The width of a rectangular slab of concrete is 7 m less than the length. The area is 98 m squared. Find the dimensions

Answers

Answer 1

Answer:

Length = 14 m, Width = 7 m

Step-by-step explanation:

Let the length is l and width is b.

Width, b = l-7

Area of the rectangle, A = 98 m²

We know that, the area of a rectangle is as follow :

[tex]A=lb[/tex]

So,

[tex]98=l(l-7)\\\\98=l^2-7l\\\\l^2-7l-98=0\\\\l^2+7l-14l-98=0\\\\l(l+7)-14(l+7)=0\\\\l=14,-7[/tex]

Length can't be negative. So,

Width, b = 14-7 = 7 m

So, the dimensions of the rectangle are 14 m and 7 m respectively.


Related Questions

♥️♥️♥️♥️♥️♥️♥️♥️♥️ help me

Answers

9514 1404 393

Answer:

AC = 2.0 mm = 41.3 kg

Step-by-step explanation:

The sum of torques about the pivot point is zero when the system is in equilibrium. That means the total of clockwise torques is equal to the total of counterclockwise torques. For this purpose, torque can be modeled by the product of mass and its distance from the pivot. The uniform beam can be modeled as a point mass at its center.

__

a) Let E represent the location of the center of mass of the beam. So, AE = 1.5 m. Then the distance from C to E is AC-AE = AC -1.5 and the CCW torque due to the beam's mass is (16 kg)(AC -1.5 m).

The distance from B to C is 3 m - AC, so the CW torque due to the particle at B is (7 kg)(3 -AC m)

These are equal, so we have ...

  16(AC -1.5) = 7(3 -AC)

  16AC -24 = 21 -7AC . . . . . eliminate parentheses

  23AC = 45 . . . . . . . . . . . add 7AC+24

  AC = 45/23 ≈ 1.957 . . divide by the coefficient of AC

  AC ≈ 2.0 meters . . . . rounded to 1 dp

__

b) The torques in this scenario are ...

  M(0.7) = 16(0.8) +7(2.3) . . . . . . AD = 0.7 m, DE = 0.8 m, DB = 2.3 m

  M = 28.9/0.7 ≈ 41.286 . . . . simplify, divide by the coefficient of M

  M = 41.3 kg . . . . rounded to 1 dp

_____

Additional comment

Torque is actually the product of force and distance from the pivot. Here, the forces are all downward, and due to the acceleration of gravity. The gravitational constant multiplies each mass, so there is no harm in dividing the equation by that constant, leaving the sum of products of mass and distance.

Which expression is equivalent to the following complex fraction?
-25
245 5
+
y
3 2
у

Answers

Step-by-step explanation:

[tex] \longrightarrow \sf{ \dfrac{ \cfrac{ - 2}{x} + \cfrac{ 5}{y}}{\cfrac{ 3}{y} -\cfrac{ 2}{x} }} \\ \\ \longrightarrow \sf{ \dfrac{ \cfrac{ - 2y + 5x}{xy}}{\cfrac{ 3x - 2y}{xy} }} \\ \\ \longrightarrow \sf{ \cfrac{ - 2y + 5x}{xy}} \times{\cfrac{ xy}{3x - 2y} } \\ \\ \longrightarrow \boxed{ \sf{ \cfrac{ - 2y + 5x}{3x - 2y}}}[/tex]

Option A is correct!

The expression into an equivalent form would be; A [-2y + 5x ] / [3 x- 2y]

What are equivalent expressions?

Those expressions that might look different but their simplified forms are the same expressions are called equivalent expressions.

To derive equivalent expressions of some expressions, we can either make it look more complex or simple. Usually, we simplify it.

[-2/x + 5/y] / [3/y - 2/x]

This expression could also be given by;

[-2y + 5x /xy] / [3 x- 2y /xy]

Now, we know that x would cancel out;

[-2y + 5x ] / [3 x- 2y]

Hence, the expression into an equivalent form would be; A [-2y + 5x ] / [3 x- 2y]

Learn more about expression here;

brainly.com/question/14083225

#SPJ2

7x to the power of 2 is a what is it
a) monomial
b) binomial
c) Trinomial​

Answers

You can use the prefixes to figure this out:
Mono: one
Bi: two
Tri: three

So, because there is only one term, it is a monomial.

Two trains are 500 miles apart when they first start moving towards each other. If in two hours the distance between them is 300 miles and one train goes 20 miles faster than another, find the speed of the faster train. (Note: there are two possible solutions. Could you please find both?)

