what advantage does hovercraft have over a boar or a road vehicle?​

Answers

Answer 1

Answer:

The advantages of Hovercraft:

They can travel over almost any non-porous surface.

They can operate to and from any unprepared beach or slipway.

They take fast, direct routes compared to a conventional marine vessel.


Related Questions

Need in hurry important please

Answers

Answer:

I don't see anything on your question?

PLEASE HELP ME WITH THIS ONE QUESTION
The color orange has a wavelength of 590 nm. What is the energy of an orange photon? (h = 6.626 x 10^-19, 1 eV = 1.6 x 10^-19 J)

A) 2.81 eV

B) 3.89 eV

C) 2.10 eV

D) 2.78 eV

Answers

The color orange has a wavelength of 590 nm. The energy of an orange photon is approximately 0.337 eV.

The correct answer is option E.

To calculate the energy of a photon, we can use the equation:

E = (hc) / λ

where E is the energy of the photon, h is the Planck's constant (6.626 x [tex]10^-^3^4[/tex]J·s or 6.626 x[tex]10^-^1^9^[/tex] eV·s), c is the speed of light (3.00 x [tex]10^8[/tex] m/s), and λ is the wavelength of the light.

Given that the wavelength of orange light is 590 nm (or 590 x [tex]10^-^9[/tex]m), we can substitute the values into the equation:

E = [(6.626 x[tex]10^-^1^9^[/tex] eV·s) x (3.00 x [tex]10^8[/tex] m/s)] / (590 x[tex]10^-^9[/tex]m)

E = (1.9878 x [tex]10^-^1^0[/tex]eV·m) / (590 x [tex]10^-^9[/tex] m)

E = 3.3695 x [tex]10^-^1[/tex] eV

For more such information on: wavelength

https://brainly.com/question/4881111

#SPJ8

The question probable may be:

The color orange has a wavelength of 590 nm. What is the energy of an orange photon? (h = 6.626 x [tex]10^-^1^9^[/tex], 1 eV = 1.6 x[tex]10^-^1^9^[/tex]J)

A) 2.81 eV

B) 3.89 eV

C) 2.10 eV

D) 2.78 eV

E)  0.337 eV

Consider a sample containing 1.70 mol of an ideal diatomic gas.
(a) Assuming the molecules rotate but do not vibrate, find the total heat capacity of the sample at constant volume. nCv = J/K
(b) Assuming the molecules rotate but do not vibrate, find the total heat capacity of the sample at constant pressure. nCp = J/K
(c) Assuming the molecules both rotate and vibrate, find the total heat capacity of the sample at constant volume. nCv = J/K
(d) Assuming the molecules both rotate and vibrate, find the total heat capacity of the sample at constant pressure. nCp = J/K

Answers

I don't know

because I don't know

3. Four charges having charge q are placed at the corners of a square with sides of length L. What is the magnitude of the force acting on any of the charges

Answers

Answer:

Fr = 1.91 * 9*10⁹*q²/L²

Explanation:

Let´s say that the corners of the square are  A B C and D

We are going to find out the force on the charge placed on B  ( the charge placed in the upper right corner.

As all the charges are positive (the same sign), then all the three forces on the charge in B are of rejection.

Force due to charge placed in A

module   Fₓ =  K* q² / L²   in the direction of x

Force due to charge placed in C

module  Fy = K* q²/L²   in the direction of y

Force due to  the charge placed in D

That force will have the direction of the diagonal of the square, and the distance between charges placed in D and A is the length of the diagonal.

d²  =  L²  +  L²  =  2*L²

d  =  √2 * L

The module of the force due to charge place in D

F₄₅ = K*q²/ 2*L²

To get the force we need to add first  Fₓ  and  Fy  

Fx + Fy  =  F₁

module of  F₁ = √ Fx² + Fy²    the direction will be the same as the diagonal of the square then:

F₁   =   √  ( K* q²/L² )²  +   ( K* q²/L² )²

F₁  =  √ 2  *  K*q²/L²

And now we add forces F₁   and F₄₅   to get the net force Fr on charge in point B.

