Answer:
bc it was a universal explosion and It started the future
Explanation:
FACTS
Answer:
i wouldn't believe so.
Explanation:
because there was no room or air for the sound to move through. this is because of immense heat and the amount of hyperactive neutrons, electrons and protons clouding everywhere. This would mean that even if there was sound it would a. not travel far or b. go in a completely different direction than expected.
An unknown radioactive sample is observed to decrease in activity by a factor of two in a one hour period. What is its half-life?
Answer:
The half-life is [tex] t_{1/2} = 1.005 h[/tex]
Explanation:
Using the decay equation we have:
[tex]A=A_{0}e^{-\lambda t}[/tex]
Where:
λ is the decay constantA(0) the initial activityA is the activity at time tWe know the activity decrease by a factor of two in a one hour period (t = 1 h), it means that [tex]A = \frac{A_{0}}{2}[/tex]
[tex]\frac{A_{0}}{2}=A_{0}e^{-\lambda*1 h}[/tex]
[tex]0.5=e^{-\lambda*1 h}[/tex]
Taking the natural logarithm on each side we have:
[tex]ln(0.5)=-\lambda[/tex]
[tex]\lambda=0.69 h^{-1}[/tex]
Now, the relationship between the decay constant λ and the half-life t(1/2) is:
[tex]\lambda = \frac{ln(2)}{t_{1/2}}[/tex]
[tex] t_{1/2} = \frac{ln(2)}{\lambda}[/tex]
[tex] t_{1/2} = \frac{ln(2)}{0.69}[/tex]
[tex] t_{1/2} = 1.005 h[/tex]
I hope it helps you!
As a bicycle is ridden west in a straight line with decreasing speed,the acceleration of the bicycle must be
Answer:
Decreasing
Hope this helps! :)
What do light and energy tell us about the universe?
need a paragraph
which energy resource is renewable
A. oil
B. natural gas
C. moving water
D. Fossil fuel
Answer:
It's C. Moving Waterrrr
if chilled coke and hot tea are
kept together tea cools down but ko gets warm why
An opera singer who is a baritone, lowers his pitch and raises his voice for a song. Which best describes how the resulting sound wave has changed? The sound wave will have:
a lower amplitude and higher wavelength
a lower amplitude and higher frequency.
a higher amplitude and lower frequency.
a higher amplitude and faster speed
Answer: 3.
Explanation:
The correct answer is a higher amplitude and lower frequency. Since an opera singer is lowering his pitch it means that he is creating higher amplitude and because he is raising his voice for a song with that higher amplitude he is creating lower frequency.
8) a 20kg box is sliding across the ground. If the coefficient of friction is 0.5, how much friction will the box experience?
A 490 N
B 19.6 N
C 98 N
D 2 N
Answer:
STOP CHETING
Answer:
C is the answer to your question
Explanation:
Have a great day!!! :)
How long must you wait (in half-lives) for a radioactive sample to drop to 2.10 % of its original activity?
Answer:
222/88 Ra
Explanation:
We have to wait 5.57 half lives for a radioactive sample to drop to 2.10 % of its original activity.
To find the tike taken for the activity, we need to know about radioactivity and half-life.
What is radioactivity?Radioactivity is the rate of decay of a radioactive substance with respect to time. Mathematically, radioactivity is given asR=R₀e^(-λ×t)
From the above expression time is given ast= 1/λ ln(R₀/R)
What is half-life?Half-life is the time taken for decay of radioactive sample to half of its initial value. Mathematically, half-life= ln2 / λWhat is the expression of time of activity in term of half-life?From the half-life expression, 1/λ=half-life/ln2.Putting the value of 1/λ in the expression of time of activity, we havet=(half-life/ln2)×ln(R₀/R)
What is the time for radioactive sample to drop to 2.10 % of its original activity?Here R=0.021R₀, so t= (half-life/ln2)×ln(R₀/0.021R₀)=5.57 half-lives
Thus, we can conclude that we have to wait 5.57 half lives for a radioactive sample to drop to 2.10 % of its original activity.
