Answer:
First find the number of Mango and oranges. 400 divided by 8 = 50. We use 8 because it is the whole part of the percentage. Since, there is 3/8 mangoes, multiply 50* 3= 150 mangoes and 50*5= 250 oranges.
2/3 of 150=100 mangoes. You would find this by dividing 150/3=50 then multiply by 2.
4/5 of 250= 200 oranges. You would find this by dividing 250/5=50 then multiply by 4.
$.40*100= $40.00 mangoes
$.60*200= $120.00 oranges
Mr. Mead would make $160.00
Step-by-step explanation:
normal population has a mean of 63 and a standard deviation of 13. You select a random sample of 25. Compute the probability that the sample mean is: (Round your z values to 2 decimal places and final answers to 4 decimal places): Greater than 65.
Answer:
0.2207
Step-by-step explanation:
Here, we want to find the probability that the sample mean is greater than 25.
What we use here is the z-scores statistic
Mathematically;
z-score = (x-mean)/SD/√n
From the question;
x = 65, mean = 63, SD = 13 and n = 25
Plugging these values in the z-score equation, we have
Z-score = (65-63)/13/√25 = 2/13/5 = 0.77
So the probability we want to calculate is ;
P(z > 0.77)
This can be obtained from the standard normal distribution table
Thus;
P(z > 0.77) = 0.22065 which is 0.2207 to 4 d.p
Please Hurry ...Which expression is equivalent to
Answer:
[tex]\huge\boxed{\sf \frac{160rs^5}{t^6}}[/tex]
Step-by-step explanation:
[tex]\sf 5r^6t^4 ( \frac{4r^3s^tt^4}{2r^4st^6} ) ^5[/tex]
Using rule of exponents [tex]\sf a^m/a^n = a^{m-n}[/tex]
[tex]\sf 5r^6t^4 ( 2 r^{3-4} s^{2-1}t^{4-6})^5\\5r^6t^4(2r^{-1}st^{-2})^5\\5r^6t^4 * 32 r^{-5}s^5t^{-10}[/tex]
Using rule of exponents [tex]\sf a^m*a^n = a^{m+n}[/tex]
[tex]\sf 160 r^{6-5}s^5t^{4-10}[/tex]
[tex]\sf 160 rs^5 t^{-6}[/tex]
To equalize the negative sign, we'll move t to the denominator
[tex]\sf \frac{160rs^5}{t^6}[/tex]
A candy box is to be made out of a piece of cardboard that measures 8 by 12 inches. Squares of equal size will be cut out of each corner, and then the ends and sides will be folded up to form a rectangular box. What size square should be cut from each corner to obtain a maximum volume
Answer:
the size of the square to be cut out for maximum volume is 1.5695 inches
Step-by-step explanation:
cardboard that measures 8 by 12 inches.
We need to determine What size square should be cut from each corner
We were given given the size of the cardboard.
let us denote the length of the square as 'x'.
Then our length, width and height will be:
Length = 8 − 2x
Width = 12− 2x
Then our Height = x
So now, the volume= length×width ×height
Volume = (8 − 2x) x (12− 2x) x (x)
After calculating volume comes out to be:
V = (96 − 40x + 4x²) (x)
V = 4x³ − 40x² + 96x
Now, we can use differentiation to equate it to zero.
So differentiate it with respect to x, we get
dV/dx = 12x² − 80x + 96
12x² − 80x + 96 = 0
So, after solving this, x comes out to be:
x = 5.097 and x = 1.5695
Looking at it the size of the square cut out cannot be 5.097 because we cannot cut out of both sides of the width, since the width is 5 inches.
Therefore, the size of the square to be cut out for maximum volume is 1.5695 inches.
in a gp the sixth term is 8 times the third term, and the sum of the seventh and eighth term is 192. determine the common ratio
Answer:
common ratio = 2
Step-by-step explanation:
T6 = ar^5
T3 = ar²
T6 = 8 x T³
ar^5 = 8 x ar²
ar^5/ar² = 8
r³ = 8
r = ³√8
r = 2
Actual time in seconds recorded when statistics students participated in an experiment t test their ability to determine when one minute 60 seconds has passed are shown below.Find the mean median mode of the listed numbers. 53 52 72 61 68 58 47 47
Answer:
53 52 72 61 68 58 47 47 (arrange it)
47 47 52 53 58 61 68 71 (done!)
