Answer:
The rental rate for the Fords is of $12 per day.
Step-by-step explanation:
This question is solved using a system of equations.
I am going to say that:
x is the cost of a Nissan.
y is the cost of a Ford.
z is the cost of a Chevrolet.
Three Nissans, two Fords, and four Chevrolets can be rented for $106 per day.
This means that:
[tex]3x + 2y + 4z = 106[/tex]
Two Nissans, four Fords, and three Chevrolets cost $107 per day
This means that:
[tex]2x + 4y + 3z = 107[/tex]
Four Nissans, three Fords, and two Chevrolets cost $102 per day.
This means that:
[tex]4x + 3y + 2z = 102[/tex]
From the first equation:
[tex]4z = 106 - 3x - 2y[/tex]
[tex]2z = 53 - 1.5x - y[/tex]
[tex]z = 26.5 - 0.75x - 0.5y[/tex]
Replacing into the third equation:
[tex]4x + 3y + 53 - 1.5x - y = 102[/tex]
[tex]2.5x + 2y = 49[/tex]
From the second equation:
[tex]2x + 4y + 3z = 107[/tex]
[tex]2x = 107 - 4y - 3z[/tex]
[tex]x = 53.5 - 2y - 1.5z[/tex]
[tex]x = 53.5 - 2y - 1.5(26.5 - 0.75x - 0.5y)[/tex]
[tex]x - 1.125x = 53.5 - 2y - 39.75 + 0.75y[/tex]
[tex]-0.125x = 13.75 - 1.25y[/tex]
[tex]0.125x = 1.25y - 13.75[/tex]
[tex]x = \frac{1.25y - 13.75}{0.125}[/tex]
[tex]x = 10y - 110[/tex]
Find the rental rate for the Fords.
We have to find y, so:
[tex]2.5x + 2y = 49[/tex]
[tex]2.5(10y - 110) + 2y = 49[/tex]
[tex]25y - 275 + 2y = 49[/tex]
[tex]27y = 324[/tex]
[tex]y = \frac{324}{27}[/tex]
[tex]y = 12[/tex]
The rental rate for the Fords is of $12 per day.
Donald has x twenty dollar bills and 1 yen dollar bill. How much money does Donald have?
Write your answer as an expression
I am authoring you to offer free insurance for a year the regular price is 6.99 this will save the customer almost_ a year
help please will give brainiest asap
Answer:
C
Step-by-step explanation:
Let me know if you need an explanation
I don’t know the answer!!
I’m new to this app and I need help if you know the answer please tell me I don’t know English very good please help me.
Answer:
A. 2.04 seconds
B. 5.92
C: 1.48 - 0.4 = 1.08 seconds
Step-by-step explanation:
~~~~~~~~~~~~~~~~~~~~~
USE THIS TO GET "B"
the f(-b/2a) is the highest point,
the vertex of the parabola [-b/2a, f(-b/2a)] will give you the time
and height of the highest point
~~~~~~~~~~~~~~~~~~~
USE THIS TO GET "A"... you will get two answers one will be negative
ignore that one , the positive one is the time to hit the ground
if you factor the equation (use the quadratic formula) you will get
the "zeros" that is where the ball is on the ground...
~~~~~~~~~~~~~~~~~~~~~~~
THIS IS FOR PART "C"
if you set the equation equal to 4.5 meters and factor that for the "zeros" you will get the two times that the ball is at that height.. subtract the two times for the duration
9 3/5 % as a decimal, rounded to 3 decimal places, is:
When a closed curve is parameterized by {x[t], y[t]}, then as you advance along the curve in the direction of the parameterization, which way do the tangent vectors {x'[t], y'[t]} at {x[t], y[t]} point; in the direction you are going, or in the direction opposite to the direction you are going?
Answer:
In the direction you are going,
Explanation:
We know that the tangent to {x[t], y[t]} are {x'[t], y'[t]}. Since {x'[t], y'[t]} are tangents at {x[t], y[t]}, we know that the tangent at a point is always parallel to the direction of the function at that point and in the direction of the function. So, the tangent vectors {x'[t], y'[t]} at {x[t], y[t]} point in my direction of motion as I move along the curve.
