Answer:
C y = 3/2x - 1/8
Step-by-step explanation:
We know that the line has a positive slope, because it goes up from the lower left to upper right
We can eliminate B and D
For y = 6x - 11/8
A slope of 6 is very steep
Putting in 6
y = 6*6 -approximately 1 = 35 so the value at 3 would be 35
This is too big
Checking C
y = 3/2(6) - 0 = 9 or 9 This would be about right
Given the function, Calculate the following values:
Answer:
[tex]f(-2)=33\\f(-1)=12\\f(0)=1\\f(1)=0\\f(2)=9[/tex]
Step-by-step explanation:
[tex]f(x)=5x^{2} -6x+1\\f(-2)=5(-2)^{2} -6(-2)+1\\f(-2)=5(4)+12+1\\f(-2)=20+13\\f(-2)=33[/tex]
[tex]f(x)=5x^{2}-6x+1\\f(-1)=5(-1)^{2} -6(-1)+1\\f(-1)=5(1)+6+1\\f(-1)=5+7\\f(-1)=12[/tex]
[tex]f(x)=5x^{2}-6x+1\\f(0)=5(0)^{2}-6(0)+1\\f(0)=5(0)-0+1\\f(0)=0+1\\f(0)=1[/tex]
[tex]f(x)=5x^{2}-6x+1\\f(1)=5(1)^{2}-6(1)+1\\f(1)=5(1)-6+1\\f(1)=5-5\\f(1)=0[/tex]
[tex]f(x)=5x^{2}-6x+1\\f(2)=5(2)^{2}-6(2)+1\\f(2)=5(4)-12+1\\f(2)=20-11\\f(2)=9[/tex]
isted below are amounts (in millions of dollars) collected from parking meters by a security service company and other companies during similar time periods. Do the limited data listed here show evidence of stealing by the security service company's employees? Security Service Company: 1.5 1.7 1.6 1.4 1.7 1.5 1.8 1.4 1.4 1.5 Other Companies: 1.8 1.9 1.6 1.7 1.8 1.9 1.6 1.5 1.7 1.8 Find the coefficient of variation for each of the two samples, then compare the variation. The coefficient of variation for the amount collected by the security service company is nothing%. (Round to one decimal place as needed.)
Answer:
Means:
1.55
1.73
Standard Deviation:
0.1434
0.1338
Coefficient of variation:
9.2
7.7
the limited data listed here shows evidence of stealing by the security service company's employees.
Step-by-step explanation:
Given data:
security Service Company Other Companies
x₁ x₂
1.5 1.8
1.7 1.9
1.6 1.6
1.4 1.7
1.7 1.8
1.5 1.9
1.8 1.6
1.4 1.5
1.4 1.7
1.5 1.8
n₁ = 10 n₂ = 10
To find:
coefficient of variation for each of the two samples
Solution:
The formula for calculating coefficient of variation of sample is:
Coefficient of Variation (CV) = (Standard Deviation / Mean) * 100%
Calculate Mean for Security Service Company data:
Mean = (Σ x₁) / n₁
= (1.5 + 1.7 + 1.6 + 1.4 + 1.7 + 1.5 + 1.8 + 1.4 + 1.4 + 1.5) / 10
= 15.5 / 10
Mean = 1.55
Calculate Standard Deviation for Security Service Company data:
Standard Deviation = √∑(x₁ - Mean)²/n₁-1
= √∑(1.5-1.55)² + (1.7-1.55)² + (1.6-1.55)² + (1.4-1.55)² + (1.7-1.55)² + (1.5-1.55)² + (1.8-1.55)² + (1.4-1.55)² + (1.4-1.55)² + (1.5-1.55)² / 10-1
=√∑ (−0.05)² + (0.15)² + (0.05)² + (−0.15)² + (0.15)² + (−0.05)² + (0.25)² + (−0.15)² + (−0.15)² + (−0.05)² / 10 - 1
= √∑0.0025 + 0.0225 + 0.0025 + 0.0225 + 0.0225 + 0.0025 + 0.0625 + 0.0225 + 0.0225 + 0.0025 / 9
= √0.185 / 9
= √0.020555555555556
= 0.14337208778404
= 0.143374
Standard Deviation = 0.143374
Coefficient of Variation for Security Service Company:
CV = (Standard Deviation / Mean) * 100%
= (0.143374 / 1.55) * 100
= 0.09249935 * 100
= 9.249935
CV = 9.2
CV = 9.2%
Calculate Mean for Other Companies data:
Mean = (Σ x₂) / n₂
= (1.8 + 1.9 + 1.6 + 1.7 + 1.8 + 1.9 + 1.6 + 1.5 + 1.7 + 1.8) / 10
= 17.3 / 10
Mean = 1.73
Calculate Standard Deviation for Other Companies data:
Standard Deviation = √∑(x₂-Mean)²/n₂-1
= √∑[(1.8-1.73)² + (1.9-1.73)² + (1.6-1.73)² + (1.7-1.73)² + (1.8-1.73)² + (1.9-1.73)² + (1.6-1.73)² + (1.5-1.73)² + (1.7-1.73)² + (1.8-1.73)²] / 10 - 1
= √∑ [(0.07)² + (0.17)² + (-0.13)² + (-0.03)² + (0.07)² + (0.17)² + (-0.13)² + (-0.23)² + (-0.03)² + (0.07)²] / 9