Mode: 47 (appear twice)
Median: (53+58)/2 = 55.5
Mean = 47+47+52+53+58+61+68+71/ 8
=457/8
=57.12
Rob sent an email survey to 2,000 cell phone owners asking about their satisfaction with their current plan. Only 256 people returned the survey and they were predominately 18-24 years old.
Which of the following statements is true?
Rob is ignoring the assumption that all survey participants will want to act independently.
The survey likely has bias because the people who could not answer differ from those who did answer.
Rob included too many people on the survey list, affecting the data collected.
The survey suffers from census issues because only 256 people responded.
Answer:
option B
everyone has different opinions about different things, since we only recorded the survey of a fourth of the total people, the survey will definitely have bias since the people who dont have to answer survey will not be able to record their opinions
. Simplify the sum. (2u3 + 6u2 + 2) + (7u3 – 7u + 4)
Answer:
9u^3 + 6u^2 - 7u + 6
Step-by-step explanation:
if (ax+b)(x-3) = 4x^2+cx-9 for all values of x, what is the value of c? a) -9 b) -6 c) 6 d) 9
Answer:
c=-9
Step-by-step explanation:
Hello,
[tex](ax+b)(x-3)=ax(x-3)+b(x-3)=ax^2-3ax+bx-3b\\\\=ax^2+(b-3a)x+(-3b) \\\\\text{And it should be equal to } 4x^2+cx-9[/tex]
We can identify the like terms so:
a = 4
b-3a = c
3b = 9 <=> b = 3
So c = 3 - 3*4 = 3-12 = -9
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
A right circular cone has a volume of 30π m. If the height of the cone is multiplied by 6 but the radius remains fixed, which expression represents the resulting volume of the larger cone?
A. 6 + 30π m
B. 6 x 30π m
C. 6 x 30π m
D. 6 x (30π) m
PLZ HURRY IM TIMED
Answer:
Below
Step-by-step explanation:
The formula of the volule of a cone is:
● V= (1/3) × Pi × r^2 × h
h is the height and r is the radius.
■■■■■■■■■■■■■■■■■■■■■■■■■■
We are given that the volume is 30 Pi m^3
● V = 30 Pi
● 1/3 × Pi × r^2 × h = 30 Pi
If we multiply h by 6 we should do the same for 30 Pi since it's an equation
● 1/3 × Pi × r^2 × h = 30 × Pi × 6
Answer:
REVIEW: B is Correct Exit
A right circular cone has a volume of 30π m. If the height of the cone is multiplied by 6 but the radius remains fixed, which expression represents the resulting volume of the larger cone?
A. 6 + 30π m
B. 6 x 30π m
C. 6 x 30π m
D. 6 x (30π) m
Step-by-step explanation:
The answer is be all i did was dig into what the other person was saying and got b it is correct:)
If “n” is a positive integer divisible by 3 and n is less than or equal to 44, then what is the highest possible value of n?
Answer:
Step-by-step explanation:
positive integer divisible by 3 includes
3,6,9,12,15,18,21,24,27,30,33,36,39,42,45...
less than highest possible value is 42
Find the area of the shaded regions.
Answer:
7 pi cm^2 or approximately 21.98 cm^2
Step-by-step explanation:
First find the area of the large circle
A = pi r^2
A = pi 3^2
A = 9 pi
Then find the area of the small unshaded circle
A = pi r^2
A = pi (1)^2
A = pi
There are two of these circles
pi+ pi = 2 pi
Subtract the unshaded circles from the large circle
9pi - 2 pi
7 pi
If we approximate pi as 3.14
7(3.14) =21.98 cm^2
Answer:
[tex]\boxed{\sf 7\pi \ cm^2 \ or \ 21.99 \ cm^2 }[/tex]
Step-by-step explanation:
[tex]\sf Find \ the \ area \ of \ the \ two \ smaller \ circles.[/tex]
[tex]\sf{Area \ of \ a \ circle:} \: \pi r^2[/tex]
[tex]\sf r=radius \ of \ circle[/tex]
[tex]\sf There \ are \ two \ circles, \ so \ multiply \ the \ value \ by \ 2.[/tex]
[tex](2) \pi (1)^2[/tex]
[tex]2\pi[/tex]
[tex]\sf Find \ the \ area \ of \ the \ larger \ circle.[/tex]
[tex]\sf{Area \ of \ a \ circle:} \: \pi r^2[/tex]
[tex]\sf r=radius \ of \ circle[/tex]
[tex]\pi (3)^2[/tex]
[tex]9\pi[/tex]
[tex]\sf Subtract \ the \ areas \ of \ the \ two \ circles \ from \ the \ area \ of \ the \ larger \ circle.[/tex]
[tex]9\pi -2\pi[/tex]
[tex]7\pi[/tex]
the height of a triangle is 2 centimetres more than the base. if the height is increased by 2 centimetres while the base remains the same, the new area becomes 82.5 centimetres square. find the base and the height of the original triangle.
