Two charged particles exert an electric force of 27 N on each other. What will the magnitude of the force be if the distance between the particles is reduced to one-third of the original separation

Answers

Answer 1

Answer:

243 N

Explanation:

The formula for electromagnetic force is F= Kq1q2/r^2

where r is the distance between the charges, if the distance between the charges is reduced by 1/3 then F will increase by 9 [(1/3r)^2 becomes 1/9r which is 9F] so 27*9 is 243N


Related Questions

What is significant about the primary colors of pigments?
They can be mixed together to make almost any other color.
Any two primary colors of pigments combine to make white pigment.
Each primary color of pigment absorbs all other colors.
Any two primary colors of pigments combine to make black pigment.

Answers

Answer:

They can be mixed together to make almost any other color.

Explanation:

All the three primary colors can mix to form white color.

Blue and red mix to form a black color.

A student measure the length of a laboratory bench with a meter ruler. Which of the following values is the most approbriate way to record the result ? a.4.022m b.4.02m c.4.0m d.4m​

Answers

Answer:

Well a meter stick has increments of a centimeter, and since 1 cm=0.01m he should record it as 4.02m(b)

Explanation:

Light energy is part of a larger form of energy known as __________.

Answers

Light energy is part of a larger form of energy known as electromagnetic energy. Details about electromagnetic energy can be found below.

What is electromagnetic radiation?

Electromagnetic spectrum is the entire range of wavelengths of all known electromagnetic radiations extending from gamma rays through visible light, infrared, and radio waves, to X-rays.

Visible light is the part of the electromagnetic spectrum, between infrared and ultraviolet, that is visible to the human eye.

Therefore, Light energy is part of a larger form of energy known as electromagnetic energy.

Learn more about electromagnetic spectrum at: https://brainly.com/question/23727978

#SPJ1

g How much buoyancy force, in N, a person with a mass of 70 kg experiences by just standing in air

Answers

Answer:

686.7N

Explanation:

Given data

Mass= 70kg

We know that the buoyant force experienced by the person is equal to the weight of the person

Hence the weight is

Weight = mass* Acceleration

Weight= 70*9.81

Weight= 686.7N

Therefore the weight is 686.7N

David is driving a steady 30 m/s when he passes Tina, who is sitting in her car at rest. Tina begins to accelerate at a steady 2.0 m/s2 at the instant when David passes. How far does Tina drive before passing David?

Answers

a. 441 m B: 46.0 m/s

A body of mass 4kg is moving with a velocity of 108km/h . find the kenetic energy of the body.​

Answers

Answer:

KE = 2800 J

Explanation:

Usually a velocity is expressed as m/s. Then the energy units are joules.

[tex]\frac{108 km}{hr} * \frac{1000m}{1 km} * \frac{1 hour}{3600 seconds} =\frac{108*1000 m}{3600sec}[/tex]

v = 30 m / sec

KE = 1/2 * 4 * (30)^2

KE =2800 kg m^2/sec^2

KE = 2800 Joules

Find the starting pressure of CCl4 at this temperature that produces a total pressure of 1.1 atm at equilibrium. Express the pressure in atmospheres to three significant figures.

Answers

The complete question is as follows: At 700 K, [tex]CCl_{4}[/tex] decomposes to carbon and chlorine. The Kp for the decomposition is 0.76.

Find the starting pressure of [tex]CCl_{4}[/tex] at this temperature that will produce a total pressure of 1.1 atm at equilibrium.

Answer: The starting pressure of [tex]CCl_{4}[/tex] is 0.79 atm.

Explanation:

The equation for decomposition of [tex]CCl_{4}[/tex] is as follows.

[tex]CCl_{4}(g) \rightleftharpoons C(s) + 2Cl_{2}(g)[/tex]

Let us assume that initial concentration of [tex]CCl_{4}[/tex] is 'a'. Hence, the initial and equilibrium concentrations will be as follows.

                   [tex]CCl_{4}(g) \rightleftharpoons C(s) + 2Cl_{2}(g)[/tex]

Initial:            a                0          0

Equilibrium:  (a - x)          0          2x

Total pressure = (a - x) + 2x = a + x

As it is given that the total pressure is 1.1 atm.