The direction of Fr is the direction of the diagonal and is of rejection

the module is

Fr  =  F₁  *  F₄₅

Fr  =  √ 2  *  K*q²/L²  +   K*q²/ 2*L²

Fr  = ( √ 2 + 0,5 ) * K*q² /L²

K  =  9*10⁹  Nm²C²

Fr = 1.91 * 9*10⁹*q²/L²

We don´t know units of L and q

an artificial satellite is moving in a circular orbit of radius 36000 kilometre calculate its speed if it takes 24 hours to revolve around the earth ​

Answers

Explanation:

9420 km/hr is the correct answer

Hope this helps...☺

A horizontal, uniform board of weight 125 N and length 4 m is supported by vertical chains at each end. A person weighing 500 N is sitting on the board. The tension in the right chain is 250 N. How far from the left end of the board is the person sitting

Answers

Answer:

the person  is sitting 1.5 m from the left end of the board

Explanation:

Given the data in the question;

Wb = 125 N

Wm = 500 N

T₂ = 250 N

Now, we know that;

T₁ + T₂ = Wb + Wm

T₁ + 250 = 125 + 500

T₁ = 125 + 500 - 250

T₁ = 375 N

so tension of the left chain is 375 N.

Now, taking torque about the left end

500 × d + 125 × 2 = 250 × 4

500d + 250 = 1000

500d = 1000 - 250

500d = 750

d = 750 / 500

d = 1.5 m

Therefore, the person  is sitting 1.5 m from the left end of the board.

The liquid and gaseous state of hydrogen are in thermal equilibrium at 20.3 K. Even though it is on the point of condensation, model the gas as ideal and determine the most probable speed of the molecules (in m/s). What If? At what temperature (in K) would an atom of xenon in a canister of xenon gas have the same most probable speed as the hydrogen in thermal equilibrium at 20.3 K?

Answers

Answer:

a) the most probable speed of the molecules is 409.2 m/s

b) required temperature of xenon is 1322 K

Explanation:

Given the data in the question;

a)

Maximum probable speed of hydrogen molecule (H₂)

[tex]V_{H_2[/tex] = √( 2RT / [tex]M_{H_2[/tex] )

where R = 8.314 m³.Pa.K⁻¹.mol⁻¹ and given that T = 20.3 K

molar mass of H₂; [tex]M_{H_2[/tex] = 2.01588 g/mol

we substitute

[tex]V_{H_2[/tex] = √( (2 × 8.314 × 20.3 ) / 2.01588 × 10⁻³  )

[tex]V_{H_2[/tex] = √( 337.5484 / 2.01588 × 10⁻³  )

[tex]V_{H_2[/tex] = 409.2 m/s

Therefore, the most probable speed of the molecules is 409.2 m/s

b)

Temperature of xenon  = ?

Temperature of hydrogen = 20.3 K

we know that;

T = (Vxe² × Mxe) / 2R

molar mass of xenon; Mxe = 131.292 g/mol

so we substitute

T = ( (409.2)² × 131.292 × 10⁻³) / 2( 8.314  )

T = 21984.14167 / 16.628

T = 1322 K

Therefore, required temperature of xenon is 1322 K

define emperical formula and what is the dimensional formula of force and energy​

Answers

Answer:

An empirical formula represents the simplest whole number ratio of various atoms present in a compound.The dimensional formula of force is [[tex]MLT^{-2}[/tex]]The dimensional formula of energy is [[tex]ML^{2} T^{-2}[/tex]]

Mention & Instrument used to measure
the mass of the body.

Answers

Answer:

a scale is used to measure the mass of the body

The equation of damped oscillations is given in the form x=0.05e^-0.25sin½πt (m). Find the velocity of an oscillating point at the moments of time: 0, T, 2T, 3T and 4T.​

Answers

Explanation:

The logarithmic damping decrement of a mathematical pendulum is DeltaT=0.5. How will the amplitude of oscillations decrease during one full oscillation of the pendulum

A kangaroo kicks downward with a 1000N force. According to Newton's Law the kangaroo is propelled into the air by:

A) gravitational force
B) his muscles
C) The earth
D) wallabies

Answers

Answer: B) his muscles

Explanation:

Specifically his leg muscles. As the leg muscles expand, they push down on the ground. Newton's 3rd law says that for any action, there's an opposite and equal reaction. That means a downward push into the ground will have the ground push back, more or less, and that's why the kangaroo will jump. The ground (and the earth entirely) being much more massive compared to the animal means that the ground doesn't move while the kangaroo does move. Perhaps on a very microscopic tiny level the ground/earth does move but it's so small that we practically consider it 0.