Learn more about radioactivity here:
https://brainly.com/question/11117468
#SPJ2
Objects accelerate because
what is the portion of an electric circuit that is being powered
Answer:
Component
Explanation:
All circuits have some basic parts, called components. One component is the power source, also called a voltage source. The power source is what pushes the electricity through the circuit.
What is the initial vertical velocity of the ball?
A.
0 m/s
B.
9.81 m/s
C.
20.0 m/s
D.
60.0 m/s
Students are using a mallet to hit a drum. The diagram below shows this action.
Drum
Drum
When the mallet
hits the drum,
the drum skin
begins to vibrate.
particles of air
compressed
together
particles of air
compressed
together
Mallet
particles of air
moving apart wave of
again
compressed
particles moving
outward
Which statement BEST describes the phenomenon illustrated in the model?
Sound waves are being transmitted through the air in the drum.
Sound waves are being transferred from the mallet to the drum.
O Sound waves are being absorbed by the drum.
Sound waves are being reflected by the drum.
Answer:
A
Explanation:
i think
How high does a rocket have to go above the earth's surface to be subject to a gravitational field from the earth that is 50.0 percent of its value at the earth's surface?
A) 2.650 km
B) 3,190 km
C) 9.020 km
D) 12.700 km
Answer:
A) 2.650 km
Explanation:
The relationship between acceleration of gravity and gravitational constant is:
[tex]g = \frac{Gm}{R^2}[/tex] ---- (1)
Where
[tex]R = 6,400 km[/tex] -- Radius of the earth.
From the question, we understand that the gravitational field of the rocket is 50% of its original value.
This means that:
[tex]g_{rocket} = 50\% * g[/tex]
[tex]g_{rocket} = 0.50 * g[/tex]
[tex]g_{rocket} = 0.5g[/tex]
For the rocket, we have:
[tex]g_{rocket} = \frac{Gm}{r^2}[/tex]
Where r represent the distance between the rocket and the center of the earth.
Substitute 0.5g for g rocket
[tex]0.5g = \frac{Gm}{r^2}[/tex] --- (2)
Divide (1) by (2)
[tex]\frac{g}{0.5g} = \frac{Gm}{R^2}/\frac{Gm}{r^2}[/tex]
[tex]\frac{g}{0.5g} = \frac{Gm}{R^2}*\frac{r^2}{Gm}[/tex]
[tex]\frac{1}{0.5} = \frac{1}{R^2}*\frac{r^2}{1}[/tex]
[tex]2 = \frac{r^2}{R^2}[/tex]
Take square root of both sides
[tex]\sqrt 2 = \frac{r}{R}[/tex]
Make r the subject
[tex]r = R * \sqrt 2[/tex]
Substitute [tex]R = 6,400 km[/tex]
[tex]r = 6400km * \sqrt 2[/tex]
[tex]r = 6400km * 1.414[/tex]
[tex]r = 9 049.6\ km[/tex]
The distance (d) from the earth surface is calculated as thus;
[tex]d = r - R[/tex]
[tex]d = 9049.6\ km - 6400\ km[/tex]
[tex]d = 2649.6\ km[/tex]
[tex]d = 2650\ km[/tex] --- approximated
Find the binding energy per nucleon for the plutonium isotope 239Pu. The mass of the neutral atom is 239.05216 u.
Answer:
The answer is "[tex]\bold{7.56 \ Me\ V}[/tex]".
