞, we can use the formula for the sum of the first n terms of an arithmetic sequence:
Sn = n/2 [2a + (n-1)d]
where a is the first term, d is the common difference, and n is the number of terms in the sequence.
Now, if we let n approach infinity, the sum of the first n terms of the sequence will also approach infinity. This can be seen by looking at the term (n-1)d in the formula, which grows without bound as n becomes larger and larger.
In other words, as we add more and more terms to the sequence, each term gets larger by a fixed amount (the common difference d), and so the sum of the sequence increases without bound. Therefore, the sum of an infinite arithmetic progressive sequence with a positive common difference is +∞.
3) One piece of fencing is 71/8 feet long. How long will a fence be that is made up of 9 of these pieces?
Answer:
Step-by-step explanation:
71/8*9 which it 639/8 feet long
a factory was manufacturing products with a defective rate of 7.5%. if a customer purchases 3 of the products , what is the probability of getting at least one that is defective
If a customer purchases 3 of the products, the probability of getting at least one that is defective is 38.59%.
How to determine the probabilityIn order to determine the probability of getting at least one defective product if a customer purchases three products with a defective rate of 7.5%, we can use the concept of complementary probability.
The probability of getting at least one defective product can be calculated as the complement of the probability of getting none defective products.
So, the probability of getting no defective products is:
P(none defective) = (1 - 0.075)³ = 0.6141
Therefore, the probability of getting at least one defective product is:
P(at least one defective) = 1 - P(none defective) = 1 - 0.6141 = 0.3859 or 38.59%
.So, the probability of getting at least one that is defective is 38.59%.
Learn more about probability at
https://brainly.com/question/11234923
#SPJ11
what types of inferences will we make about population parameters? (select all that apply) causation estimation implied testing regression
The types of inferences that will be made about population parameters are causation, estimation, and regression on the basis of relationship.
What are the types of inferences?Causation is the process of showing the cause-and-effect relationship between two variables. In this case, one variable influences the other variable. This type of inference is significant when making decisions because it helps us understand how a change in one variable leads to a change in another variable.
Estimation: In statistical analysis, estimation refers to determining the possible value of an unknown population parameter. It is impossible to calculate the population parameters directly, and hence we use sample statistics to estimate them.
Regression analysis is the statistical technique used to identify the relationship between two variables. It involves estimating the coefficients of the model that best fit the data.
This type of inference helps us predict the value of a dependent variable based on an independent variable.
Learn more about Inferences here:
https://brainly.com/question/29774121
#SPJ11
change the denominator of the fraction a+3/6-2a to 2(a^2-9)
The answer of the given question based on the changing the denominator of fraction the answer is the fraction a+3/6-2a can be rewritten with a denominator of 2(a²-9) as (3 + a)/(2(a - 3)).
What is Formula?In mathematics, formula is mathematical expression or equation that describes relationship between two or more variables or quantities. A formula can be used to solve problems or make predictions about particular situation or set of data.
Formulas often involve mathematical symbols and operations, like addition, subtraction, multiplication, division, exponents, and square roots. They may also include variables, which are typically represented by letters, and constants, which are fixed values that do not change.
To change the denominator of the fraction a+3/6-2a to 2(a²-9), we need to factor the denominator of the original fraction and then use algebraic manipulation to rewrite it in the desired form.
First, we can factor the denominator of the original fraction as follows:
6 - 2a = 2(3 - a)
Next, we can rewrite the denominator using the difference of squares formula:
2(a² - 9) = 2(a + 3)(a - 3)
Now, we can use the factored form of the denominator to rewrite the original fraction:
(a + 3)/(6 - 2a) = (a + 3)/(2(3 - a)) = -(a + 3)/(-2(a - 3)) = (3 + a)/(2(a - 3))
Therefore, the fraction a+3/6-2a can be rewritten with a denominator of 2(a²-9) as (3 + a)/(2(a - 3)).
To know more about Equation visit:
https://brainly.com/question/9312365
#SPJ1
A wire first bent into the shape of a rectangle with width 5cm and lenth 11 cm.then the wire is unbent and reshaped into a square what is the length kf a side of the square
The length of a side of the square is 8 cm.