This experiment can be done with a wall as well. Go up to a wall and lean against it with your hands. Then do a pushup to move further away from the wall, but you don't necessarily need to lose contact with the wall's surface. As you push against the wall, the wall pushes back, and that causes you to move backward. If the wall was something flimsy like cardboard, then you could easily push the wall over and you wouldn't move back very much. It all depends how much mass is in the object you're pushing on.  

Why is it that, when we observe an extragalactic source whose diameter is about one lightday, we are unlikely to see fluctuations in light output in times shorter than about one day

Answers

yup i defiantly agree 100% with youuuu

The reason why we are unlikely to see fluctuations in light output in extragalactic sources with a diameter of about one light day over timescales shorter than about one day is due to the size and distance of the source, as well as the speed of light.

How to observe extragalactic sources whose diameter is about one light day?

When we observe an extragalactic source with a diameter of about one light day, we are essentially observing light that has traveled a very long distance through space to reach us. This light may have originated from a region of the source that is changing in brightness or emitting intense bursts of light, but by the time the light reaches us, these fluctuations are smeared out over a longer period of time due to the speed of light.

For example, if the source were emitting a burst of light that lasted for only a few hours, by the time that light travelled a distance of one light day (which is about 25 billion miles or 40 billion kilometres), the burst would be spread out over a longer period of time. This is because the light emitted at the beginning of the burst would have already traveled a significant distance away from the light emitted at the end of the burst by the time it reached us. As a result, we would observe the burst as a more gradual increase and decrease in light output over a period of several days, rather than a sharp increase and decrease over a few hours.

In addition, the turbulent interstellar and intergalactic media that the light passes through can also scatter and delay the light, further smearing out any short-term fluctuations in light output. This effect is known as interstellar scintillation and can make it even more difficult to observe short-term variations in the light output of extragalactic sources.

To know more about extragalactic sources follow

https://brainly.com/question/15023361

#SPJ6

En 2.0 s, una particula con aceleración constante a lo largo del eje x se mueve desde x =10 m
hasta x =50 m. La rapidez al final del recorrido es de 10 m/s. ¿Cuál es la aceleración de la partícula?

Answers

The correct response is x23

who is corazon aquino? ​

Answers

Answer:

Maria Corazon Sumulong Cojuangco Aquino, popularly known as Cory Aquino, was a Filipino politician who served as the 11th President of the Philippines, the first woman to hold that office.

Answer:

Former President of the Philippines

Explanation:

From 2 King 6:1-6, one of the disciples of Elisha was cutting a tree and the ax head fell into the water. While we do not know how high the ax head was when it fell into the water, we will work through a physics example of the ax head's vertical motion as if it were dropped into the water. ( Due date 09/07)
Write your name and date. The due date of this assignment is the height the ax head falls from in meters into the water. For example, if the due date is July 15, then the ax head fell 15 meters to the water.
Write Newton’s 2nd Law in Equation Form.
Write the quantity and units of average gravitational acceleration on the surface of Earth.
Given the ax head mentioned in the opening portion with the height being equal in numerical value of the due day of this assignment. How long does it take for the ax to fall to the river surface?
Compute the final speed of the ax when it hits the water.

Answers

Answer:

time of fall is 1.75 s and the velocity with which it strikes the water is 17.15 m/s.

Explanation:

Height, h =  15 m

Newton's second law

Force = mass x acceleration

The unit of gravitational force is Newton and the value is m x g.

where, m is the mas and g is the acceleration due to gravity.  

Let the time of fall is t.

Use second equation of motion

[tex]s= u t +0.5 at^2\\\\15 = 0 +0.5\times 9.8\times t^{2}\\\\t = 1.75 s[/tex]

Let the final speed is v.

Use third equation of motion

[tex]v^2 = u^2 + 2 a s\\\\v^2 = 0 + 2 \times 9.8\times 15\\\\v =17.15 m/s[/tex]

Computer use ___code to transmit information

Answers

Binary code is the answer

Answer:

binary code is the answer of blank

PLEASE HELP ME WITH THIS ONE QUESTION
The half-life of Barium-139 is 4.96 x 10^3 seconds. A sample contains 3.21 x 10^17 nuclei. What is the decay constant for this decay?