Explanation:
calculating the binding energy on per nucleon:
calculating number of proton and neutrons:
proton [tex]P_u=94[/tex]
neutron[tex]= 239-94=145[/tex]
calculating mass:
proton mass [tex]\ m_P=1.007825 \ amu\\\\[/tex]
neutron mass [tex]\ m_n=1.008665 \ amu\\\\[/tex]
neutral atom mass [tex]m = 239.05216 \ amu\\\\[/tex]
mass of prtons[tex]= 94 \times 1.007825 = 94.73555 \ amu\\\\[/tex]
mass of neutrons[tex]= 145 \times 1.008665= 146.256425 \ amu\\\\[/tex]
Total nucleons mass formula:
[tex]\to m_n = (P+n)[/tex]
[tex]= 94.73555+ 146.256425\\\\= 240.991975 \ amu[/tex]
calculating the mass of defect:
[tex]\to \Delta m= m_n-m\\\\[/tex]
[tex]= 240.991975 - 239.05216\\\\= 1.939815 \ amu\\\\[/tex]
calculating the total of the binding energy:
[tex]\to BE=\Delta m\times 931.5 \ mev[/tex]
[tex]= 1.939815 \times 931.5\\\\=1806.938 \ Me \ V\\\\[/tex]
BE in per nucleon [tex]=\frac{BE}{239}= 7.56 \ Me\ V[/tex]
Where do magnetic fields occur?
Answer:
The Magnetosphere and MagnetsExplanation:
[tex]--------------------------------------------[/tex]
According to the National Geographic, "Earth’s magnetic field dominates a region called the magnetosphere, which wraps around the planet and its atmosphere. Solar wind, charged particles from the sun, presses the magnetosphere against the Earth on the side facing the sun and stretches it into a teardrop shape on the shadow side. The magnetosphere protects the Earth from most of the particles, but some leak through it and become trapped. When particles from the solar wind hit atoms of gas in the upper atmosphere around the geomagnetic poles, they produce light displays called auroras. These auroras appear over places like Alaska, Canada and Scandinavia, where they are sometimes called “Northern Lights.” The “Southern Lights” can be seen in Antarctica and New Zealand. The magnetic field is the area around a magnet that has magnetic force. All magnets have north and south poles."
[tex]--------------------------------------------[/tex]
Hope this helps! <3
[tex]--------------------------------------------[/tex]
A frequency generator sends a 550Hz sound wave through both water and ice. What is the difference in wavelength between the wave produced in ice and the wave produced in water?
Answer:
3.1
Explanation:
use formula f = v/lambda
I need help understanding this question, so I know the arrow is traveling 80 meters per second, but it was launched from a starting point of 32 meters. I know for a fact an arrow does not have any thrust left at around 3 seconds of being in the air.
I just need someone to explain the questions and provide an answer to each.
Answer:
a) h(g) = 358,53 m
b) t = 8,16 s
c) t(t) = 16,71 s
Explanation:
Equations for vertical shooting are:
Vf = V₀ - g * t ; h = V₀*t - (1/2)*g*t² ; Vf² = V₀² - 2*g*h
And at maximum heigt Vf = 0 then
0 = V₀ - g * t
t = V₀/g V₀ = 80 m/s and g = 9,8 m/s²
t = 80 / 9,8 (s)
t = 8,16 s
Then 8,16 s is the time to get maximum height
If we plug t = 8,16 (s) in equation h = V₀*t - (1/2)*g*t²
we get: h (max) = (80)*8,16 - 0,5*9,8*(8,16)² (m)
h (max) = 652,8 - 326,27 m
h (max) = 326,53 m
Then relative to ground that height becomes
h(g) = 326,53 + 32
h(g) = 358,53 m
In order to get the time the arrow is in the air we proceed as follows:
a) for the arrow to be at the launched point will take the same time that from the launched point to the maximum height, and after that we have to find out the time the arrow takes from 32 m down to the ground level
Then
t(t) = 8,16 + 8,16 + tₓ (2)
Where tₓ is the time from 32 m height to ground
h = V₀*tₓ - (1/2)*g*tₓ² but since the arrow now is going down then we change the sign of the second term on the right side of the equation
32 = (80)*tₓ + 0,5 * 9,8 * tₓ² Note that when the arrow is at 32 m height the speed is again V₀ = 80 m/s
32 = 80*tₓ + 4,9*tₓ²
A second-degree equation for tₓ, solving it
4,9*tₓ² + 80*tₓ - 32 = 0
t₁,₂ = -80 ± √ 6400 + 627,2 / 9,8
t₁,₂ =( - 80 ± 83,8 ) / 9,8
there is not a negative time therefore we dismiss such solution and
t₁ = 3,8 / 9,8
t₁ = 0,39 s
And
t(t) = 8,16 + 8,16 + 0,39 s
t(t) = 16,71 s
What is the Basic SI unit for distance/length
A. Meters
B. Liters
C. Grams
D. Millimeters
PLEASE ans The question's in the pictures, please don't answer what already has answers. Only answer if you can finish both pages completely PLEASE I NEED HELP :(( if ur ans is relevant I will mark brainliest
Paco pulls a 67 kg crate with 738 N and of force across a frictionless floor 9.0 M how much work does he do in moving the crate
Answer:
W = 6642 J
Explanation:
Given that,
Mass of a crate, m = 67 kg
Force with which the crate is pulled, F = 738 N
It is moved 9 m across a frictionless floor
We need to find the work done in moving the crate. Let the work done is W. It is given by :
W = F d
W = 738 N × 9 m
= 6642 J
So, the work done is 6642 J.
