Answer:
Point estimate = 76.4
Margin of Error = 2.680
Step-by-step explanation:
Given that distribution is approximately normal;
The point estimate = sample mean, xbar = 76.4
The margin of error = Zcritical * s/√n
Tcritical at 95%, df = 42 - 1 = 41
Tcritical(0.05, 41) = 2.0195
Margin of Error = 2.0195 * (8.6/√42)
Margin of Error = 2.0195 * 1.327
Margin of Error = 2.67989
Margin of Error = 2.680
Test for symmetry and then graph the polar equation.
r=3−5sinθ
Answer:
Symmetric with respect to the x-axis
Symmetric with respect to the y-axis
Symmetric with respect to the origin
Find the total surface area of this square based pyramid. 10ft 10ft (in the image)
Lost-time accidents occur in a company at a mean rate of 0.8 per day. What is the probability that the number of lost-time accidents occurring over a period of 10 days will be no more than 2
Answer:
0.01375 = 1.375% probability that the number of lost-time accidents occurring over a period of 10 days will be no more than 2.
Step-by-step explanation:
We have the mean during the interval, which means that the Poisson distribution is used.
Poisson distribution:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
In which
x is the number of sucesses
e = 2.71828 is the Euler number
[tex]\mu[/tex] is the mean in the given interval.
Lost-time accidents occur in a company at a mean rate of 0.8 per day.
This means that [tex]\mu = 0.8n[/tex], in which n is the number of days.
10 days:
This means that [tex]n = 10, \mu = 0.8(10) = 8[/tex]
What is the probability that the number of lost-time accidents occurring over a period of 10 days will be no more than 2?
This is:
[tex]P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2)[/tex]
In which
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-8}*8^{0}}{(0)!} = 0.00034[/tex]
[tex]P(X = 1) = \frac{e^{-8}*8^{1}}{(1)!} = 0.00268[/tex]
[tex]P(X = 2) = \frac{e^{-8}*8^{2}}{(2)!} = 0.01073[/tex]
So
[tex]P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0.00034 + 0.00268 + 0.01073 = 0.01375[/tex]
0.01375 = 1.375% probability that the number of lost-time accidents occurring over a period of 10 days will be no more than 2.
Find the intersection of the line and the circle given below
2x+y=-5
x^2+y^2=10
Answer:
There are two intersections.
(-3,1) and (-1,-3)
Step-by-step explanation:
Answer:
They intersect at (-3,1), and also (-1,-3)
Step-by-step explanation:
Graph:
Help with solving this Functions problem
Answer:
See answers below
Step-by-step explanation:
Given the following functions:
r(x) = x - 6
s(x) = 2x²
r(s(x)) = r(2x²)
Replacing x with 2x² in r(x) will give;
r(2x²) = 2x² - 6
r(s(x)) = 2x² - 6
(r-s)(x) = r(x) - s(x)
(r-s)(x) = x - 6 - 2x²
Rearrange
(r-s)(x) = - 2x²+x-6
(r+s)(x) = r(x) + s(x)
(r-s)(x) = x - 6 + 2x²
Rearrange
(r-s)(x) = 2x²+x-6
4 people take 3 hours to paint a fence assume that all people paint at the same rate How long would it take one of these people to paint the same fence?
Answer:
12
Step-by-step explanation:
Complete the sentence that explains why Write an Equation is a reasonable strategy for solving this problem. Because the answer may be _________ the numbers in the problem.
Answer:
4 e
Step-by-step explanation:
dz6dxrx xrrx6 xz33x4xr4x xrx
A rope is 56 in length and must be cut into two pieces. If one piece must be six times as long as the other, find the length of each piece. Round your answers to the nearest inch, if necessary.