So, a + x = 1.1

a = 1.1 - x

Now, expression for equilibrium constant for this equation is as follows.

[tex]K_{p} = \frac{P^{2}_{Cl_{2}}}{P_{CCl_{4}}}\\0.76 = \frac{(2x)^{2}}{(a - x)}\\0.76 = \frac{4x^{2}}{1.1 - x - x}\\0.76 = \frac{4x^{2}}{1.1 - 2x}\\x = 0.31 atm[/tex]

Hence, the value of 'a' is calculated as follows.

a + x = 1.1 atm

a = 1.1 atm - x

  = 1.1 atm - 0.31 atm

  = 0.79 atm

Thus, we can conclude that starting pressure of [tex]CCl_{4}[/tex] is 0.79 atm.

The north pole of magnet A will __?____ the south pole of magnet B

Answers

Answer:

A will attract

B will repare

A
Fluids in which the shear stress must reach
certain minimum value(yield stress)
before flow commences are called

Answers

Answer:

Plastic

Explanation:

Shear Modulus can be defined as the ratio of shear stress to shear strain with respect to a physical object.

This ultimately implies that, Shear Modulus arises as a result of the application of a shear force on an object or body which eventually leads to its deformation. Thus, this phenomenon is simply used by scientists to measure or determine the rigidity of an object or body.

Fluids in which the shear stress must reach certain minimum value (yield stress) before flow commences are called plastic. Thus, a plastic would only begin to flow when its shear stress attain a certain minimum value (yield stress). The unit of measurement of yield stress is usually mega pascal (MPa).

A proton enters a region of constant magnetic field, perpendicular to the field and after being accelerated from rest by an electric field through an electrical potential difference of 330 V. Determine the magnitude of the magnetic field, if the proton travels in a circular path with a radius of 23 cm.

Answers

Answer:

 B = 1.1413 10⁻² T

Explanation:

We use energy concepts to calculate the proton velocity

starting point. When entering the electric field

        Em₀ = U = q V

final point. Right out of the electric field

        em_f = K = ½ m v²

energy is conserved

       Em₀ = Em_f

       q V = ½ m v²

       v = [tex]\sqrt{2qV/m}[/tex]

we calculate

       v = [tex]\sqrt{\frac{ 2 \ 1.6 \ 10^{-19} \ 300}{1.67 \ 0^{-27}} }[/tex]

       v = [tex]\sqrt{632.3353 \ 10^8}[/tex]

       v = 25.15 10⁴ m / s

now enters the region with magnetic field, so it is subjected to a magnetic force

        F = m a

the force is

       F = q v x B

as the velocity is perpendicular to the magnetic field

       F = q v B

acceleration is centripetal

       a = v² / r

we substitute

       qvB =1/2  m v² / r

       B =  v[tex]\frac{m v}{2 q r}[/tex]

we calculate

       B = [tex]\frac{1.67 \ 10^{-27} 25.15 \ 10^4 }{1.6 \ 10^{-19} 0.23}[/tex]

       B = 1.1413 10⁻² T

When you hammer a nail into wood, the nail heats up. 30 Joules of energy was absorbed by a 5-g nail as it was hammered into place. How much does the nail's temperature increase (in °C) during this process? (The specific heat capacity of the nail is 450 J/kg-°C, and round to 3 significant digits.

Answers

Answer:

13.33 K

Explanation:

Given that,

Heat absorbed, Q = 30 J

Mass of nail, m = 5 g = 0.005 kg

The specific heat capacity of the nail is 450 J/kg-°C.

We need to find the increase in the temperature during the process. The heat absorbed in a process is as follows:

[tex]Q=mc\Delta T\\\\\Delta T=\dfrac{Q}{mc}\\\\\Delta T=\dfrac{30}{0.005\times 450}\\\\=13.33\ K[/tex]

So, the increase in temperature is 13.33 K.