So, the tangent vectors {x'[t], y'[t]} at {x[t], y[t]} point in the direction you are going.
Hari earns Rs 4300 per month. He spends 80% from his income. How much does he save in a year? please give answer in step by step explaination
Answer:
4300 x 12= 51600
20/100 x 51600
10,320 Rs (also pay bohat kam hai :D )
Graph the line with slope
3/4
passing through the point (-1, 4).
Answer:
y=3/4x+19/4
Step-by-step explanation:
y=mx+c
4=3/4*-(1)+c
4=-3/4+c
c=4+3/4
c=19/4
y=3/4x+19/4
Simplify the trigonometric expression cos(2x)+1 using Double-Angle identities
9514 1404 393
Answer:
C. 2cos²(x)
Step-by-step explanation:
The relevant identities are ...
cos(2x) = cos²(x) -sin²(x)
cos²(x) = 1 -sin²(x)
__
Then the expression can be simplified to ...
cos(2x) +1 = (cos²(x) -sin²(x)) +1 = cos²(x) +(1 -sin²(x)) = cos²(x) +cos²(x)
= 2cos²(x)
Use appropriate algebra and Theorem 7.2.1 to find the given inverse Laplace transform. (Write your answer as a function of t.)
(s + 1)3
Expand the expression as
(s + 1)³/s ⁵ = (s ³ + 3s ² + 3s + 1)/s ⁵
… = 1/s ² + 3/s ³ + 3/s ⁴ + 1/s ⁵
Then taking the inverse transform, you get
LT⁻¹ [1/s ² + 3/s ³ + 3/s ⁴ + 1/s ⁵]
… = LT⁻¹ [1/s ²] + LT⁻¹ [3/s ³] + LT⁻¹ [3/s ⁴] + LT⁻¹ [1/s ⁵]
… = LT⁻¹ [1!/s ²] + 3/2 LT⁻¹ [2!/s ³] + 1/2 LT⁻¹ [3!/s ⁴] + 1/24 LT⁻¹ [4!/s ⁵]
… = t + 3/2 t ² + 1/2 t ³ + 1/24 t ⁴
Rewrite the fraction in the sentence below as a percentage. From 125 yards away, a marksman hit 11/20 of the targets last year.
Answer:
Step-by-step explanation:
11/20 = 55/100 = 55%
A function of the form f(x)=ab^x is modified so that the b value remains the same but the a value is increased by 2. How do the domain and range of a new function compare to the domain and range of the original function?
Answer:
The domain and range remain the same.
Step-by-step explanation:
Hi there!
First, we must determine what increasing a by 2 really does to the exponential function.
In f(x)=ab^x, a represents the initial value (y-intercept) of the function while b represents the common ratio for each consecutive value of f(x).
Increasing a by 2 means moving the y-intercept of the function up by 2. If the original function contained the point (0,x), the new function would contain the point (0,x+2).
The domain remains the same; it is still the set of all real x-values. This is true for any exponential function, regardless of any transformations.
The range remains the same as well; for the original function, it would have been [tex]y\neq 0[/tex]. Because increasing a by 2 does not move the entire function up or down, the range remains the same.
I hope this helps!
if (a + b) = 73 and a b =65 find value of a²+ b²
Step-by-step explanation:
Here,
by formula a^2+b^2=(a+b)^2-2ab
so,
or,(a+b)^2-2ab
or,(73)^2-2×65
or,5329-126
=5203 is the answer
Find x so that the distance between the points (1,2) and
(x, -10) is 13
Answer:
x = -4 or 6
Step-by-step explanation:
12^2 + (1-x)^2 = 13^2
(1-x)^2= 13^2 - 12^2
(1-x)^2= 25
1-x = 5
x = -4 or 6
obtain the value of X for which (X+1),(X-5),(X-2) is a geometric progression.hence find the sum of the first 12 terms of the progression.