= √∑ (0.0049 + 0.0289 + 0.0169 + 0.0009 + 0.0049 + 0.0289 + 0.0169 + 0.0529 + 0.0009 + 0.0049) / 9
= √(0.161 / 9)
= √0.017888888888889
= 0.13374935098493
= 0.13375
Standard Deviation = 0.13375
Coefficient of Variation for Other Companies:
CV = (Standard Deviation / Mean) * 100%
= (0.13375 / 1.73) * 100
= 0.077312 * 100
= 7.7312
CV = 7.7
CV = 7.7%
Yes, the limited data listed here shows evidence of stealing by the security service company's employees because there is a significant difference in the variation.
If you randomly select a letter from the phrase "Sean wants to eat at Olive Garden," what is the probability that a vowel is randomly selected
Answer:
12/27
Step-by-step explanation:
Count all letters and all vowels then divide vowels by letters
The probability that a vowel is randomly selected in the experiment of selecting a letter from the phrase "Sean wants to eat at Olive Garden", is 4/9.
What is the probability of an event in an experiment?The probability of any event suppose A, in an experiment is given as:
P(A) = n/S,
where P(A) is the probability of event A, n is the number of favorable outcomes to event A in the experiment, and S is the total number of outcomes in the experiment.
How to solve the given question?In the question, we are given an experiment of selecting a letter from the phrase "Sean wants to eat at Olive Garden".
We are asked to find the probability that the selected letter is a vowel.
Let the event of selecting a vowel from the experiment of selecting a letter from the phrase "Sean wants to eat at Olive Garden" be A.
We can calculate the probability of event A by the formula:
P(A) = n/S,
where P(A) is the probability of event A, n is the number of favorable outcomes to event A in the experiment, and S is the total number of outcomes in the experiment.
The number of outcomes favorable to event A (n) = 12 (Number of vowels in the phrase)
The total number of outcomes in the experiment (S) = 27 (Number of letters in the phrase).
Now, we can find the probability of event A as:
P(A) = 12/27 = 4/9
∴ The probability that a vowel is randomly selected in the experiment of selecting a letter from the phrase "Sean wants to eat at Olive Garden", is 4/9.
Learn more about the probability of an event at
https://brainly.com/question/7965468
#SPJ2
could I please have some help
If the discriminant of a quadratic equation is equal to -8 , which statement describes the roots?
Answer: There are no real number roots (the two roots are complex or imaginary)
The discriminant D = b^2 - 4ac tells us the nature of the roots for any quadratic in the form ax^2+bx+c = 0
There are three cases
If D < 0, then there are no real number roots and the roots are complex numbers.If D = 0, then we have one real number root. The root is repeated twice so it's considered a double root. This root is rational if a,b,c are rational.If D > 0, then we get two different real number roots. Each root is rational if D is a perfect square and a,b,c are rational.Angles One angle is 4º more than three times another. Find
the measure of each angle if
a. they are complements of each other.
b. they are supplements of each other.
[tex] \Large{ \boxed{ \bf{ \color{purple}{Solution:}}}}[/tex]
Let the smaller angle be x
Then, Larger angle would be x + 4°
Case -1:❍ They are complementary angles.
This means, they add upto 90°So,
➙ x + x + 4° = 90°
➙ 2x + 4° = 90°
➙ 2x = 86°
➙ x = 86°/2 = 43°
Then, x + 4° = 47°
So, Our required answer:
Smaller angle = 43°Larger angle = 47°Case -2:❍ They are supplementary angles.