If an ocean wave passes a stationary pointevery 4 s and has a velocity of 7 m/s, what isthe wavelength of the wave?Answer in units of m.
Answer:
28mExplanation:
Step one:
given data
period T= 4seconds
velocity v= 7m/s
wave lenght λ=?
Step two:
we know that f=1/T
the expression relating period and wave lenght is
v=λ/T
λ=v*T
λ=7*4
λ=28m
The wavelength of the wave is 28m
helppp please ?????????
Answer:
v=59[m/s]
Explanation:
To solve this problem we must use the principle of conservation of energy, which tells us that energy is transformed from Kinetic to potential or vice versa. At the moment when the car is at the top before falling down the cliff, we have the car moving at speed 50 [m/s] (kinetic energy) also it is 50 [m] above ground level (potential energy).
[tex]E_{k1}+E_{p1}=E_{k2}\\[/tex]
where:
Ek1 = kinetic energy before falling [J]
Ep1 = potential energy before falling [J]
Ek2 = kinetic energy in the ground [J]
The potential energy can be calculated by means of the following equation.
[tex]E_{p}=m*g*h[/tex]
where:
m = mass = 500 [kg]
g = gravity acceleration = 9.81 [m/s²]
h = elevation = 50 [m]
Whereas the kinetic energy can be calculated by means of the following equation.
[tex]E_{k}=\frac{1}{2}*m*v^{2}[/tex]
where:
v = velocity = 50 [m/s]
Now replacing in the general equation:
[tex]\frac{1}{2} *500*(50)^{2} +500*9.81*50=\frac{1}{2} *500*v^{2}\\625000+245250=250*v^{2} \\250*v^{2} =870250\\v=\sqrt{870250/250} \\v=59[m/s][/tex]
Calculate the RMS speed of helium atoms near the surface of the Sun at a temperature of about 5300 K.
Answer:
RMS velocity, [tex]v_{rms}=5748.75\ m/s[/tex]
Explanation:
We need to find the RMS speed of helium atoms near the surface of the Sun at a temperature of about 5300 K.
The formula for RMS speed of a gas is given by :
[tex]v_{rms}=\sqrt{\dfrac{3RT}{m}}[/tex]
Where
R is ideal gas constant, R = 8.314 J /mol K
T = 5300 K
m is molar mass of Helium, [tex]m = 4\times 10^{-3}\ Kg/mol[/tex]
Substituting all the values in above formula :
[tex]v_{rms}=\sqrt{\dfrac{3\times 8.314\times 5300}{4\times 10^{-3}}}\\\\=5748.75\ m/s[/tex]
So, the RMS speed Helium atoms 5748.75 m/s.
A 200-N object floats with three-fourths of its volume beneath the surface of the water. What is the buoyant force on the object?
Answer:
Buoyant Force = 200N
Explanation:
Given
[tex]Object = 200N[/tex]
Required
Determine the buoyant force?
Using Archimedes principle:
When an object is immersed in a fluid, the object is acted upon on by an upward force (Buoyant force) which equals the weight of the object.