If x + 1, x - 5, and x - 2 are in a geometric progression, then there is some constant r for which
x - 5 = r (x + 1)
==> r = (x - 5) / (x + 1)
and
x - 2 = r (x - 5)
==> r = (x - 2) / (x - 5)
Then
(x - 5) / (x + 1) = (x - 2) / (x - 5)
Solve for x :
(x - 5)² = (x - 2) (x + 1)
x ² - 10x + 25 = x ² - x - 2
-9x = -27
x = 3
It follows that the ratio between terms is
r = (3 - 5) / (3 + 1) = -2/4 = -1/2
Now, assuming x + 1 = 4 is the first term of the G.P., the n-th term a(n) is given by
a(n) = 4 (-1/2)ⁿ⁻¹
The sum of the first 12 terms - denoted here by S - is then
S = 4 (-1/2)⁰ + 4 (-1/2)¹ + 4 (-1/2)² + … + 4 (-1/2)¹¹
Solve for S :
S = 4 [(-1/2)⁰ + (-1/2)¹ + (-1/2)² + … + (-1/2)¹¹]
(-1/2) S = 4 [(-1/2)¹ + (-1/2)² + (-1/2)³ + … + (-1/2)¹²]
==> S - (-1/2) S = 4 [(-1/2)⁰ - (-1/2)¹²]
==> 3/2 S = 4 (1 - 1/4096)
==> S = 8/3 (1 - 1/4096)
==> S = 1365/512
There is a close relationship between the air pressure inside a hurricane and its maximum sustained wind speed: y=−1.22x+1250 where x is the air pressure in millibars (kPa) and y is the wind speed in knots (nautical miles per hour).
What does the slope of the line represent?
A. the change in wind speed for every 1 kPa increase in air pressure
B. the wind speed of a hurricane with an air pressure of 1000 kPa
C. the wind speed of a hurricane with an air pressure of 0 kPa
D. the change in wind speed for every hour
Answer:
A. the change in wind speed for every 1 kPa increase in air pressure
Step-by-step explanation:
The equation of a straight line is given by:
y = mx + b;
where y, x are variables, m is the slope (rate of change) of the line and b is the y intercept (value of y when x = 0)
Given the line y=−1.22x+1250 where x is the air pressure in millibars (kPa) and y is the wind speed in knots.
The slope of the line is -1.22. The slope means that there is a decrease in wind speed by 1.22 miles per hour for every increase of 1 kPa in air pressure.
Please help!
I will be giving 20 points
Also give small explanations if needed
Solve equation by using the quadratic formula
Answer:
x = -2
Step-by-step explanation:
x^2 + 4x + 4 = 0
quadratic formula:
-b +or- sqrt(b^2-4ac)/2a
-4 +/- sqrt ((-4)^2-4*1*4)/2*1
-4+/- sqrt(16-16) / 2
-4 +/- 0 / 2
-4/2
-2
12,963 rounded to the nearest hundredth
9514 1404 393
Answer:
12,963.00 (in the US)12,96 (some other places)Step-by-step explanation:
In the US, a decimal point is represented by a period. This value is interpreted as an integer with no fractional part, so the fractional part is zero:
12,963.00
__
Some other places, a comma is used to identify the beginning of the decimal fraction. In that form, this number has a fractional part that has 3 as its thousandths digit. The value of 3 is less than 5, so the number is simply truncated at the hundredths place.
12,96
If the thousandths digit were 5 or greater, then 1 hundredth would be added to the truncated number.
An angle measures 19.4° more than the measure of its complementary angle. What is the measure of each angle?
Answer:
37.8+52.2=90
Step-by-step explanation: x + (x + 14.4) = 90
2x + 14.4 = 90
2x = 75.6
x = 37.8 (one angle)
And (x + 14.4) = 52.2 (other angle).
Find the scale factor where the pre-image is the large triangle and the image is the small triangle.
A. 4/5
B. 3/2.4
C. 2.4/3
D. 5/4
Answer:
Option B
Step-by-step explanation:
If the larger triangle (Preimage) is dilated by a scale factor 'k' to form the image triangle (small triangle),
Scale factor = [tex]\frac{\text{Length of one side of the image triangle}}{\text{Length of one side of the preimage}}[/tex]
k = [tex]\frac{3}{2.4}[/tex]
Therefore, Option B will be the correct option.