Answer:
48, 6
Step-by-step explanation:
The ratio of the pieces is 6 to 1
Add them together to get the total
6+1 = 7
Divide the total length by 7
56/7 = 8
Multiply the ratios by 8
6*8 = 48
1*8 = 6
The peices are 48 and 6
Riley wants to make 100ml of 25% saline but only has access to 12% and 38% saline mixtures. x= 12% y=38%
Answer:
x = 50
y = 50
Step-by-step explanation:
[tex]\begin{bmatrix}x+y=100\\ 0.12x+0.38y=25\end{bmatrix}[/tex]
.12(100-y) + .38y = 25
x = 50
y = 50
Simplificar expresiones algebraicas
What is the difference of the two polynomials? (NineX squared plus 8X) minus (twoX squared plus 3X)
Answer:
[tex]7x {}^{2} + 5x[/tex]
Step-by-step explanation:
[tex]9x {}^{2} + 8x - (2x {}^{2} + 3x) \\ \\ = 9x {}^{2} + 8x - 2x {}^{2} - 3x (remove \: brackets) \\\ \\ = 7x {}^{2} - 5x [/tex]
The administration conducted a survey to determine the proportion of students who ride a bike to campus. Of the 123 students surveyed 5 ride a bike to campus. Which of the following is a reason the administration should not calculate a confidence interval to estimate the proportion of all students who ride a bike to campus. Which of the following is a reason the administration should not calculate a confidence interval to estimate the proportion of all students who ride a bike to campus? Check all that apply.
a. The sample needs to be random but we don’t know if it is.
b. The actual count of bike riders is too small.
c. The actual count of those who do not ride a bike to campus is too small.
d. n*^p is not greater than 10.
e. n*(1−^p)is not greater than 10.
Answer:
b. The actual count of bike riders is too small.
d. n*p is not greater than 10.
Step-by-step explanation:
Confidence interval for a proportion:
To be possible to build a confidence interval for a proportion, the sample needs to have at least 10 successes, that is, [tex]np \geq 10[/tex] and at least 10 failures, that is, [tex]n(1-p) \geq 10[/tex]
Of the 123 students surveyed 5 ride a bike to campus.
Less than 10 successes, that is:
The actual count of bike riders is too small, or [tex]np < 10[/tex], and thus, options b and d are correct.
Open the graphing tool one last time. Compare the graphs of y=log (x-k) and y=log x+k in relation to their domain, range, and asymptotes. Describe what you see.
Answer:
sorry I don't know the answer
Answer:
For the equation y=log(x-k), the domain depends on the value of K. Sliding K moves the left bound of the domain interval. The range and the right end behavior stay the same. For the equation y=log x+k, the domain is fixed, starting at an x-value of 0. The vertical asymptote is also fixed. The range of the equation depends on K.
Step-by-step explanation:
The cost of producing a custom-made clock includes an initial set-up fee of $1,200 plus an additional $20 per unit made. Each clock sells for $60. Find the number of clocks that must be produced and sold for the costs to equal the revenue generated. (Enter a numerical value.)
Answer:
30 clocks
Step-by-step explanation:
Set up an equation:
Variable x = number of clocks
1200 + 20x = 60x
Isolate variable x:
1200 = 60x - 20x
1200 = 40x
Divide both sides by 40:
30 = x
Check your work:
1200 + 20(30) = 60(30)
1200 + 600 = 1800
1800 = 1800
Correct!
If the total income generated from Gasoline for AER was $408 millions, how much would be the cost for a barrel of gasoline
A recipe calls for 2 1/2 tablespoons of oil and 3/4 tablespoons of vinegar. What is the ratio of oil to vinegar in this recipe?
Answer:
10:3
Step-by-step explanation:
Make 2 1/2 an improper fraction, you will get 5/2. You dont have to do anything to the 3/4.
For you to find the ratio of an fraction, you have to take the numerator but the denominator has to be the same.
So make 5/2 to a 10/4.
Take the numerator 10 & 3.