Answers

Answer:

Step-by-step explanation:

They travel 500 - 300 = 200 miles in 2 hours so their combined speed is

100 mph.

If their respective speed are x and y mph then we have the system

x + y = 100

x - y = 20

Adding the 2 equations

2x = 120

x = 60

and y = 40.

The other solution is that y = 60 mph and x = 40 mph.

The 90% confidence interval for the mean one-way commuting time in New York City is
5.22 < < 5.98 minutes. Construct a 95% confidence interval based on the same data.
Which interval provides more information?

Answers

Answer:

95% provides more information

Step-by-step explanation:

The confidence interval is obtained by using the relation :

Xbar ± Zcritical * σ/√n

(Xbar - (Zcritical * σ/√n)) = 5.22 - - - (1)

(Xbar + (Zcritical * σ/√n)) = 5.98 - - (2)

Adding (1) and (2)

2xbar = 5.22 + 5.98

2xbar = 11.2

xbar = 11.2 / 2 = 5.6

Margin of Error :

Xbar - lower C.I = Zcritical * σ/√n

Zcritical at 90% = 1.645

5.6 - 5.22 = 1.645 * (σ/√n)

0.38 = 1.645 * (σ/√n)

(σ/√n) = 0.38 / 1.645 = 0.231

Therefore, using the se parameters to construct at 95%

Zcritical at 95% = 1.96

Margin of Error = Zcritical * σ/√n

Margin of Error = 1.96 * 0.231 = 0.45276

C.I = xbar ± margin of error

C. I = 5.6 ± 0.45276

C.I = (5.6 - 0.45276) ; (5.6 + 0.45276)

C. I = (5.147 ; 6.053)

Hence, 95% confidence interval provides more information as it is wider.

Is it true that every whole number is a solution of x > 0? Use complete sentences to explain your reasoning.

Answers

Whole numbers are natural numbers, and natural numbers do not include negatives, decimals, fractions, or roots, so all whole numbers can indeed satisfy the inequality.

Solve the polynomial by finding all roots.
X^3-6x^2-2x+12=0

Answers

I hope this is the correct answer

X,and z are midpoints.find the length of each segment

Answers

Answers:

MZ = 10ZO = 10MO = 20XZ = 9YZ = 7

===========================================

Explanation:

Side MO is twice as long as the midsegment XY. Note how XY and MO are parallel.

This makes

MO = 2*XY = 2*10 = 20

Side MO breaks into two equal halves MZ and ZO

Each of MZ and ZO are 20/2 = 10 units long.

Put another way: XY, MZ and ZO are all the same length (all 10 units long).

---------------

The diagram shows that segment NO is 18 units long, which cuts in half to 18/2 = 9. This is the length of NY, YO and XZ

Also, MN = 14 which cuts in half to 7. This means MX, XN and YZ are all 7 units each.

At a large Midwestern university, a simple random sample of 100 entering freshmen in 1993 found that 20 of the sampled freshmen finished in the bottom third of their high school class. Admission standards at the university were tightened in 1995. In 1997, a simple random sample of 100 entering freshmen found that only 10 finished in the bottom third of their high school class. Let p 1 and p 2 be the proportions of all entering freshmen in 1993 and 1997, respectively, who graduated in the bottom third of their high school class. What is a 90% plus four confidence interval for p 1 – p 2?

Answers

Answer:

The 90% confidence interval for the difference of proportions is (0.01775,0.18225).

Step-by-step explanation:

Before building the confidence interval, we need to understand the central limit theorem and subtraction of normal variables.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]

Subtraction between normal variables:

When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.

p1 -> 1993

20 out of 100, so:

[tex]p_1 = \frac{20}{100} = 0.2[/tex]

[tex]s_1 = \sqrt{\frac{0.2*0.8}{100}} = 0.04[/tex]

p2 -> 1997

10 out of 100, so:

[tex]p_2 = \frac{10}{100} = 0.1[/tex]

[tex]s_2 = \sqrt{\frac{0.1*0.9}{100}} = 0.03[/tex]

Distribution of p1 – p2:

[tex]p = p_1 - p_2 = 0.2 - 0.1 = 0.1[/tex]

[tex]s = \sqrt{s_1^2+s_2^2} = \sqrt{0.04^2 + 0.03^2} = 0.05[/tex]

Confidence interval:

[tex]p \pm zs[/tex]

In which

z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].

90% confidence level

So [tex]\alpha = 0.1[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.1}{2} = 0.95[/tex], so [tex]Z = 1.645[/tex].  