Answer:
Base = 11 cm
Height = 13 cm
Step-by-step explanation:
It is given that the height of a triangle is 2 centimetres more than the base.
Let x cm be the base of triangle. So height of the triangle is x+2 cm.
It is given that if the height is increased by 2 centimetres while the base remains the same, the new area becomes 82.5 centimetres square.
New height = (x+2)+2 = x+4 cm
Area of a triangle is
[tex]A=\dfrac{1}{2}\times base\times height[/tex]
[tex]82.5=\dfrac{1}{2}\times x\times (x+4)[/tex]
[tex]165=x^2+4x[/tex]
[tex]x^2+4x-165=0[/tex]
Splitting the middle term, we get
[tex]x^2+15x-11x-165=0[/tex]
[tex]x(x+15)-11(x+15)=0[/tex]
[tex](x+15)(x-11)=0[/tex]
Using zero product property, we get
[tex]x=-15,11[/tex]
Base of a triangle can not be negative, therefore x=11.
Base = 11 cm
Height = 11+2 = 13 cm
Therefore, the base of original triangle is 11 cm and height is 13 cm.
12. Consider the function ƒ(x) = x^4 – x^3 + 2x^2 – 2x. How many real roots does it have?
options:
A) 2
B) 1
C) 3
D) 4
Answer:
Step-by-step explanation:
Hello, let's factorise as much as we can.
[tex]x^4-x^3 + 2x^2-2x\\\\=x(x^3-x^2+2x-2)\\\\=x(x-1)(x^2+2)[/tex]
So, the solutions are
[tex]0, \ 1, \ \sqrt{2}\cdot i, \ -\sqrt{2}\cdot i[/tex]
There are only 2 real roots.
Thank you.
Answer:
So, the solutions are
There are only 2 real roots.
Step-by-step explanation:
Janine and Thor are both running for class president. Janine goes down a hallway in the school and puts a sticker on every fourth locker. Thor goes down the same hallway, putting one of his stickers on every fifth locker. If there are 130 lockers in the hallway, how many have both students' stickers?
Answer:
6 lockers have both students' stickers
Step-by-step explanation:
There are 130 lockers in the hallway
Janine goes down a hallway in the school and puts a sticker on every fourth locker.
Janine= 4th, 8th, 12th, 16th, 20th, 24th, 28th, 32nd, 36th, 40th, 44th, 48th, 52nd, 56th, 60th, 64th, 68th, 72nd, 76th, 80th, 84th, 88th, 92nd, 96th, 100th, 104th, 108th, 112th, 116th, 120th, 124th, 128th.
Thor goes down the same hallway, putting one of his stickers on every fifth locker
Thor= 5th, 10th, 15th, 20th, 25th, 30th, 35th, 40th, 45th, 50th, 55th, 60th, 65th, 70th, 75th, 80th, 85th, 90th, 95th, 100th, 105th, 110th, 115th, 120th, 125th, 130th.
Common multiples of Janine fourth locker and Thor fifth locker= 20, 40, 60, 80, 100, 120
Therefore,
6 lockers have both students' stickers
in the diagram, POS,QOT and ROU are straight lines. find the value of x.
==========================================
Explanation:
Angle UOT is vertical to the angle x. This angle combines with 4x and 40 to get a straight angle of 180 degrees
(angle POU) + (angle UOT) + (angle TOS) = 180
4x + x + 40 = 180
5x + 40 = 180
5x = 180-40
5x = 140
x = 140/5
x = 28
Side note: if x = 28, then 4x = 4*28 = 112.
We see that 112+28+40 = 180, which is the sum of the three angles mentioned earlier. Since we got 180, this confirms the answer.
T= 2pi times the sqrt of l/g (l=2.0m; g= 10m/s^2
Answer:
v (m/s) a(m/s2). √. ½. 0. ¼. √. -¼. Movimiento circular y M.A.S. Un punto se mueve ... como la que se ilustra en la figura, llamada onda cuadrada. ... Movimiento Armónico Simple I. Una partícula cuya masa es de 1 g vibra con movimiento ... Multiplicando por el Periodo de oscilación del sistema T (con ... distancia de 10 m?