Two sinusoidal waves have the same frequency and wavelength. The wavelength is 20 cm. The two waves travel from their respective sources and reach the same point in space at the same time, resulting in interference. One wave travels a larger distance than the other. For each of the possible values of that extra distance listed below, identify whether the extra distance results in maximum constructive interference, maximum destructive interference, or something in-between.
a. 10 cm - (A) in-between (2) maximum destructive (3) maximum constructive.
b. 15 cm - (A) in-between (2) maximum destructive (3) maximum constructive.
c. 20 cm - (A) in-between (2) maximum destructive (3) maximum constructive.
d. 30 cm - (A) in-between (2) maximum destructive (3) maximum constructive.
e. 35 cm - (A) in-between (2) maximum destructive (3) maximum constructive.
f. 40 cm - (A) in-between (2) maximum destructive (3) maximum constructive.

Answers

Answer:

Explanation:

When the path difference is equal to wave length or its integral multiple, constructive interference occurs . If it is odd multiple of half wave length , then destructive interference occurs.

For constructive interference , path diff = n λ

For destructive interference path diff = ( 2n+ 1 ) λ /2

where λ is wave length of wave , n is an integer.

a )

path diff = 10 cm which is half the wavelength , so maximum destructive interference will occur.

b )

path diff = 15 cm which is neither  half the wavelength nor full wavelength , so in between is the right option.

c )

path diff = 20 cm which is equal to  the wavelength , so maximum constructive  interference will occur.

d)

path diff = 30 cm which is 3 times half the wavelength , so maximum destructive interference will occur.

e)

path diff = 35 cm which is neither integral multiple of half the wavelength , nor integral multiple of wavelength so in between is th eright answer.

f )

path diff = 40 cm which is 2 times the wavelength , so maximum constructive  interference will occur

A system is acted on by its surroundings in such a way that it receives 50 J of heat while simultaneously doing 20 J of work. What is its net change in internal energy

Answers

Answer:

30J

Explanation:

Given data

The total quantity of heat recieved= 50J

Quantity of heat used to do work= 20J

Hence the net change is

ΔU= Total Heat - Net work

ΔU= 50-20

ΔU= 30J

Hence the change in the internal energy is 30J

Calculate the change in length of a 90.5 mm aluminum bar that has increased in temperature by from -14.4 oC to 154.6 oC
Take the coefficient of expansion to be 25 x 10-6 (oC)-1 . Write the answer in meters with three significant figures

Answers

Answer:

 ΔL = 3.82 10⁻⁴ m

Explanation:

This is a thermal expansion exercise

          ΔL = α L₀ ΔT

          ΔT = T_f - T₀

where ΔL is the change in length and ΔT is the change in temperature

Let's reduce the length to SI units

          L₀ = 90.5 mm (1m / 1000 mm) = 0.0905 m

let's calculate

          ΔL = 25.10⁻⁶ 0.0905 (154.6 - (14.4))

          ΔL = 3.8236 10⁻⁴ m

     

using the criterion of three significant figures

          ΔL = 3.82 10⁻⁴ m

A cannon and a supply of cannonballs are inside a sealed railroad car of length L, as in Fig. 7-33. The cannon fires to the right; the car recoils to the left. The cannonballs remain in the car after hitting the far wall. (a) After all the cannonballs have been fired, what is the greatest distance the car can have moved from its original position

Answers

Answer:

Initially let n cannonballs with a total mass of m be to the left of the center of mass at L /2 and the mass of the car at L/2

x1 =  [-m / (m + M)] * L / 2   is the original position of the CM

x2 = (m (x + L/2) + M x) / (m + M) * L/2 final position of CM with all cannon balls to the right

[-m x - m L / 2 + m x - M x] / (M + m) * L/2

= - ( m L / 2 + M x) / (m + M) * L/2 = Xcm

Check the math, but maximum distance occurs when the cannonballs of mass m move from -L/2 to L/2 and the car of mass M moves from zero to -x

An electron has an initial speed of 8.06 x10^6 m/s in a uniform 5.60 x 10^5 N/C strength electic field.The field accelerates the electron in the direction opposite to its initial velocity.
(a) What is the direction of the electric field?
i. opposite
ii. direction to the electron's initial velocity
iii. same direction as the electron's initial velocity
iv. not enough information to decide
(b) How far does the electron travel before coming to rest? m
(c) How long does it take the electron to come to rest? s
(d) What is the electron's speed when it returns to its starting point?