The lower bound of the interval is:

[tex]p - zs = 0.1 - 1.645*0.05 = 0.01775 [/tex]

The upper bound of the interval is:

[tex]p + zs = 0.1 + 1.645*0.05 = 0.18225 [/tex]

The 90% confidence interval for the difference of proportions is (0.01775,0.18225).

Convert 1.6 L to cubic centimeters

Answers

Answer:

1600

Step-by-step explanation:

multiply the volume value by 1000

Fixed costs are $3,000, variable costs are $5 per unit. The company will manufacture 100 units and chart a 50% markup. Using the cost-plus pricing method, what will the selling price be? (2 pts)
Your company has fixed costs of $150,000 per year. The variable costs per unit in 2018 were $3 per unit, and 30,000 units were produced that year. Your company uses cost-based pricing and has a profit margin of $3 per unit. In 2019, production increased and your team had more experience—variable costs went down to $2 per unit because of your team’s higher skill and 65,000 units were produced that year. What is the change in selling price from 2018 to 2019? (2 pts)
Fixed Costs are $500,000. Per unit costs are $75, and the proposed price is $200. How many units must be sold to break even? How many units must be sold to realize a $200,000 target return? (2 pts)
Congratulations! You you just decided to become the proud owner of a new food truck offering traditional Mediterranean cuisine. Kitchen and related equipment costs are $100,000. Other fixed costs include salaries, gas for the truck, and license fees and are estimated to be about $50,000 per year. Variable costs include food and beverages estimated at $6 per platter (meat, rice, vegetable, and pita bread). Meals will be priced at $10.

Answers

Answer:

1. Using the cost-plus pricing method, the selling price = $5.25

2. The change in selling price from 2018 to 2019 is $3.69 or 33.5% reduction.

3. To break-even, unit sales = 4,000 units

To realize a target return of $200,000, the unit sales = 5,600 units

4. Units to break-even = 12,500 meals

Sales revenue at break-even point = $125,000

Step-by-step explanation:

a) Data and Calculations:

Fixed costs = $3,000

Variable costs per unit = $5

Units manufactured = 100 units

Total variable costs = $500 ($5 * 100)

Total costs = $3,500 ($500 + $3,000)

Cost per unit = $3.50

Markup percentage = 50%

Using the cost-plus pricing method, the selling price = $5.25 ($3.50 * 1.5)

b) Fixed costs per year = $150,000

Variable costs per unit = $3

Production units = 30,000

Total variable costs = $90,000 ($3 * 30,000)

Cost-based pricing with a profit margin = $3 per unit

Total costs = $240,000 ($90,000 + $150,000)

Cost per unit = $8 ($240,000/30,000)

Selling price per unit = $11 ($8 + $3)

Variable cost = $2 per unit

Production units = 65,000 units

Total costs = ($2 * 65,000 + $150,000)

= $280,000 ($130,000 + $150,000)

Unit cost = $4.31 ($280,000/65,000)

Selling price = $7.31 ($4.31 + $3)

Change in selling = $3.69 ($11 = $7.31) = 33.5%

c) Fixed costs = $500,000

Per unit costs = $75

Proposed price = $200

Contribution margin per unit = $125 ($200 - $75)

To break-even, unit sales = $500,000/$125 = 4,000 units

To realize a target return of $200,000, the unit sales = $700,000/$125 = 5,600 units

d) Kitchen and related equipment costs = $100,000

Other fixed costs per year = $50,000

Variable costs = $6 per platter

Price per meal = $10

Contribution margin per meal = $4 ($10 - $6)

Units to break-even = $50,000/$4 = 12,500 meals

Sales revenue at break-even point = $50,000/40% = $125,000

Please help!!!!! Nowwww

Answers

Answer:

It has 1 term and a degree of 4.

Step-by-step explanation:

3j⁴k-2jk³+jk³-2j⁴k+jk³

= 3j⁴k-2j⁴k-2jk³+jk³+jk³

= j⁴k

So, in this expression, there is 1 term, and it has a degree of 4.


I need help answering this ASAP

Answers

can you zoom in on my pic more or no does it say 1/z

Answer:

Option A. Reciprocal

Answered by GAUTHMATH

The length of a rectangle is four more than three times the width. If the perimeter of this rectangle is at least 70 square centimeters. Write an inequality that can be solved to find the width of the rectangle

Answers

Answer:

Step-by-step explanation:

Let L represent the length of the triangle.

Let W represent the width of the triangle.