What do you mean by perimeter of a rectangle and square?
When a wire is bent into the shape of a rectangle, its length becomes the perimeter of the rectangle. Similarly, when the wire is reshaped into a square, its length becomes the perimeter of the square.
The perimeter of a rectangle is given by the formula [tex]P=2(l+w)[/tex] , where [tex]l[/tex] is the length and [tex]w[/tex] is the width.
The perimeter of a square is given by the formula [tex]P=4s[/tex] , where [tex]s[/tex] is the length of a side.
Calculating the length of a side of the square:
The length of the rectangle is 11 cm and the width is 5 cm.
Therefore, the perimeter of the rectangle is [tex]P=2(11+5)=32[/tex] cm.
Since the wire is reshaped into a square, the perimeter of the square is also 32 cm.
Using the formula [tex]P=4s[/tex], we can solve for the length of a side of the square:
[tex]32 = 4s[/tex]
[tex]s = 32/4[/tex]
[tex]s = 8[/tex]
Therefore, the length of a side of the square is 8 cm.
To know more about square visit :
brainly.com/question/28776767
#SPJ1
based on historical data, it takes students an average of 48 minutes with a standard deviation of 15 minutes to complete the unit 5 test. what is the probability that your class of 20 students will have a mean completion time greater than 60 minutes on the unit 5 test?
Using central limit theorem, the probability that the class of 20 students will have a mean completion time greater than 60 minutes on the unit 5 test is 0.00017332
What is the probability that your class of 20 students will have a mean completion time greater than 60 minutes on the unit 5 test?We can use the Central Limit Theorem (CLT) to approximate the distribution of the sample mean completion time for the class. According to CLT, the distribution of the sample mean is approximately normal, with a mean equal to the population mean and a standard deviation equal to the population standard deviation divided by the square root of the sample size.
In this case, the population mean is given as 48 minutes, the population standard deviation is given as 15 minutes, and the sample size is 20. Therefore, the mean of the sample mean completion time is also 48 minutes, and the standard deviation of the sample mean completion time is 15/√20 ≈ 3.3541 minutes.
To find the probability that the class mean completion time is greater than 60 minutes, we can standardize the distribution of the sample mean completion time using the z-score formula:
z = (x - μ) / (σ / √n)
where x is the value we want to find the probability for (in this case, x = 60), μ is the population mean, σ is the population standard deviation, and n is the sample size.
Plugging in the values, we get:
z = (60 - 48) / (15 / √20) = 3.5777
Using a standard normal distribution table (or calculator), we can find the probability that a z-score is greater than 3.5777.
P = 0.00017332
Learn more on probability here;
https://brainly.com/question/24756209
#SPJ1
why does a square root have a plus or minus sign attached to it.
Answer:
To indicate that we want both the positive and the negative square root of a radicand
Answer:
Because a negative number times a negative number has a positive answer
Step-by-step explanation:
Mark wants to buy a new pair of sneakers that cost 215. His aunt gave him 100 for the sneakers. Market also lnow sthat he can esrn 16 for each hour that he works at his aunts store how many full hours must mark work to buy the sneakers
Mark needs a total amount of 215 to buy sneakers and we know that his aunt gave him 100 for the same, he also know that he can earn 16 for each hour that he works at his aunt's store, therefore he needs to work 8 hours.
Mark needs a total amount of 215 to buy sneakers and we know that his aunt gave him 100 for the same,
therefore, we can say that 215 - 100 = 115
therefore, Mark now needs only 115 for him to buy sneakers and now we need to find how many full hours do Mark need to work to buy sneakers:
therefore, we need to divide 115 by 16 to find out the hours he needs to work at his aunt's store:
115/16 = 7.2
we get 7.2 which also means 7 hours 20 mins but we need to find full hours Mark needs to work, that will be:
8 hours.
Therefore, we know that Mark needs to work 8 full hours for him to buy sneakers.
To learn more about division, click here:
brainly.com/question/21416852
#SPJ4