Answers

Answer:

Explanation:

a)

The force on electron acts opposite to the velocity , and direction of force on electron is always opposite to direction of electric field .

Hence direction of electric field must be in the same  in which electrons travels.

Hence option iii is correct.

b )

deceleration a = force / mass

= qE / m

= 1.6 x 10⁻¹⁶ x 5.6 x 10⁵ / 9.1 x 10⁻³¹

= .98 x 10²⁰ m /s²

v² = u² - 2 a s

0 = (8.06 x 10⁶ )² - 2 x .98 x 10²⁰ s

s = 64.96 x 10¹² / 1.96 x 10²⁰

= 33.14 x 10⁻⁸ m

c ) time required

= 8.06 x 10⁶ / .98 x 10²⁰

= 8.22 x 10⁻¹² s .

d ) Its speed will be same as that in the beginning ie 8.06 x 10⁶ m/s .

Answer:

(a) Option (i)

(b) 6.6 x 10^-4 m  

(c) 8.2 x 10^-11 s

Explanation:

initial velocity, u = 8 .06 x 10^6 m/s

Electric field, E = 5.6 x 10^5 N/C

(a) The direction of field is opposite.

Option (i).

(b) Let the distance is s.  

Use third equation of motion

[tex]v^2 = u^2 + 2 a s \\\\0 = u^2 - 2 \times \frac{qE}{m}\times s\\\\8.06\times 10^6\times 8.06\times 10^6 = \frac {1.6\times 10^{-19}\times 5.6\times 10^5}{9.1\times 10^{-31}} s\\\\s = 6.6\times 10^{-4} m[/tex]

(c) Let the time is t.

Use first equation of motion.

[tex]v = u + a t \\\\0 = u - \times \frac{qE}{m}\times t\\\\8.06\times 10^6 = \frac {1.6\times 10^{-19}\times 5.6\times 10^5}{9.1\times 10^{-31}} t\\\\t = 8.2\times 10^{-11} s[/tex]

g A student slides her 80.0-kg desk across the level floor of her dormitory room a distance 3.00 m at constant speed. If the coefficient of kinetic friction between the desk and the floor is 0.400, how much work did she do

Answers

The desk is in equilbrium, so Newton's second law gives

F (horizontal) = p - f = 0

F (vertical) = n - mg = 0

==>   n = mg

==>   p = f = µn = µmg = 0.400 (80.0 kg) g = 313.6 N

The student pushes the desk 3.00 m, so she performs

W = (313.6 N) (3.00 m) = 940.8 Nm ≈ 941 J

of work.

a vehicle start moving at 15m/s. How long will it take to stop at a distance of 15m?​

Answers

Answer:

Explanation:

Speed= distance/time

Or time = distance/speed

According to your question

Speed=15m/s

and. Distance=1.2km. ,we must change kilometer in meter because given speed is in m/s

D= 1.2km = 1.2×1000m =1200meter

Time = distance/ speed

1200/15 =80second

Or. 1min and 20 sec will be your answer.

a) Viewers of Star Trek hear of an antimatter drive on the Starship Enterprise. One possibility for such a futuristic energy source is to store antimatter charged particles in a vacuum chamber, circulating in a magnetic field, and then extract them as needed. Antimatter annihilates with normal matter, producing pure energy. What strength magnetic field is needed to hold antiprotons, moving at 5.00 x10^7 m/s in a circular path 2.00m in radius? Antiprotons have the same mass as protons but the opposite (negative) charge.b) Is this field strength obtainable with today's technology or is it a futuristic possibility?

Answers

Charge me and do I name for meters

Two blocks in contact with each other are pushed to the right across a rough horizontal surface by the two forces shown. If the coefficient of kinetic friction between each of the blocks and the surface is 0.30, determine the magnitude of the force exerted on the 2.0-kg block by the 3.0-kg block.

Answers

I assume the blocks are pushed together at constant speed, and it's not so important but I'll also assume it's the smaller block being pushed up against the larger one. (The opposite arrangement works out much the same way.)