What are the Values for x,y,z?
Answer:
it can be any number1234567890
What is the length of CD? In this diagram, AABC ~ AEDC. 20-% c * 7 21
Answer:
[tex]\frac{BC}{DC}=\frac{AC}{EC}[/tex]
[tex]\frac{20-x}{x} =\frac{21}{7}[/tex]
[tex]\frac{20-x}{x} =3[/tex]
[tex]20-x=3x[/tex]
[tex]4x=20[/tex]
[tex]x=5[/tex]
[tex]So, CD=5[/tex]
OAmalOHopeO
A machining center is in charge of producing 225 parts per day. The parts width. Any parts produced between 250mm and 260mm are considered gless than 250mm must be reworked at an additional cost of $8 per part. 260mm must be reworked at an additional cost of $2.50 per part. The varquantified as a standard deviation of 5.0mm. Measurements on these parhave the ability to set up the machine to achieve whatever mean width value you wish.
Required:
Setup a data table to determine the mean width setting that will minimize expected rework cost ($8 per small part and $2.50 per large part).
What is 5x4 please help
Answer:
5 x 4 = 20.
Step-by-step explanation:
5 + 5 = 10
5 + 10 = 15
5 + 15 = 20!
Please mark brainliest!
- KanaKittyKat
Answer:
5 x 4 = 20
5 + 5 + 5 + 5 = 20
I RLLY NEED HELP!!!!!!
Answer:
Angle ADB = 60 degrees
Step-by-step explanation:
This is a 60 60 60 triangle, which means all of its angles equal 60 degrees. Therefore angle ADB is 60 degrees.
Need help ASAP
In the figure, if the measure of ∠8 = 72o, what's the measure of ∠14?
Four Bisecting Lines
Question 3 options:
108°
72°
98°
62°
Answer:
72°
Step-by-step explanation:
[tex] m\angle \: 6 = m \angle \: 8 \\ (corresponding \: \angle s) \\ m\angle \: 8 = 72 \degree \\ \therefore \: m\angle \: 6 = 72 \degree \\ \\ m\angle \: 14 = m \angle \: 6 \\ (corresponding \: \angle s) \\\therefore \: m\angle \: 14 = 72 \degree [/tex]
Which number can be distributed across two terms
inside parentheses? 3/5 V
X-6
18-4x-1
5
tep 2 Combine like terms that are on the same side of
the equation. Which terms can be combined?
18 and -1
3/5x and 4x
6 and 1
Check
Intro
9514 1404 393
Answer:
3/5 can be distributed (correct answer is shown)18 and -1 can be combinedStep-by-step explanation:
The only factor outside parentheses that contain 2 terms is the factor 3/5. It can be distributed. (The correct response is shown.)
3/5 can be distributed
__
The only like terms that reside on the same side of the equal sign are ...
18 and -1
What are the domain and range of the function represented by the table?
X
-1
-0.5
0
0.5
1
y
3
4
5
6
7
A. Domain: -1 sxs 1
Range: y2 3
B. Domain: -1sxs1
Range: 3, 4, 5, 6, 7}
C. Domain:{-1, -0.5, 0, 0.5, 1}
Range: {3, 4, 5, 6, 7}
D. Domain:{-1,-0.5, 0, 0.5, 1}
Range: y23
Yogi is 6 years older than Michelle. The sum of their ages is 26. Write a system of linear equations to represent this information. What are their ages?
Answer:
10 and 16, x+(x+6)=26
Step-by-step explanation:
Michelle has an age we don't know, so we put her age as x.
Yogi is 6 years older than her, so her age is x+6
Michelle=x
Yogi=x+6
we know both their ages equal 26. so we set it up as
x+(x+6)=26
combining like terms we get
2x+6=26
subtract 6 from both sides
2x=20
divide both sides by 2
x=10
now that we have the value for x, we plug it into their original ages
Michelle is 10, because her age is just x.
Yogi is 16, because her age is x+6