Answers

Answer:

[tex]\lambda=1.39\times 10^{-4}\ s^{-1}[/tex]

Explanation:

Given that,

The half-life of Barium-139 is [tex]4.96\times 10^3[/tex]

A sample contains [tex]3.21\times 10^{17}[/tex] nuclei.

We need to find the decay constant for this decay. The formula for half life is given by :

[tex]T_{1/2}=\dfrac{0.693}{\lambda}\\\\\lambda=\dfrac{0.693}{T_{1/2}}[/tex]

Put all the values,

[tex]\lambda=\dfrac{0.693}{4.96\times 10^3}\\\\=1.39\times 10^{-4}\ s^{-1}[/tex]

So, the decay constant is [tex]1.39\times 10^{-4}\ s^{-1}[/tex].

A long, straight metal rod has a radius of 5.75 cm and a charge per unit length of 33.3 nC/m. Find the electric field at the following distances from the axis of the rod, where distances are measured perpendicular to the rod's axis.

Answers

Answer:

Explanation:

From the question;

We will make assumptions of certain values since they are not given but the process to achieve the end result will be the same thing.

We are to calculate the following task, i.e. to determine the electric field at the distances:

a)  at 4.75 cm

b)  at 20.5 cm

c) at 125.0 cm

Given that:

the charge (q) = 33.3 nC/m

= 33.3 × 10⁻⁹ c/m

radius of rod = 5.75 cm

a) from the given information, we will realize that the distance lies inside the rod. Provided that there is no charge distribution inside the rod.

Then, the electric field will be zero.

b) The electric field formula [tex]E = \dfrac{kq }{d}[/tex]

[tex]E = \dfrac{9 \times 10^9 \times (33.3 \times 10^{-9}) }{0.205}[/tex]

E = 1461.95 N/C

c) The electric field E is calculated as:

[tex]E = \dfrac{9 \times 10^9 \times (33.3 \times 10^{-9}) }{1.25}[/tex]

E = 239.76 N/C

Is the following chemical reaction balanced?
2H202-H2O + O2
yes
no

Answers

The reaction above is not balanced

You throw a stone straight down from the top of a tall tower. It leaves your hand moving at 8.00 m/s, Air resistance can be neglected. Take the positive -direction to be upward, and choose y 0 to be the point where the stone leaves your hand. Find the stone's position 1.50s after it leaves your hand.
Express your answer with the appropriate units.
Find the y-component of the stone's velocity 1.50 s after it leaves your hand. Express your answer with t0he appropriate units.

Answers

Answer:

The velocity after 1.5 s is 22.7 m/s downwards.

Explanation:

Initial velocity = - 8 m/s

acceleration, a = - 9.8 m/s2

time, t = 1.5 s

Use first equation of motion

v = u + at

v = - 8 - 9.8 x 1.5

v = - 8 - 14.7

v = - 22.7 m/s  

Thus, the velocity after 1.5 s is 22.7 m/s downwards.

A motorist travels due North at 90 km/h for 2 hours. She changes direction and travels West at 60 km/for 1 hour.
a) Calculate the average speed of the motorist [4]
b) Calculate the average velocity of the motorist.

Answers

Answer:

a) S =  63.2 km/h

b) V =  63.2 km/h*(-0.316 , 0.949)

Explanation:

Let's define:

North as the positive y-axis

East as the positive x-axis.

Also, remember the relation:

Distance = Time*Speed

Let's assume that she starts at the position (0km, 0km)

Then she travels due North at 90km/h for two hours, then the displacement is

90km/h*2h = 180km to the north

Then the new position is:

(0km, 180km)

Then she travels West at 60km/h for one hour.

Then the distance traveled to the West (negative x-axis) is:

60km/h*1h = 60km to the west

Then the new position is:

(-60km, 180km).

a) The average speed is defined as the quotient between the displacement and the time.

We know that the total time traveled is 3 hours.

And the displacement is the difference between the final position and the initial position.

this is:

D = √( -60km - 0km)^2 + (180km - 0km)^2)=

D = √( (60km)^2 + (180km)^2) = 189.7 km

Then the average speed is:

S = (189.7 km)/(3 h) = 63.2 km/h

b) Now we want to find the average velocity, this will be equal to the average speed times a versor that points from the origin to the direction of the final position.