Consider the forces acting on either block. Let the direction in which the blocks are being pushed by the positive direction.

The 2.0-kg block feels

• the downward pull of its own weight, (2.0 kg) g

• the upward normal force of the surface, magnitude n₁

• kinetic friction, mag. f₁ = 0.30n₁, pointing in the negative horizontal direction

• the contact force of the larger block, mag. c₁, also pointing in the negative horizontal direction

• the applied force, mag. F, pointing in the positive horizontal direction

Meanwhile the 3.0-kg block feels

• its own weight, (3.0 kg) g, pointing downward

• normal force, mag. n₂, pointing upward

• kinetic friction, mag. f₂ = 0.30n₂, pointing in the negative horizontal direction

• contact force from the smaller block, mag. c₂, pointing in the positive horizontal direction (this is the force that is causing the larger block to move)

Notice the contact forces form an action-reaction pair, so that c₁ = c₂, so we only need to find one of these, and we can get it right away from the net forces acting on the 3.0-kg block in the vertical and horizontal directions:

• net vertical force:

n₂ - (3.0 kg) g = 0   ==>   n₂ = (3.0 kg) g   ==>   f₂ = 0.30 (3.0 kg) g

• net horizontal force:

c₂ - f₂ = 0   ==>   c₂ = 0.30 (3.0 kg) g8.8 N

what is the average velocity if the initial velocity is at rest and the final velocity is 16 m/s

Answers

Answer:

8m/s

Explanation:

Vavg= 16-0/2=8m/s

A ball is thrown from ground level with an initial speed of 24.5 m/s at an angle of 35.5 degrees above the horizontal. The ball hits a wall that is 25.8 meters horizontally from where it started. How high (meters) does the ball hit on the wall?

Answers

6.07 m

Explanation:

Given:

[tex]v_0=24.5\:\text{m/s}[/tex]

[tex]\theta_0 = 35.5°[/tex]

First, we need to find the amount of time it takes to travel a horizontal distance of 25.8 m. We know that

[tex]x = v_{0x}t \Rightarrow t = \dfrac{x}{v_0 \cos \theta_0}[/tex]

or

[tex]t = 1.29\:\text{s}[/tex]

To find the vertical height where the ball hit the wall, we use

[tex]y = v_{0y}t - \frac{1}{2}gt^2[/tex]

[tex]\:\:\:\:=(24.5\:\text{m/s})\sin 35.5(1.29\:\text{s}) \\ - \frac{1}{2}(9.8\:\text{m/s}^2)(1.29\:\text{s})^2[/tex]

[tex]\:\:\:\:=6.07\:\text{m}[/tex]

You place an 8 kg ball on the top of your 2 cm^2 finger tip. Calculate the
PRESSURE. Show MATH, answer and unit.

Answers

Answer:

the pressure exerted by the object is 392,000 N/m²

Explanation:

Given;

mass of the object, m = 8 kg

area of your finger, A = 2 cm² = 2.0 x 10⁻⁴ m²

acceleration due to gravity, g = 9.8 m/s²

The pressure exerted by the object is calculated as;

[tex]Pressure = \frac{F}{A} = \frac{mg}{A} = \frac{8 \times 9.8}{2\times 10^{-4}} = 392,000 \ N/m^2[/tex]

Therefore, the pressure exerted by the object is 392,000 N/m²

PLEASE HELP ME WITH THIS ONE QUESTION
What is the rest energy of a proton? (c = 2.9979 x 10^9 m/s, mp = 1.6726 x 10^-27)

Answers

Answer:

multiply mp and c^2

Explanation:

e=mc^2

NEED HELP ASAP- Please show work

The angular position of an object is given by θ = 4t3 +10t −40 , where θ is in radians and t is in seconds what is:

(a) (5 points) The angular velocity at t = 2 s?

(b) (5 points) The angular acceleration at t = 2 s?

Answers

Answer:

Look at work

Explanation:

Θ= 4t^3+10t-40

a) In order to find ω, we need to find displacement so plug in t=2 to find Θ.

Θ= 4*8+20-40=12

use ω=Θ/t

Plug in values

ω=6 rad/s

b) In order to find α we use ω/t.