This means, they add upto 180°So,
➙ x + x + 4° = 180°
➙ 2x + 4° = 180°
➙ 2x = 176°
➙ x = 176°/2 = 88°
Then, x + 4° = 92°
So, Our required answer:
Smaller angle = 88°Larger angle = 92°✌️ Hence, solved !!
━━━━━━━━━━━━━━━━━━━━
Anand needs to hire a plumber. He's considering a plumber that charges an initia
hourly rate of $28. The plumber only charges for a whole number of hours. Anar
more than $250, and he wonders how many hours of work he can afford.
Let H represent the whole number of hours that the plumber works.
1) Which inequality describes this scenario?
Choose 1 answer:
28 - 65H <250
Complete question :
Anand needs to hire a plumber. He's considering a plumber that charges an initial fee of $65 along with an
hourly rate of $28. The plumber only charges for a whole number of hours. Anand would like to spend no more than $250, and he wonders how many hours of work he can afford.
Let H represent the whole number of hours that the plumber works.
1) Which inequality describes this scenario?
Choose 1 answer:
A. 28 + 65H < 250
B. 28 + 65H > 250
C. 65 + 28H < 250
D. 65 +28H > 250
2) What is the largest whole number of hours that Anand can afford?
Answer:
65 + 28H < 250
Number of hours Anand can afford = 6 hours
Step-by-step explanation:
Given the following information :
Initial hourly rate = $65
Hourly rate = $28
Number of hours worked (whole number) = H
Maximum budgeted amount to spend = $250
Therefore ;
(Initial charge + total charge in hours) should not be more than $250
$65 + ($28*H) < $250
65 + 28H < 250
Number of hours Anand can afford :
65 + 28H < 250
28H < 250 - 65
28H < 185
H < (185 / 28)
H < 6.61
Sinve H is a whole number, the number of hours he can afford is 6 hours
Answer:
65 + 28H < 250
6
Step-by-step explanation:
tried it, it worked.
the other answer is correct but hard to understand so give them thanks and 4 star :)
What is the nearest 100 of 1730
Answer:
1700
Step-by-step explanation:
pls thnx and mark me brainliest
Gail bought 5 pounds of oranges and 2 pounds of bananas for $14. Her husband later bought 3 pounds of oranges and 6 pounds of bananas for $18. What was the cost per pound of the oranges and the bananas?
Answer:
1 pound of Oranges = $2
1 pound of Bananas = $2
Step-by-step explanation:
O = Oranges
B = Bananas
=> 5o + 2b = 14
=> 2b = 14 - 5o
=> b = 14/2 - 5/2o
=> b = 7 - 2.5o
3o + 6b = 18
=> 3o + 6( 7 - 2.5o ) = 18
=> 3o + 42 - 15o = 18
=> -12o + 42 = 18
=> -12o = -24
=> -o = -2
=> o = 2
One pound of oranges costs $2.
So,
5 (2) + 2b = 14
=> 10 + 2b = 14
=> 2b =4
=> b = 2
One pound of bananas also costs $2.
Repeated-measures and matched-subjects experiments Aa Aa Repeated-measures experiments measure the same set of research participants two or more times, while matched-subjects experiments study participants who are matched on one or more characteristics. Which of the following are true for both a repeated-measures experiment and a matched-subjects experiment when used to compare two treatment conditions? Check all that apply.
A. The researcher computes difference scores to compute a t statistic
B. If the researcher has n number of participants to use in the experiment, then the degrees of freedom will be the same in a repeated-measures experiment or in a matched-subjects experiment
C. The researcher must compute an estimated standard error for the mean difference score to compute a t statistic.
D. Participants in both types of experiments are all measured the same number of times
A matched-subjects experiment produced a t statistic with a df of 9. How many subjects participated in this study?
A. 20
B. 10
C. 18
D. 9
For a repeated-measures experiment comparing two treatment conditions, the t statistic has a df of 11. How many subjects participated in this study?
A. 12
B. 22
C. 24
D. 11
Answer:
1. C. The researcher must compute an estimated standard error for the mean difference score to compute a t statistics.
2. B. 10
3. A. 12
Step-by-step explanation:
The degrees of freedom is number of independent variable factors that affect the range of parameters. The degrees of freedom is the calculation of number values that are free to vary. The degrees of freedom is calculated by N-1. Standard error is the estimated deviation of standard deviation from its sample mean distribution.