The length of a rectangle is four more than three times the width. This means that

L = 3W + 4

The formula for determining the perimeter of a rectangle is expressed as

Perimeter = 2(L + W)

If the perimeter of this rectangle is at least 70 square centimeters, an inequality that can be solved to find the width of the rectangle is

2(L + W) ≥ 70

L + W ≥ 70/2

L + W ≥ 35

Answer:

6w +8 ≥70

Step-by-step explanation:

Let w be the width

The length is then 3w+4 ("the length is 4 more than 3 times the width")

Since a rectangle has opposite sides equal, the perimeter would be 2(l+w) or 2(w+3w+4) which would be 6w +8.  If the perimeter is at least 70, that is, 70 or more, the inequality would be

  6w + 8 ≥ 70.  

The units, however, would not be SQUARE centimeters, just centimeters.  If the question were asking for area, the units would be square units, but since perimeter is a linear measurement,  the units would have to be linear.

Find the value of x. Round to the nearest tenth.

Answers

Answer:

1.6 ft

Step-by-step explanation:

If you use the Pythagorean Theorem to solve for x, you get:

[tex]x=\sqrt{2.1^2-1.4^2}[/tex]

[tex]x=\sqrt{2.45} = 1.56524758425[/tex]

Rounded to the nearest tenth, the answer is 1.6

Every high school senior takes the SAT at a school in St. Louis. The high school guidance director at this school collects data on each graduating senior’s GPA and their corresponding SAT test score. The guidance director is conducting a _________ in this experimental design.

A. sample survey
B. census
C. sample poll
D. random sample

Answers

Voće Eu tudo bem yea Iliana buns iOS build. Lbvac la vaca leche 457 sample poll

The guidance director is conducting a sample poll in this experimental design.

What is sample?

Sample is a part of population. It does not comprises whole population. It is representatitive of whole population.

How to fill blank?

We are required to fill the blank with appropriate term among the options.

The correct option is sample poll because the guidance director collects data in his school only.

Census collects the whole population of the country.

Sample poll means collecting data from small population.

Random sample means collecting data from a part of popultion without identifying any variable.

Hence we found that he was doing sample poll.

Learn more about sample at https://brainly.com/question/24466382

#SPJ2

Can the three values represent the sides of a triangle?
7, 8, √113


Is this a triangle?

If so, what type?

Pythagorean Triple? (yes/no)

Answers

no the square root of 113 is rounded to 56x2

If two people are splitting a total rent number of $1,120 a month, it would be $560 split evenly. However, if one roommate pays $60 more than the other, how much would that roommate be paying per month?

Answers

$560-$500

=$500

therefore, other roommate will be paying $500 per month

if f(x)=3x²-7 and f(x+n)=3x²+24x+41, what is the value of n?

Answers

Answer:

n=4

Step-by-step explanation:

f(x+n)=3(x+n)^2-7=3x^2+24x+41

3x^2+3n^2+6xn-7=3x^2+24x+41

Comparing and we will get, n=4

A variety of trigonometric functions are shown in the answer choices below.


Which trigonometric function has an inverse over the domain x2≤x≤3x2


A-f(x)=cos(x−1/2)+3/2

B-f(x)=cos(x+π/2)

C-f(x)=sin(x−1/2)+3/2

D-f(x)=sin(x+π/2)

Answers

Not 100 hundred percent sure but I believe the answer is c

Let a submarine be at a constant depth of 5 km. It is headed in the direction of a lighthouse. If the distance between the submarine and the base of the lighthouse is decreasing at a rate of 24 km/h when the sub is 13 km away from the base, then what is the speed of the submarine

Answers

Answer:

24 km/h

Step-by-step explanation:

Given:

Constant speed of submarine = 24 km/h

Depth under sea = 5 km

Distance of submarine from lighthouse = 13 km

Find:

Speed of the submarine

Computation:

At steady speed, the distance between both the submarine and the lighthouse base decreases at a rate of 24 km/hr.

So, when it is 13 kilometres from its starting point, the speed remains constant at 24 kilometres per hour.

3/8n+5(n-6)=1 7/8n-2

Answers

Answer:

n = 112/13 = 8.615

Step-by-step explanation:

(3/8) n + 5n - 30 = (17/8)n - 2

(3/8)n +5n - (17/8)n = 30-2

(13/4)n = 28

n = 28 * 4/13

n = 112/13

n = 8.615

what is 6 3/5 - 4 3/10

Answers

The Answer would be 2.3.

Answer:

2 3/10

Step-by-step explanation:

3/5x2=6/10

6/10-3/10=3/10

Matematykakdbebox
Jaggbn

Answers

Answer:

theres no question....

Step-by-step explanation:

???

Car drove 2hours at a speed of 100km per hour & 3 hour at a speed of 50 km per hour . What was the average speed of the car during the trip?