Your answer will be 10:3
No problem.
find and sketch the domain of the function. f(x,y)=√(4-x^2-y^2) +√(1-x^2)
Answer:
Hello
Step-by-step explanation:
The domain is limited with 2 lines parallel: -1 ≤ x ≤ 1
and the disk ? (inside of a circle) of center (0,0) and radius 2
[tex]dom\ f(x,y)=\{(x,y) \in \mathbb{R} ^2 | \ -1\leq x \leq -1\ and \ ( -\sqrt{4-x^2} \leq \ y \leq \sqrt{4-x^2}\ ) \ \}\\[/tex]
Determine the domain and range of the graph
Answer:
5 ≤ x ≤ 10 5 ≤ y ≥ -1
Step-by-step explanation:
A scientist has acid solutions with concentrations of 4% and 15%. He wants to mix some of each solution to get 44 milliliters of solution with a 12% concentration. How many milliliters of each solution does he need to mix together?
Let x and y be the amounts (in mL) of the 4% and 15% solutions, respectively, that the scientist needs to use.
He wants to end up with a 44 mL solution, so
x + y = 44 mL
Each milliliter of 4% solution contains 0.04 mL of acid, while each mL of 15% contains 0.15 mL of acid. The resulting solution should have a concentration of 12%, so that each mL of it contains 0.12 mL of acid. Then the solution will contain
0.04x + 0.15y = 0.12 × (44 mL) = 5.28 mL
of acid.
Solve for x and y. In the first equation, we have y = 44 mL - x, and substituting into the second equation gives
0.04x + 0.15 (44 mL - x) = 5.28 mL
0.04x + 6.6 mL - 0.15x = 5.28 mL
1.32 mL = 0.19x
x ≈ 6.95 mL
==> y ≈ 37.05 mL
Alonzo finish history assignment and 5/8 hours then he completed his math assignment and 1/3 hours what was the total amount of time allowed to spend doing these two assignments
Step-by-step explanation:
The answer is 5/8 + 1/3
Answer = 5*3 /(8*3) +8/24 =23/24
Answer = 23/24
distance between 4, -4 and -7, -4
Step-by-step explanation:
here's the answer to your question
Answer: Distance = 11
Step-by-step explanation:
Concept:
Here, we need to know the idea of the distance formula.
The distance formula is the formula, which is used to find the distance between any two points.
If you are still confused, please refer to the attachment below for a clear version of the formula.
Solve:
Find the distance between A and B, where:
A (4, -4)B (-7, -4)[tex]Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]Distance=\sqrt{(4+7)^2+(-4+4)^2}[/tex]
[tex]Distance=\sqrt{(11)^2+(0)^2}[/tex]
[tex]Distance=\sqrt{121+0}[/tex]
[tex]Distance=\sqrt{121}[/tex]
[tex]Distance=11[/tex]
Hope this helps!! :)
Please let me know if you have any questions
Round each of the following numbers to four significant figures and express the result in standard exponential notation: (a) 102.53070, (b) 656.980, (c) 0.008543210, (d) 0.000257870, (e) -0.0357202
Answer:
Kindly check explanation
Step-by-step explanation:
Rounding each number to 4 significant figures and expressing in standard notation :
(a) 102.53070,
Since the number starts with a non-zero, the 4 digits are counted from the left ;
102.53070 = 102.5 (4 significant figures) = 1.025 * 10^2
(b) 656.980,
Since the number starts with a non-zero, the 4 digits are counted from the left ; the value after the 4th significant value is greater than 5, it is rounded to 1 and added to the significant figure.
656.980 = 657.0 (4 significant figures) = 6.57 * 10^2
(c) 0.008543210,
Since number starts at 0 ; the first significant figure is the first non - zero digit ;
0.008543210 = 0.008543 (4 significant figures) = 8.543 * 10^-3
(d) 0.000257870,
Since number starts at 0 ; the first significant figure is the first non - zero digit ;
0.000257870 = 0.0002579 (4 significant figures) = 2.579 * 10^-4
(e) -0.0357202,
Since number starts at 0 ; the first significant figure is the first non - zero digit ;
-0.0357202 = - 0.03572 (4 significant figures) = - 3.572* 10^-2
Question 4 of 10
If A = (-1,-3) and B = (11,-8), what is the length of AB?