An expression is ???
Answer:
s-6
Step-by-step explanation:
difference means subtract
s-6
find m<SPT in degrees
Answer: 60°
Step-by-step explanation:
∠UQR = 180°
∠UQR = ∠UQ + ∠QR
180° = 115° + ∠QR
65° = ∠QR
∠QRT = 180°
∠QRT = ∠QR + ∠RS + ∠ST
180° = 65° + ∠RS + 55°
180° = 120° + ∠RS
60° = ∠RS
Need Assitance
*Show Work*
Answer:
66 2/3 %
Step-by-step explanation:
First find the students not in the 8th grade
24 - 8 = 16
16 students are not in the 8th grade
Take the fraction of the students not in the 8th grade over the total
16/24 = 2/3
Change to a decimal
.66666666666
Multiply by 100 to change to a percent
66.666666%
66 2/3 %
Answer:
66.67% of students are not in eighth grade
Step-by-step explanation:
8/24=1/3
1/3=0.33333333333
1-0.33333333333=0.66666666667
0.66666666667=66.67%
What are the zeros of the quadratic function represented by this graph?
У
A
6
2
X
-6
- 2
6
2-
-6-
A.
1 and 3
OB.
-3 and -1
C.
-3 and 1
D. -1 and 3
Look where the parabola crosses the x axis. This is where the x intercepts are located. The term "x intercept" is the same as "root" and also the term "zero".
for the functions f(x) = 4x^4+4x^3-8x^2-13x-5 and g(x) = x+1, find (f/g)(x) and (f/g)(2)
Answer:
(f/g)(x) = 4x³ - 8x - 5(f/g)(2) = 11Step-by-step explanation:
f(x) = 4x⁴ + 4x³ - 8x² - 13x - 5
g(x) = x + 1
To find (f/g)(2) first find (f/g)(x)
To find (f/g)(x) factorize f(x) first
That's
f(x) = 4x⁴ + 4x³ - 8x² - 13x - 5
f(x) = ( x + 1)( 4x³ - 8x - 5)
So we have
[tex] (f/g)(x) = \frac{( x + 1)( 4x³ - 8x - 5)}{x + 1} [/tex]
Simplify
We have
(f/g)(x) = 4x³ - 8x - 5To find (f/g)(2) substitute 2 into (f/g)(x)
That's
(f/g)(2) = 4(2)³ - 8(2) - 5
= 4(8) - 16 - 5
= 32 - 16 - 5
= 11
(f/g)(2) = 11Hope this helps you
Suppose that a polynomial function of degree 4 with rational coefficients has 6, 4, 6i as zeros. Find the other zero
Answer:
-6i
Step-by-step explanation:
Complex roots have to come in conjugate pairs
So if we have 6i as a root, we must have -6i as a root
Answer:
-6i
Step-by-step explanation:
Hello, because this polynomial function has real coefficients and 6i is a zero, the conjugate of 6i is a zero as well. It means -6i is a zero.
The degree is 4 the number of zeroes is less or equal to 4 and we have already, 6, 4, 6i and -6i. So we have all the zeroes.
Thank you
What is the solution of the linear equation? LaTeX: 5k\:+\:3.8\:=\:3k\:+\:95 k + 3.8 = 3 k + 9 Group of answer choices 26 6.4 .065 2.6
Answer:
[tex]k = 2.6[/tex]
Step-by-step explanation:
Given
[tex]5k + 3.8 = 3k + 9[/tex]
Required
Solve
[tex]5k + 3.8 = 3k + 9[/tex]
Collect like terms
[tex]5k -3k+ 3.8 = 3k -3k + 9[/tex]
[tex]2k+ 3.8 = 9[/tex]
Subtract 3.8 from both sides
[tex]2k+ 3.8 - 3.8= 9 - 3.8[/tex]
[tex]2k= 9 - 3.8[/tex]
[tex]2k = 5.2[/tex]
Divide through by 2
[tex]k = 5.2/2[/tex]
[tex]k = 2.6[/tex]
Write the equations, after translating the graph of y = |x+2|: one unit up,
Answer:
y = |x + 2| + 1
Step-by-step explanation:
Parent Graph: f(x) = a|bx + c| + k
a is vertical stretch/shrink
b is horizontal stretch/shrink
c is horizontal movement left/right
k is vertical movement up/down
Since we are given an equation and we want to move it 1 unit up (vertical movement up), we only manipulate k:
y = |x + 2| + k
k = 1
y = |x + 2| + 1
Answer:
y = |x+2| + 1
Step-by-step explanation:
The equation will be y = |x+2| + 1.