Plug in values

α=6/2= 3 rad/s^2

A 55-kg block, starting from rest, is pushed a distance of 5.0 m across a floor by a horizontal force Fp whose magnitude is 140 N. Fp is parallel to the displacement of the block. The final speed of the block is 2.35 m/s.
a) How much work was converted to thermal energy? What work did friction do on the box?
b) What is the coefficient of friction?

Answers

Answer:

The answer is "151.25 J and -547.64 J".

Explanation:

[tex]u = 0\\\\v = 2.35\ \frac{m}{sec}\\\\d = 5.0 \ m\\\\[/tex]

Using formula:

[tex]v^2 = u^2 + 2 \times a \times d\\\\2.35^2 = 0^2 + 2 \times a \times 5\\\\a = \frac{2.35^2}{10} \\\\[/tex]

   [tex]= 0.55 \ \frac{m}{sec^2}\\\\[/tex]

[tex]F_{net} = m \times a\\\\F_{net} = 55 \times 0.55 = 30.25\ N\\\\[/tex]

Calculating the Work by net force

[tex]W = F_{net}\times d\\\\W = 30.25 \times 5 = 151.25 \ J\\\\[/tex]

The above work is converted into thermal energy.

Now,

[tex]F_{net} = F_p - F_f\\\\F_p = 140 \ N\\\\F_f = u_k\times m \times g = u_k \times 55 \times 9.81\\\\F_f = 539.55 \times u_k\\\\30.25 = 140 - u_k \times 55 \times 9.81\\\\u_k = \frac{(140 - 30.25)}{(55\times 9.81)}\\\\uk = 0.203 = \text{Coefficient of friction}\\\\W_f = -F_f \times d\\\\W_f = -0.203 \times 55 \times 9.81 \times 5\\\\Work\ done\ by\ friction = -547.64 \ J[/tex]

The earth's radius is about 4000 miles. Kampala, the capital of Uganda, and Singapore are both nearly on the equator. The distance between them is 5000 miles as measured along the earth's surface.
a. Through what angle do you turn, relative to the earth, if you fly from Kampala to Singapore? Give your answer in both radians and degrees.
b. The flight from Kampala to Singapore take 9 hours. What is the plane's angular speed relative to the earth?

Answers

Answer:

a) the required angle in both radian and degree is  1.25 rad and 71.6°

b) the plane's angular speed relative to the earth is 3.86 × 10⁻⁵ rad/sec

Explanation:

Given the data in the question;

a)

we know that The expression for the angle subtended by an arc of circle at the center of the circle is,

θ = Length / radius

given that Length is 5000 miles and radius is 4000 miles

we substitute

θ = 5000 miles / 4000 miles

θ = 1.25 rad

Radian to Degree

θ = 1.25 rad × ( 180° / π rad )

θ =  71.6°

Therefore, required angle in both radian and degree is  1.25 rad and 71.6°

b)

The flight from Kampala to Singapore take 9 hours.

the plane's angular speed relative to the earth = ?

we know that, the relation between angular velocity and angular displacement is;

ω = θ / t

given that θ is 1.25 rads and time t is 9 hours or ( 9 × 3600 sec ) = 32400 sec

we substitute

ω = 1.25 rad / 32400 sec

ω = 3.86 × 10⁻⁵ rad/sec

Therefore, the plane's angular speed relative to the earth is 3.86 × 10⁻⁵ rad/sec

The gravitational field strength due to its planet is 5N/kg What does it mean?

Answers

Answer:

The weight of an object is the force on it caused by the gravity due to the planet. The weight of an object and the gravitational field strength are directly proportional. For a given mass, the greater the gravitational field strength of the planet, the greater its weight.