So, if the final position is (-60km, 180km)

We need to find a vector that represents the same angle, but that is on the unit circle.

Then, if the module of the final position is 189.7 km (as we found above), then the versor is just given by:

(-60km/ 189.7 km, 180km/ 189.7 km)

(-60/189.7 , 180/189.7)

We can just check that the module of the above versor is 1.

[tex]module = \sqrt{(\frac{-60}{189.7} )^2 + (\frac{180}{189.7} )^2} = \frac{1}{189.7}* \sqrt{(-60 )^2 + (180 )^2} = 1[/tex]

Then the average velocity is:

V = 63.2 km/h*(-60/189.7 , 180/189.7)

We can simplify our versor so the velocity equation is easier to read:

V = 63.2 km/h*(-0.316 , 0.949)

scripture union was founded by who in what year​

Answers

Answer:

Josiah Spiers in 1867 was when scripture union was founded

how can the starch be removed from the leaves of potted plants​

Answers

Answer:

Explanation:

There are two main ways to de-starch leaves of a plant - the 'Light Exclusion' Method and the 'Carbon Dioxide Deprivation' Method. The 'Light Exclusion' method is a simpler procedure and is used often. Leaves can be destarched by depriving them of light for an extended period of time, usually 24-48 hours.

A certain microscope is provided with objectives that have focal lengths of 20 mm , 4 mm , and 1.4 mm and with eyepieces that have angular magnifications of 5.00 × and 15.0 × . Each objective forms an image 120 mm beyond its second focal point.

Answers

Answer:

Explanation:

Given that:

Focal length for the objective lens = 20 mm, 4 mm, 1.4 mm

For objective lens of focal length f₁ = 20 mm

s₁' = 120 mm + 20 mm = 140 mm

Magnification [tex]m_1 = \dfrac{s'_1}{f_1}[/tex]

[tex]m_1 = \dfrac{140}{20}[/tex]

[tex]m_1 = 7 \ m[/tex]

For objective lens of focal length f₁ = 4 mm

s₁' = 120 mm + 4 mm = 124 mm

[tex]m_1 = \dfrac{s'_1}{f_1}[/tex]

[tex]m_1 = \dfrac{124}{4}[/tex]

[tex]m_1 = 31 \ m[/tex]

For objective lens of focal length f₁ = 1.4 mm

s₁' = 120 mm + 1.4 mm = 121.4 mm

[tex]m_1 = \dfrac{s'_1}{f_1}[/tex]

[tex]m_1 = \dfrac{121.4}{1.4}[/tex]

[tex]m_1 = 86.71 \ m[/tex]

The magnification of the eyepiece is given as:

[tex]m_e = 5X \ and \ m_e = 15X[/tex]

Thus, the largest angular magnification when  [tex]m_1 \ and \ m_e \ are \ large \ is:[/tex]

[tex]M_{large}= (m_1)_{large} \times (m_e)_{large}[/tex]

= 86.71 × 15

= 1300.65

The smallest angular magnification derived when [tex]m_1 \ and \ m_e \ are \ small \ is:[/tex]

[tex]M_{small}= (m_1)_{small} \times (m_e)_{small}[/tex]

= 7 × 5

= 35

The largest magnification will be 1300.65 and the smallest magnification will be 35.

What is magnification?

Magnification is defined as the ratio of the size of the image of an object to the actual size of the object.

Now for objective lens and eyepieces, it is defined as the ratio of the focal length of the objective lens to the focal length of the eyepiece.

It is given in the question:

Focal lengths for the objective lens is = 20 mm, 4 mm, 1.4 mm

now we will calculate the magnification for all three focal lengths of the objective lens.

Also, each objective forms an image 120 mm beyond its second focal point.