By translating the graph one unit up, the equation will simply change by adding +1 to the graph, outside of the absolute value part.
In one city, 35% of all aluminum cans distributed will be recycled each year. A juice company distributes 110,000 cans. The number still in use after time t, in years, is given by
Answer: [tex]n(t) = 110000(0.35)^t[/tex]
Step-by-step explanation:
Given: Rate of of all aluminum cans distributed will be recycled each year. = 35%
= 0.35
Total cans distributed = 110,000
Now , the number of cans recycled in 1 year = 110,000 ×0.35
The number of cans recycled in 2 years = 110,000 ×0.35 ×0.35 = 110,000 ×(0.35)²
..so on
The number of cans recycled in t years = [tex]110000(0.35)^t[/tex]
Let n(t) be the number still in use after time t, in years:
Then, [tex]n(t) = 110000(0.35)^t[/tex]
Two fraction have the same denominator, 8.the some of two fraction is 1/2.if one of the fraction is added to five times the order, the result is 2,find the number.
Answer:
1/8, 3/8
Step-by-step explanation:
Let x and y represent the two fractions. Then we are given ...
x + y = 1/2
x + 5y = 2
Subtracting the first equation from the second, we get ...
(x +5y) -(x +y) = (2) -(1/2)
4y = 3/2 . . . . . simplify
y = 3/8 . . . . . . divide by 4
x = 1/2 -3/8 = 1/8
The two numbers are 1/8 and 3/8.
Pedro thinks that he has a special relationship with the number 6. In particular, Pedro thinks that he would roll a 6 with a fair 6-sided die more often than you'd expect by chance alone. Suppose pp is the true proportion of the time Pedro will roll a 6.
Required:
a. State the null and alternative hypotheses for testing Pedro's claim.
b. Now suppose Pedro makes 42 rolls, and a 6 comes up 9 times out of the 42 rolls. Determine the P-value of the test: P-value.
c. Does this sample provide evidence at the 5% level that Pedro rolls a 6 more often than you'd expect?
Answer:
Step-by-step explanation:
a) The sample space, n(S) = 6^6 = 46656
Let the number fair dice toss that show 6 = n(A)
Hence, the probability of getting, P(A) = n(A)/n(S)
b) Sample space, n(S) = 6^42
n(A) = 6^9
∴ P(A) = n(A)/n(S) = 6^9/6^42 = 1/(6^33) = 2.09 X 10^(-26)
c) No
how can i solve this factorial? A 6,2- P6- A 5,3 + P5
Ava started her hw at 7:20pm she finished it at 8:05 pm how long did she take to her hw?
Answer:
45 mins
Step-by-step explanation:
Each cylinder is 12 cm high with a diameter of 8 cm.
Calculate the volume of each cylinder.
Use 3 as a value for π
Give your answer using the correct units.
Answer:
Volume = 576cm^3Step-by-step explanation:
[tex]h = 12 cm\\d = 8cm\\r =d/2 = 8/2 =4\\V = ?\\V =\pi r^2h\\\\V= 3 \times 4^2\times12\\V = 576 cm^3[/tex]
Question 2: Jamie has a jar of coins containing the same number of nickels, dimes and quarters. The total value of the coins in the jar is 13.20. How many nickels does Jamie have?
Answer:
?
Step-by-step explanation:
Answer:
33
Step-by-step explanation:
Let "x" be the number of nickels, of dimes, and of quarters.
The value of the nickels is 5x cents.
The value of the dimes is 10x cents
The value of the quarters is 25x cents.
Equation:
Value of nickels + Value of dimes + Value of quarters =1320 cents
5x + 10x + 25x = 1320
Sove for "x". Then you will know the number of each coin.
2. Use the diagram and given information to answer the questions and prove the statement.
a. Re-draw the diagram of the overlapping triangles so that the two triangles are separated.
b. What additional information would be necessary to prove that the two triangles, XBY and ZAY , are congruent? What congruency would be applied?
c. Prove (AZ) is congruent to (BX) using a flow chart proof. ( ):both have a line over them
[tex] \huge{ \underline{ \tt{ \purple{Solution:}}}}[/tex]
2) a)⚘ Refer to the attachment....