In other words;
Buoyant Force = Weight of object
Hence:
Buoyant Force = 200N
The buoyant force on the object which floats with three-fourths of its volume beneath the surface of the water is 200 N.
What is the buoyant force?The buoyant force is the force which is applied by the fluid in the upward direction when a object is placed over it. This buoyant force can be calculated with the following formula.
[tex]F_b=-\rho gV[/tex]
Here, (ρ) is the density of the fluid, (g) is the gravitation force and (V) is the fluid volume.
The buoyant force is equal to the weight of the liquid displace by the object which is placed on it.
It is given that the 200-N object floats with three-fourths of its volume beneath the surface of the water.
This force applied on the object balance the 200-N object and floats it. For this case, the value of buoyant force will be equal to the weight of the object.
[tex]F_b=W\\F_b=200\rm\; N[/tex]
Thus, the buoyant force on the object which floats with three-fourths of its volume beneath the surface of the water is 200 N.
Learn more about the buoyant force here;
https://brainly.com/question/3228409
Two moles of neon gas at 25oC and 2.0 atm is expanded to 3 times the original volume while the pressure is reduced to 1.0 atm. Find the end temperature.
A. 447 C
B. 174 C
C. -66 C
D. 38 C
E. 150 C
Answer:
The end temperature is 174 °C
Explanation:
Ideal gases are a simplification of real gases that is done to study them more easily. It is considered to be formed by point particles, do not interact with each other and move randomly. It is also considered that the molecules of an ideal gas, in themselves, do not occupy any volume.
The pressure, P, the temperature, T, and the volume, V, of an ideal gas, are related by a simple formula called the ideal gas law:
P*V = n*R*T
where P is the gas pressure, V is the volume that occupies, T is its temperature, R is the ideal gas constant, and n is the number of moles of the gas.
So, being:
P= 2 atmV=?n= 2 molesR= 0.082 [tex]\frac{atm*L}{mol*K}[/tex]T= 25 °C= 298 °Kand replacing:
2 atm*V= 2 moles* 0.082 [tex]\frac{atm*L}{mol*K}[/tex] *298 K
you get:
[tex]V=\frac{2 moles* 0.082\frac{atm*L}{mol*K} *298 K}{2 atm}[/tex]
V= 24.436 L
Now, two moles of neon gas is expanded to 3 times the original volume while the pressure is reduced to 1.0 atm. Then you know:
P= 1 atmV= 3*24.436 L=73.308 Ln= 2 molesR= 0.082 [tex]\frac{atm*L}{mol*K}[/tex]T= ?Replacing:
1 atm*73.308 L= 2 moles* 0.082 [tex]\frac{atm*L}{mol*K}[/tex] *T
Solving:
[tex]T=\frac{1 atm*73.308 L}{2 moles* 0.082\frac{atm*L}{mol*K}}[/tex]
T= 447 °K= 174 °C (being 0°C=273 °K)
The end temperature is 174 °C
find the vector parallel to the resultant of the vector A=i +4j-2k and B=3i-5j+k
Answer:
2008
Explanation:
2000+3+5======2008
Answer:
[tex]8\hat i-2\hat j-2\hat k[/tex]
Explanation:
Vectors in 3D
Given a vector
[tex]\vec P = P_x\hat i+P_y\hat j+P_z\hat k[/tex]
A vector [tex]\vec Q[/tex] parallel to [tex]\vec P[/tex] is:
[tex]\vec Q = k.\vec P[/tex]
Where k is any constant different from zero.
We are given the vectors:
[tex]\vec A = \hat i+4\hat j-2\hat k[/tex]
[tex]\vec B = 3\hat i-5\hat j+\hat k[/tex]
It's not specified what the 'resultant' is about, we'll assume it's the result of the sum of both vectors, thus:
[tex]\vec A +\vec B = \hat i+4\hat j-2\hat k + 3\hat i-5\hat j+\hat k[/tex]
Adding each component separately:
[tex]\vec A +\vec B = 4\hat i-\hat j-\hat k[/tex]
To find a vector parallel to the sum, we select k=2:
[tex]2(\vec A +\vec B )= 8\hat i-2\hat j-2\hat k[/tex]
Thus one vector parallel to the resultant of both vectors is:
[tex]\mathbf{8\hat i-2\hat j-2\hat k}[/tex]
8x = -6. What does x equal?