Weight can be calculated using the equation:

weight = mass × gravitational field strength

This is when:

weight (W) is measured in newtons (N)

mass (m) is measured in kilograms (kg)

gravitational field strength (g) is measured in newtons per kilogram (N/kg)

1. A block of mass m = 10.0 kg is released with a speed v from a frictionless incline at height 7.00 m. The
block reaches the horizontal ground and then slides up another frictionless incline as shown in Fig. 1.1. If the
horizontal surface is also frictionless and the maximum height that the block can slide up to is 26.0 m, (a) what
is the speed v of the block equal to when it is released and (b) what is the speed of the block when it reaches
the horizontal ground? If a portion of length 1 2.00 m on the horizontal surface is frictional with coefficient
of kinetic friction uk = 0.500 (Fig. 1.2) and the block is released at the same height 7.00 m with the same
speed v determined in (a), (c) what is the maximum height that the block can reach, (d) what is the speed of the
block at half of the maximum height, and (e) how many times will the block cross the frictional region before
it stops completely?
1 = 2.00 m (frictional region)

Answers

Let A be the position of the block at the top of the first incline; B its position at the bottom of the first incline; C its position at the bottom of the second incline; and D its position at the top of the second incline. I'll denote the energy of the block at a given point by E (point).

At point A, the block has total energy

E (A) = (10.0 kg) (9.80 m/s²) (7.00 m) + 1/2 (10.0 kg) v₀²

E (A) = 686 J + 1/2 (10.0 kg) v₀²

At point B, the block's potential energy is converted into kinetic energy, so that its total energy is

E (B) = 1/2 (10.0 kg) v₁²

The block then slides over the horizontal surface with constant speed v₁ until it reaches point C and slides up a maximum height of 26.0 m to point D. Its total energy at D is purely potential energy,

E (D) = (10.0 kg) (9.80 m/s²) (26.0 m) = 2548 J

Throughout this whole process, energy is conserved, so

E (A) = E (B) = E (C) = E (D)

(a) Solve for v₀ :

686 J + 1/2 (10.0 kg) v₀² = 2548 J

==>   v₀19.3 m/s

(b) Solve for v₁ :

1/2 (10.0 kg) v₁² = 2548 J

==>   v₁22.6 m/s

Now if the horizontal surface is not frictionless, kinetic friction will contribute some negative work to slow down the block between points C and D. Check the net forces acting on the block over this region:

• net horizontal force:

∑ F = -f = ma

• net vertical force:

F = n - mg = 0

where f is the magnitude of kinetic friction, a is the block's acceleration, n is the mag. of the normal force, and mg is the block's weight. Solve for a :

n = mg = (10.0 kg) (9.80 m/s²) = 98.0 N

f = µn = 0.500 (98.0 N) = 49.0 N

==>   - (49.0 N) = (10.0 kg) a

==>   a = - 4.90 m/s²

The block decelerates uniformly over a distance 2.00 m and slows down to a speed v₂ such that

v₂² - v₁² = 2 (-4.90 m/s²) (2.00 m)

==>   v₂² = 490 m²/s²

and thus the block has total/kinetic energy

E (C) = 1/2 (10.0 kg) v₂² = 2450 J

(c) The block then slides a height h up the frictionless incline to D, where its kinetic energy is again converted to potential energy. With no friction, E (C) = E (D), so

2450 J = (10.0 kg) (9.80 m/s²) h

==>   h = 25.0 m

(d) At half the maximum height, the block has speed v₃ such that

2450 J = (10.0 kg) (9.80 m/s²) (h/2) + 1/2 (10.0 kg) v₃²

==>   v₃15.7 m/s

The block loses speed and thus energy as it moves between B and C, but its energy is conserved elsewhere. If we ignore the inclines and pretend that the block is sliding over a long horizontal surface, then its velocity v at time t is given by

v = v₁ + at = 22.6 m/s - (4.90 m/s²) t

The block comes to a rest when v = 0 :

0 = 22.6 m/s - (4.90 m/s²) t

==>   t ≈ 4.61 s

It covers a distance x after time t of

x = v₁t + 1/2 at ²

so when it comes to a complete stop, it will have moved a distance of

x = (22.6 m/s) (4.61 s) + 1/2 (-4.90 m/s²) (4.61 s)² = 52.0 m

(e) The block crosses the rough region

(52.0 m) / (2.00 m) = 26 times

need help pleaseee,question is in the pic​

Answers

Explanation:

For engine 1,

Energy removed = 239 J

Energy added = 567 J

[tex]\eta_1=\dfrac{239}{567}\cdot100=42.15\%[/tex]

For engine 2,

Energy removed = 457 J

Energy added = 789 J

[tex]\eta_2=\dfrac{457}{789}\cdot100=57.92\%[/tex]

For engine 3,

Energy removed = 422 J

Energy added = 1038 J

[tex]\eta_3=\dfrac{422}{1038}\cdot100=40.65\%[/tex]

So, the engine 2 has the highest thermal efficiency.