After separating, we will get two triangles △XYB and △ZYA where ∠Y is common to both the triangles, hence their measure is equal. This will be use in further proof.
b) We have,
∠X = ∠Z (Given, ATQ)∠Y = common to both triangles. XY = ZYSo, here
Two pairs of corresponding angles are equal along the side contained between them. So, The above triangles are congurent by ASA criterion.
✤ No more additional information Required to prove the above triangles be congurent.
➝ △XYB ≅ △ZYA (By ASA Criterion)
c) By using flow chart proof:
[tex] \boxed{ \sf{ \angle X = \angle Z}} \searrow[/tex]
[tex] \boxed{ \sf{\small{ \angle Y = com.}}} \rightarrow \boxed{\small{ \sf{ \triangle XYB \cong \triangle ZYA}}}\rightarrow \small{\boxed{ \sf{AZ= XB}}}[/tex]
[tex] \boxed{ \sf{XY = ZY}} \nearrow[/tex]
━━━━━━━━━━━━━━━━━━━━
Step-by-step explanation:
Hey mate ut answer is in the given attachment.
hope i help u
if 2x-y=2, what is the value of 9^x/3^y?
1) 3
2) 9
3) 27
4) 81
Work Shown:
(9^x)/(3^y)
( (3^2)^x )/(3^y)
( 3^(2x) )/( 3^y )
3^(2x-y)
3^2 .... use the equation 2x-y = 2
9
The state of Georgia is divided up into 159 counties. Consider a population of Georgia residents with mutually independent and equally likely home locations. If you have a group of n such residents, what is the probability that two or more people in the group have a home in the same county
Answer:
[tex]\frac{159^{n} -(\left \{ {{159} \atop {n}} \right.)*n! ) }{159^{n} }[/tex]
Step-by-step explanation:
number of counties = 159
n number of people are mutually independent and equally likely home locations
considering the details given in the question
n ≤ 159
The number of ways for people ( n ) will live in the different counties (159) can be determined as [tex](\left \{ {{159} \atop {n}} \right} )[/tex]
since the residents are mutually independent and equally likely home locations hence there are : [tex]159^{n}[/tex] ways for the residents to live in
therefore the probability = [tex]\frac{159^{n} -(\left \{ {{159} \atop {n}} \right.)*n! ) }{159^{n} }[/tex]
A car enters a turnpike 22 miles north of a town. The car teavels north at an average speed of 64 miles per hour. How far is the car from the town after 4 hours? Explain how you can use linear function to solve this problem. Then, solve the problem.
Answer:
distance traveled can be modeled by a linear functionthe car is 260 miles north of townStep-by-step explanation:
a) When the speed is constant, the distance traveled is proportional to the travel time, a linear relationship. The distance traveled can be added to the initial distance to obtain the total distance (from town). This relation is a linear function. It can be modeled by the equation ...
d(t) = 4 + 64t . . . where t is travel time in hours, d(t) is the distance in miles
b) After 4 hours, the distance north of town is ...
d(4) = 4 +64(4) = 260
The car is 260 miles from the town after 4 hours.
Answer: Distance is a function of time. The constant rate of change is 64. Write the equation y = 64x + 22. Substitute 4 in for x to get 278 miles.
Step-by-step explanation:
Compute the least-squares regression line for the given data set. Use a TI-84 calculator. Round final answers to four decimal places, as needed.
x 5 7 6 2 1
y 4 3 2 5 1
Regression line equation: ŷ = _______ + _______ x.
Answer:
Y = 2.843+ 0.037 X
Step-by-step explanation:
Let the equation of the straight line to be fitted to the data , be Y = a+b X where a and b are to be evaluated. The normal equations fro determining a and b are
∑Y = na +b ∑X
∑XY = a∑X + b∑X²
We now calculate ∑X, ∑Y , ∑X², and ∑XY
X Y XY X²
5 4 20 25
7 3 21 49
6 2 12 36
2 5 10 4
1 1 1 1
21 15 64 115
Thus the normal equation becomes
5a + 21b =15
21a +115b = 64
Solving these two equations simultaneously we get
105 a + 441b = 315
105a + 575b = 320
134b= 5
b= 0.037 , a= 2.843
Hence the equation for the required straight line is
Y = 2.843+ 0.037 X