A. 12 units
B. 11 units
C. 14 units
D. 13 units
SUBMIT
Step-by-step explanation:
AB = square root of [(xA-xB)^2+(yA-yB)^2]
AB=Squarerootof(-1-11)^2 +(-3-(-8))^2=Squarerootof(-12)^2+(5)^2)
AB=Squarerootof((144)+25)= Squarerootof(169)=13 the answer is 13 units
The choice D is the right one
Lakisha wants to buy some bitcoins. The exchange rate is $1 USD to 0.004 bitcoin. How many bitcoins can she buy with $400?
Answer:
1.6 Bitcoins
Step-by-step explanation:
Given data
We have the rate as
$1 USD to 0.004
Hence $400 will buy x bitcoins
Cross multiply to find the value of x
1*x= 400*0.004
x=1.6
Hence $400 will get you 1.6 Bitcoins
he following chart reports the number of cell phones sold at a big-box retail store for the last 26 days. a. What are the maximum and the minimum numbers of cell phones sold in a day? b. Using the median, what is the typical number of cell phones sold?
Answer:
Maximum = 19
Minimum = 4
Median = 12
Step-by-step explanation:
The maximum number of phone sold per day is the value to the right of the horizontal axis as the values are arranged in ascending order ; Hence, the maximum number of phones sold per day is 19
Also, the minimum number of phones sold per day is the value to the left of the plot, Hence, minimum number of phones sold per day is 14.
The Median value : 4, 9, 14, 19
The median = 1/2(n+1)th term
1/2(5)th term = 2.5 th term
Median (9 + 14) /2 = 13 /2 = 11.5 = 12 phones
I’m in summer school can y’all plz help me
Answer: Choice A. [tex]-x^2+2x+8[/tex]
Work Shown:
[tex](f - g)(x) = f(x) - g(x)\\\\(f - g)(x) = (2x+1) - (x^2-7)\\\\(f - g)(x) = 2x+1 - x^2+7\\\\(f - g)(x) = -x^2+2x+(1+7)\\\\(f - g)(x) = -x^2+2x+8\\\\[/tex]
which shows the answer is choice A.
Side note: be sure to distribute the negative to every term inside the second set of parenthesis. So you wouldn't say -(x^2-7) = -x^2-7. If you did this error, then you'd get to the wrong answer choice C.
Answer:
hope it helps u plz mark me brainliest mate
Step-by-step explanation:
(f-g)(x)=2x+1-(x^2-7)
(f-g)(x)=2x+1-x^2+7
(f-g)(x)= -x^2+2x+8
this is the correct answer
3w2 – 21w = 0
Need some help.
Answer:
The solutions are w=0 ,7
Step-by-step explanation:
3w^2 – 21w = 0
Factor out 3w
3w(w-7) =0
Using the zero product property
3w=0 w-7=0
w =0 w=7
The solutions are w=0 ,7
a triangle has sides of 6 m 8 m and 11 m is it a right-angled triangle?
Answer:
No
Step-by-step explanation:
If we use the Pythagorean theorem, we can find if it is a right triangle. To do that, set up an equation.
[tex]6^{2}+8^{2}=c^2[/tex]
If the triangle is a right triangle, c would equal 11
Solve.
[tex]36+64=100[/tex]
Then find the square root of 100.
The square root of 100 is 10, not 11.
So this is not a right triangle.
I hope this helps!
А _______ equation can be written in the form ax2 + bx+c=0 where a, b, and c are real numbers, and a is a nonzero number.
Fill in the blank.
A) quadratic
B) quartic
C) linear
D) cubic
Wrong answers WILL be reported. Thanks!
Answer:
A) quadratic
Step-by-step explanation:
ax2 + bx+c=0
Since the highest power of the equation is 2
A) quadratic -2
B) quartic- 4
C) linear- 1
D) cubic-3
Which function below has the following domain and range?
Domain: {-7, - 5,2, 6, 7}
Range: {0, 1,8}
Answer:
{(2,0),(-5,1),(7,8),(6,0),(-7,1)