Step-by-sv (m/s) a(m/s2). √. ½. 0. ¼. √. -¼. Movimiento circular y M.A.S. Un punto se mueve ... como la que se ilustra en la figura, llamada onda cuadrada. ... Movimiento Armónico Simple I. Una partícula cuya masa es de 1 g vibra con movimiento ... Multiplicando por el Periodo de oscilación del sistema T (con ... distancia de 10 m?tep explanation:
Please help me with this
Answer:
Median; 60
Step-by-step explanation:
For a data plot as shown in the question above, one easier measure of center that can be used for the data set represented is the median.
From the dot plot, we can easily pinpoint the exact median, which can be used as a measure of center.
There are 11 data points represented on the dot plot by 11 dots. The median, that is the median value of the data set, would be the 6th value represented by the 6th dot on the dot plot.
Thus, the middle value is 60.
60 is the median of the data set.
Solve 2 - (7x + 5) = 13 - 3x (make sure to type the number only)
Answer:
x = -4
Step-by-step explanation:
2 - (7x + 5) = 13 - 3x
add the binomial (7x +5) to both sides
2 = (7x + 5) + 13 - 3x
combine like terms
2 = 4x + 18
subtract 18 from both sides
-16 = 4x
divide by 4
x = -4
Answer:
-4
Step-by-step explanation:
Distribute the negative signs to the values in the parentheses
2 -7x - 5 = 13 - 3x
Add like terms:
-7x - 3 = 13 - 3x
Add 3x to both sides:
-4x - 3 = 13
Add 3 to both sides:
-4x = 16
Divide both sides by -4:
x = -4
which equation represents a circle with the center at two, -8 and a radius of 11
Answer:
( x-2)^2 + ( y +8) ^2 =121
Step-by-step explanation:
The equation of a circle can be written as
( x-h)^2 + ( y-k) ^2 = r^2
where ( h,k) is the center of the circle and r is the radius
( x-2)^2 + ( y- -8) ^2 = 11^2
( x-2)^2 + ( y +8) ^2 =121
Answer:
(x - 2)² + (y + 8)² = 11²
Step-by-step explanation:
General equation for a circle
( x - h )² + ( y - k )² = r², where (h,k) is the center and r ,radius..
with center ( 2,-8 ) and radius 11
(x - 2)² + (y + 8)² = 11²
Marco is investigating some of the business models of SureSpin, one of Faster Fidget's top competitors.
He has learned that they model their cost of production for one type of spinner with the function C(x) =13,450 + 1.28x, where x is the number of spinners produced. Interpret the model to complete the
statement.
Type the correct answer in each box. Use numerals instead of words. Based on the model, the fixed cost of production is $?
Answer:
$13,450
Step-by-step explanation:
The fixed cost of production is $13,450, this is because a fixed cost of production is the amount of cost that does not change with an increase or decrease in the amount of the goods or services produced. Fixed cost of production are paid by companies. It is one of the two component of the total cost of goods or services along with the variable cost.
In regard to the information given in the question, no matter how many spinners the company produces, the fixed cost will remain the same.
Assuming x is the variable cost which signifies the number of spinners produced, this literally implies that the cost to produce each spinner is $1.28 and the fixed cost which is independent of the production is $13,450.
Hence, the fixed cost of production is $13,450.
According to the website www.costofwedding, the average cost of flowers for a wedding is $698. Recently, in a random sample of 40 weddings in the U. S. it was found that the average cost of the flowers was $734, with a standard deviation of $102. On the basis of this, a 95% confidence interval for the mean cost of flowers for a wedding is $701 to $767.
Choose the statement that is the best interpretation of the confidence interval.
I. That probability that the flowers at a wedding will cost more than $698is greater than 5%.
II. In about 95%of all samples of size 40,the resulting confidence interval will contain the mean cost of flowers at weddings.
III. We are extremely confident that the mean cost of flowers at a wedding is between $701and $767
A) II only
B) I only
C) III only
D) II and III are both correct
Answer:
D) II and III are both correct.
Step-by-step explanation:
The Probability distribution is the function which describes the likelihood of possible values assuming a random variable. The cost of flowers for a wedding is $698. The 95% of all samples of size is 40 and the confidence interval will be mean cost of flowers at wedding. There is confidence that mean cost of wedding flowers is between $701 to $767.