Other Questions
Can someone do eight nine one and two ? A precursor to jazz, the basic form of the __________ is that one line of text is sung twice and then a conclusion or response is added as the third line, outlining the chord structure of the I for the first line, IV to I in the second line, and a V to IV to I in the third line. Which statement explains why the Twenty-Fifth Amendment was created? A: After John F. Kennedy was assassinated in 1963, it was clear that a succession plan was needed. B: Before the Twenty-Fifth Amendment, the nation would be left without a leader should something happen to the president. C: Congress didnt want the Speaker of the House to be next in line for the presidency. D: There were already procedures for succession in place, but the procedures simply werent codified. what is meant by the term russian revolution The average distance between the variable scores and the mean in a set of data is the.rangeB. standard deviation.meanD medianPlease select the best answer from the choices provided.D During the assessment of speech fluency, SLPs sometimes measure the time of the longest block. This measurement is commonly referred to as 1. Why was Tenochtitlan an important place in NativeMexico?2. What did Spanish kings do with the wealth and moneythey accumulated from their New World colonies?3. Where were two Spanish colonies in what is now theUnited States located? How far apart are they? A horizontal water jet impinges against a vertical flat plate at 30 ft/s and splashes off the sides in the verti- cal plane. If a horizontal force of 500 lbf is required to hold the plate against the water stream, determine the volume flow rate of the water. QuestionExampleStep by StepAYou can represent the measures of an angle and its complement as xand (90-x).Similarly, you can represent the measures of an angle and its supplement as x and(180 - x ). Use these expressions to find the measures of the angles described.The measure of an angle increased by 68 is equal to the measure of its complement.The measure of the angle isand the measure of its complement is Sebastian is going to choose the color pattern The table shows the way students travel to school at Peace Middle School.Transportation Number of studentsBike 21Walk 27Bus 45Car 10Select the true statement about the information in the table.Choose all answers that apply: Qu nombres reciben los tejidos que danorigen a los tejidos adultos de las plantas?a. Tejidos diferenciadosb. Tejidos indiferenciados (meristemos)c. Tejidos vegetales Some consumer electronic products such as plasma TVs, DVD players and digital cameras, are introduced at very high prices but over time, their prices start falling (beyond what could be attributed to falling costs as companies take advantage of economies of scale and cheaper technologies). Which of the following is the best explanation for this observation? A. More firms are likely to enter the consumer electronic market over time, forcing market prices down. B. Early adopters of these new products typically have a higher demand and higher income compared to those who are willing to wait. C. Early adopters are more quality conscious and are willing to pay higher prices for the initial production of these goods. D. After satisfying the demand for early adopters, firms lower price to attract the more price sensitive consumers. Which of the following was a famousGreek tutor?A. AristotleB BrutusCiceroD. Cassius 2. To maneuver a motorcycle, the operator must:. A. Turn the handlebars in the direction they want to go while leaning the opposite wayB. Lean in the direction they want to go while turning the handlebars the opposite wayC. lean and turn the handlebars opposite the direction they want to go correlation ship between health education,&home science long question???????? Margy is trying to improve her cardio endurance by performing an exercise in which she alternates walking and running 100.0 m each. If Margy is walking at 1.4 m/s and accelerates at 0.20 m/s2 during which of these is a controllable risk factor for disease?a. climateb. povertyc. food washingd. age What is the best way to correct the underlined portion of followingsentence?On the strength of these achievements, Ochoa was selected for aNASA space mission in 1990. She became the first Hispanic femaleastronaut and the first in space in 1993. Ochoa's career at NASA hasbeen every bit as illustrious as one would expect, in 2013, shebecame the first person of Hispanic descent and the second womanto become director of NASA's Johnson Space Center. Solve for x. Thank you