Answer:
x=-3/4
Explanation:
Collision Lab
This activity will help you meet these educational goals:
You will explain or predict phenomena by exploring qualitative relationships between variables.
You will use positive and negative numbers to represent quantities in real-world contexts.
Directions
Read the instructions for this self-checked activity. Type in your response to each question, and check your answers. At the end of the activity, write a brief evaluation of your work.
Activity
Open this collision simulator and click Introduction. You’ll use the simulator to explore and compare elastic collisions and inelastic collisions. The mass and starting velocity of the colliding objects are kept constant. Follow the instructions in each part, and then answer the questions that follow. Use the math review if you need help with adding and subtracting negative numbers.
Question 1: Elastic Collisions
In this question, you will investigate elastic (bouncy) collisions. Be sure that the slider is to the extreme right (elasticity 100%).
Part A
Click Show Values in the upper-right corner. Study the boxes on the screen. What are the mass and initial velocity of ball 1 and ball 2?
I NEED HELP!
Part B
Part B
Click Play, and watch the balls collide. Then click Pause. What are the final velocities of ball 1 and ball 2?
The number line shows the starting and ending velocities for ball 1. What’s the change in velocity of ball 1? Calculate the value mathematically, and check it using the number line.
a number line showing an ending velocity of -0.50 meter/second and a starting velocity of 1.00 meter/second
Answer:
Ball 1 has a mass of 0.5 kilogram and an initial velocity of 1.00 meter/second. Ball 2 has a mass of 1.5 kg and an initial velocity of 0.00 meters/second.
Explanation:
Ball 1 has a mass of 0.5 kilogram and an initial velocity of 1.00 meter/second. Ball 2 has a mass of 1.5 kg and an initial velocity of 0.00 meters/second.
What is Collision?
A collision is any situation in which two or more bodies quickly exert forces on one another. Despite the fact that the most common usage of the word "collision" refers to situations in which two or more objects clash violently, the scientific usage of the word makes no such assumptions.
The following are a few instances of physical encounters that scientists might classify as collisions. Legs of an insect are said to collide with a leaf when it falls on one.
Every contact of a cat's paws with the ground while it strides across a lawn is seen as a collision, as is every brush of its fur with a blade of grass.
Therefore, Ball 1 has a mass of 0.5 kilogram and an initial velocity of 1.00 meter/second. Ball 2 has a mass of 1.5 kg and an initial velocity of 0.00 meters/second.
To learn more about collision, refer to the link:
https://brainly.com/question/13138178
#SPJ2
A 80 kg bobsled is pushed along a horizontal surface by two athletes. After the bobsled is pushed a distance of 5 meters starting from rest, its speed is 6.0 m/s. Find the magnitude of the net force on the bobsled.
How do you solve this question?
Answer:
F = 288 [N]
Explanation:
To solve this problem we must use the following equation of kinematics and find the value of acceleration.
[tex]v_{f}^{2} =v_{o}^{2} +2*a*x[/tex]
where:
Vf = final velocity = 6 [m/s]
Vo = initial velocity = 0 (starting from rest)
a = acceleration [m/s²]
x = distance = 5 [m]
Now replacing, we have:
[tex](6)^{2}=0+(2*a*5)\\36=10*a\\a = 3.6 [m/s^{2}][/tex]
Since we already have the value of acceleration, we can use Newton's second law, which tells us that the sum of forces on a body is equal to the product of mass by acceleration.
ΣF = m*a
[tex]F =80*3.6\\F = 288 [N][/tex]
Is a seashores diverse or uniform?
Answer:
uniformes
Explanation:
Why are u asking this