Allison bought jelly beans to share with her friends. She bought pounds of blueberry jelly beans and pounds of lemon jelly beans. If she gave pounds of jelly beans away to her friends, how many pounds of jelly beans does Allison have left?
Answer: [tex]1\dfrac{11}{12}\text{ pounds}[/tex]
Step-by-step explanation:
The complete question is provided in the attachment.
Given, Amount blueberry jelly beans= [tex]1\dfrac{1}{4}[/tex] pounds
[tex]=\dfrac{5}{4}[/tex] pounds.
Amount lemon jelly beans = [tex]2\dfrac{1}{3}[/tex]pounds
[tex]=\dfrac{7}{2}[/tex] pounds
Total jelly beans she bought = Amount blueberry jelly beans + Amount lemon jelly beans
[tex]=(\dfrac{5}{4}+\dfrac{7}{3})[/tex] pounds
[tex]=\frac{15+28}{12}\text{ pounds}\\\\=\dfrac{43}{12}\text{ pounds}[/tex]
Amount of jelly beans she gave away = [tex]1\dfrac{2}{3}=\dfrac{5}{3}\text{ pounds}[/tex]
Amount of jelly beans she has left= Total jelly beans - Amount of jelly beans she gave away
=[tex]\dfrac{43}{12}-\dfrac{5}{3}\\\\=\dfrac{43-20}{12}\\\\=\dfrac{23}{12}\\\\=1\dfrac{11}{12}\text{ pounds}[/tex]
She has left [tex]1\dfrac{11}{12}\text{ pounds}[/tex] of jelly beans.
Can u pls help I don’t understand I’ll give u 15 points
Answer: [tex]\frac{4}{3}[/tex]
Step-by-step explanation:
This is a multiplication problem. You are multiplying [tex]\frac{1}{3}[/tex] by 4. This also means 4 divided by 3. They are both the same.
If the normality requirement is not satisfied (that is, np(1p) is not at least 10), then a 95% confidence interval about the population proportion will include the population proportion in ________ 95% of the intervals. (This is a reading assessment question. Be certain of your answer because you only get one attempt on this question.)
Answer:
less than
Step-by-step explanation:
If the normality requirement is not satisfied (that is, np(1 - p) is not at least 10), then a 95% confidence interval about the population proportion will include the population proportion in _less than__ 95% of the intervals.
The confidence interval consist of all reasonable values of a population mean. These are value for which the null hypothesis will not be rejected.
So, let assume that If the 95% confidence interval contains the value for the hypothesized mean, then the sample mean is reasonably close to the hypothesized mean. The effect of this is that the p- value is going to be greater than 0.05, so we fail to reject the null hypothesis.
On the other hand,
If the 95% confidence interval do not contains the value for the hypothesized mean, then the sample mean is far away from the hypothesized mean. The effect of this is that the p- value is going to be lesser than 0.05, so we reject the null hypothesis.
I need help with this question.
Answer:
Complement = 15 Degrees
Supplement = 105 Degrees
Step-by-step explanation:
The complement of an angle refers to the measure that will make the angle 90 degrees. So, the complement of 75 would be 15, since 90 - 75 = 15.
The supplement of an angle refers to the measure that will make the angle 180 degrees. So, the supplement of 75 would be 105, since 180-75 = 105.
Cheers.