Answers

Answer:

200 kilometers and 150 kilometers

help asap pleaseeee asap

Answers

-63/7 = -9
The 3rd answer is correct

Please help on 25 it’s confusing me I need the correct answer

Answers

Answer:

X * 0.8 = $64

x = $80

Step-by-step explanation:

Answer:

$80 (D)

Step-by-step explanation:

If Richard is getting a discount and his final price is $64 that means the answer must be above 64. That eliminates A, B, and C.

Use the formula: 20% of x = $64 and substitute the other two options. 20 percent of 84 is 16.8. 84-16.8=67.2 (not the correct answer). 20 percent of 80 is 16. 80-16=64(The Correct Answer).The answer must be $80 (D)    

How much money will there be in an account at the end of 10 years if $4000 is deposited at 6% compounded quarterly

Answers

Answer:

$7,256.07

Step-by-step explanation:

A = p(1+r/n)^nt

A = 4000(1+.06/4)^(10*4)

Can someone help me simplify this?

Answers

Answer:

See attached

Step-by-step explanation:

y^2(13x^3+8yx^2-5y)


.....


Two mechanics worked on a car. The first mechanic worked for 10 hours, and the second mechanic worked for 5 hours. Together they charged a total of
$750. What was the rate charged per hour by each mechanic if the sum of the two rates was $105 per hour?

Answers

Step-by-step explanation:

let's convert the statement into equation..

let the charge of 1st mechanic be x and second be y..

by the question..

10x+5y=750...(i)

x+y=105..(ii)

from eqn(ii)..

x+y=105

or, x=105-y...(iii)

substituting the value of x in eqn (i)..

10x+5y=750

or, 10(105-y)+5y=750

or, 1050-10y+5y=750

or, 1050-750=5y

or, y=300/5

•°• y=60

substituting the value of y in eqn(iii).

x=105-y

or, x=105-60

•°• x= 45..

the rate charged by two mechanics per hour was 60$ and 45$

Other Questions
the sun has decided that it wants to retire! it has never had a holiday and it works 24 hours adays, 7 days a week year after year. your job is to persuade the sun to continue to workas it is vital to the water cycle. use your persuasive skills to convince the sun not to retire Please read the comprehension and answer the given question below...Alisa has a bunch of coins. She has pennies. She has nickels. She has dimes. She has quarters. They lie in one big pile. Alisa wants to organize her coins. So she goes into her cupboard and finds four jars. Each jar has a different shape and size. Alisa puts the pennies into one jar. She puts the nickels into another jar. She puts the dimes into another jar. She puts the quarters into another jar. Then she puts all four jars on the table and steps back. Looking at them, Alisa scratches her head.1. Which of Alisa's jars is worth most?a) the jar full of penniesb) the jar full of nickelsc) the jar full of dimesd) the jar full of quarterse) Not enough information is provided to answer this question. Joshua is 1.45 meters tall. At 2 p.m., he measures the length of a tree's shadow to be 31.65 meters. He stands 26.2 meters away from the tree, so that the tip of his shadow meets the tip of the tree's shadow. Find the height of the tree to the nearest hundredth of a meter . animals with scales on skin are called? Find the area of circle Q in terms of x ____________ involves a review of the sales, costs, and profit projections for a new product to find out whether they satisfy the company's objectives. Pls answer? Last one for today! how did the envorment in north America affect the development of indigenous culture in the late 1400 Find the value of a if the line joining the points (3a,4) and (a, -3) has a gradient of 1 ? During cellular respiration, the first CO2 is generated during _____ and the remaining carbons are given off as CO2 during _____. Henri bought a swim suit at a cost of $8. Which statements are true regarding the cost of the suit? Question 23 of 23Suppose a current flows through a copper wire. Which two things occur?O A. The field is parallel to the direction of flow of the current.B. An electric field forms around the wire.OC. A magnetic field forms around the wire.UD. The field is perpendicular to the direction of flow of the current.SUBM Productivity is difficult to measure because precise units of measure are available, quality is consistent, and exogenous variables don't change. True False Part A: Calculate the mass of butane needed to produce 75.6g of carbon dioxide.Part B: Calculate the mass of water produced when 5.48g of butane reacts with excess oxygen. Write the following equation in slope-intercept form.3x-2y= 5 (iii) If a, b, c are rational numbers, thena x (b-c) #ax b-ax c. true or false Find the equation of tangent to circle x^2+y^2 = 3 which makes angle of 60 with x-axis. Explain the steps to find x- and y- intercepts of an equation of the form Ax + By = C Choose all the factors of 12. (Check all that apply.)109263851271141