Find a set of parametric equations for y= 5x + 11, given the parameter t= 2 – x
Answer:
[tex]x = 2-t[/tex] and [tex]y = -5\cdot t +21[/tex]
Step-by-step explanation:
Given that [tex]y = 5\cdot x + 11[/tex] and [tex]t = 2-x[/tex], the parametric equations are obtained by algebraic means:
1) [tex]t = 2-x[/tex] Given
2) [tex]y = 5\cdot x +11[/tex] Given
3) [tex]y = 5\cdot (x\cdot 1)+11[/tex] Associative and modulative properties
4) [tex]y = 5\cdot \left[(-1)^{-1} \cdot (-1)\right]\cdot x +11[/tex] Existence of multiplicative inverse/Commutative property
5) [tex]y = [5\cdot (-1)^{-1}]\cdot [(-1)\cdot x]+11[/tex] Associative property
6) [tex]y = -5\cdot (-x)+11[/tex] [tex]\frac{a}{-b} = -\frac{a}{b}[/tex] / [tex](-1)\cdot a = -a[/tex]
7) [tex]y = -5\cdot (-x+0)+11[/tex] Modulative property
8) [tex]y = -5\cdot [-x + 2 + (-2)]+11[/tex] Existence of additive inverse
9) [tex]y = -5 \cdot [(2-x)+(-2)]+11[/tex] Associative and commutative properties
10) [tex]y = (-5)\cdot (2-x) + (-5)\cdot (-2) +11[/tex] Distributive property
11) [tex]y = (-5)\cdot (2-x) +21[/tex] [tex](-a)\cdot (-b) = a\cdot b[/tex]
12) [tex]y = (-5)\cdot t +21[/tex] By 1)
13) [tex]y = -5\cdot t +21[/tex] [tex](-a)\cdot b = -a \cdot b[/tex]/Result
14) [tex]t+x = (2-x)+x[/tex] Compatibility with addition
15) [tex]t +(-t) +x = (2-x)+x +(-t)[/tex] Compatibility with addition
16) [tex][t+(-t)]+x= 2 + [x+(-x)]+(-t)[/tex] Associative property
17) [tex]0+x = (2 + 0) +(-t)[/tex] Associative property
18) [tex]x = 2-t[/tex] Associative and commutative properties/Definition of subtraction/Result
In consequence, the right answer is [tex]x = 2-t[/tex] and [tex]y = -5\cdot t +21[/tex].
Last year, Leila had $30,000 to invest. She invested some of it in an account that paid 6% simple interest per year, and she invested the rest in an account that paid 5% simple interest per year. After one year, she received a total of $1580 in interest. How much did she invest in each account?
Answer:
6%: $8,0005%: $22,000Step-by-step explanation:
Let x represent the amount invested at 6%. Then 30000-x is the amount invested at 5%. Leila's total earnings for the year are ...
0.06x +0.05(30000-x) = 1580
0.01x +1500 = 1580 . . . . . . . . . . . . simplify
0.01x = 80 . . . . . . . . . . . subtract 1500
x = 8000 . . . . . . . . . . . . multiply by 100
Leila invested $8000 at 6% and $22000 at 5%.
*please help* If multiple forces are acting on an object, which statement is always true?
The acceleration will be directed in the direction of the gravitational force.
The acceleration will be directed in the direction of the applied force.
The acceleration will be directed in the direction of the net force. <-- MY ANSWER
The acceleration will be directed in the direction of the normal force.
Answer: You are correct. The answer is choice C.
The sum of the vectors is the resultant vector, which is where the net force is directed.
An example would be if you had a ball rolling on a table and you bumped the ball perpendicular to its initial velocity, then the ball would move at a diagonal angle rather than move straight in the direction where you bumped it.
Acceleration is the change in velocity over time, so the acceleration vector tells us how the velocity's direction is changing.
The direction of the acceleration on a body upon which multiple forces are applied depends on the direction of the netforce acting on the body.
When multiple forces acts on a body, such that the different forces acts in different directions. The acceleration will be in the direction of the netforce. This is the direction where the Cummulative sum of the forces is greatest. Acceleration due to gravity is always acting downward, if the upward force is greater than the Gravitational force, then the acceleration won't be in that direction.Therefore, acceleration will be due in the direction of the netforce.
Learn more :https://brainly.com/question/17858024?referrer=searchResults
Literal Equations: 5(x + y) = 2x +7y, Solve for x
Answer:
x=2y/3
Step-by-step explanation:
Answer:
x = 2y/3
Step-by-step explanation:
5(x + y) = 2x + 7y
5x + 5y = 2x + 7y
5x - 2x = 7y - 5y
3x = 2y
x = 2y/3
Thus, The value of x = 2y/3
Which statement best describes what Rutherford concluded from the motion of the particles?
Answer:
some particle traveled through empty spaces between atoms and some particles were deflected by electrons
Step-by-step explanation:
The motion of particles will be
some particle traveled through empty spaces between atoms and some particles were deflected by electrons.
What was Rutherford Experiment?The vast majority of the alpha particles simply passed through the gold foil.Some of the alpha particles had a slight angle of deflection.Only a tiny fraction of the alpha particles rebounded.So, the observation made the stamement
He came to the conclusion that the majority of space in an atom was unoccupied since there was very little alpha particle deflection.The fact that very few particles were diverted from their course led him to the further conclusion that positive charge takes up very little space in an atom.Then, motion of particles will be
some particle traveled through empty spaces between atoms and some particles were deflected by electrons.
Learn more about Rutherford Experiment here:
https://brainly.com/question/2386617
#SPJ6