(1) For an objective lens of focal length   [tex]f_1=20 \ mm[/tex]

[tex]s_1'=120\ mm +20 \ mm =140\ mm[/tex]

Magnification will be calculated as

[tex]m_1=\dfrac{s_1'}{f_1} =\dfrac{140}{20} =7[/tex]

(2) For an objective lens of focal length [tex]f_1= \ 4 \ mm[/tex]

s₁' = 120 mm + 4 mm = 124 mm

[tex]m_1=\dfrac{s_1'}{f_1} =\dfrac{124}{4} =31[/tex]

(3) For an objective lens of focal length [tex]f_1=1.4\ mm[/tex]

s₁' = 120 mm + 1.4 mm = 121.4 mm

[tex]m_1=\dfrac{s_1'}{f_1} =\dfrac{121.4}{1.4} =86.71[/tex]

Now the magnification of the eyepiece is given as:

[tex]m_e=5x\ \ \ & \ \ m_e=15x[/tex]

Thus, the largest angular magnification when  

[tex]m_1 = 86.17\ \ \ \ m_e=15x[/tex]

[tex]m_{large}= (m_1)_{large}\times (m_e)_{large}[/tex]

[tex]m_{large}=86.71\times 15=1300.65[/tex]

The smallest angular magnification derived when

[tex]m_1=7\ \ \ \ m_e=5[/tex]

[tex]m_{small}=(m_1)_{small}\times (m_e)_{small}[/tex]

[tex]m_{small}=7\times 5=35[/tex]

Thus the largest magnification will be 1300.65 and the smallest magnification will be 35.

To know more about magnification follow

https://brainly.com/question/1599771

The steps to determine the sum are shown. (6.74x104)+(8.95 x 104) Step 1. Rearrange the expression: (6.74+8.95) 104 Step 2. Add the coefficients: (15.69) 104 Step 3. Write in scientific notation: 1.569x 10 What is the value of k in Step 3? =​

Answers

Answer:

We want to solve the sum:

6.74*10⁴ + 8.95*10⁴

first, we take the common factor 10⁴ out, so we get:

(6.74 + 8.95)*10⁴

Now we solve the sum:

(15.66)*10⁴

Now we want to rewrite it in exponential form, wo we can rewrite it as:

(15.66)*10⁴ = (1.566*10)*10⁴ = (1.566)*10*10⁴ = (1.566)*10⁴⁺¹ = 1.566*10⁵

k = 5.

Can anyone help
Me please the question is on the photo that I attached it to

Answers

Answer:

2.8 MW

Explanation:

There are 7 wind turbines in the wind farm as shown in the diagram. Thus, the energy output by one turbine is 1/7 if the total energy output. So, 19.6/7=2.8MW

How can i prove the conservation of mechanical energy?​

Answers

Answer:

We can also prove the conservation of mechanical energy of a freely falling body by the work-energy theorem, which states that change in kinetic energy of a body is equal to work done on it. i.e. W=ΔK. And ΔE=ΔK+ΔU. Hence the mechanical energy of the body is conserved

Explanation:

You want to calculate how long it takes a ball to fall to the ground from a
height of 20 m. Which equation can you use to calculate the time? (Assume
no air resistance.)
O A. vz? = v? +2aAd
B. a =
V₂-vi
At
O c. At=V1
4
a
O D. At=
2Ad
a

Answers

If a person wants to calculate the length of time it takes for a ball to fall from a height of 20m, the correct equation that they should use is:

D. Δt= √2Δd/a

What is the equation for finding the length of time for a free fall?

The free fall formula should be used to obtain the length of time that it takes for a ball to fall from a given height. This formula also factors the height or distance from which the fall occurred and this is denoted by the letter d. The small letter 'a' is denotative of acceleration due to gravity and this is a constant pegged at -9.98 m/s².

So, the change in height is obtained and multiplied by two. This is further divided by the acceleration and the square root of the derived answer translates to the time taken for the ball to fall from the height of 20m. Of all the options listed, option D represents the correct equation.

Learn more about free fall here:

https://brainly.com/question/12167131

#SPJ1

At the start of a basketball game, a referee tosses a basketball straight into the air by giving it some initial speed. After being given that speed, the ball reaches a maximum height of 4.35 m above where it started. Using conservation of energy, find the height of the ball when it has a speed of 2.5 m/s.

Answers

Answer:

0.32 m.

Explanation:

To solve this problem, we must recognise that:

1. At the maximum height, the velocity of the ball is zero.

2. When the velocity of the ball is 2.5 m/s above the ground, it is assumed that the potential energy and kinetic energy of the ball are the same.

With the above information in mind, we shall determine the height of the ball when it has a speed of 2.5 m/s. This can be obtained as follow:

Mass (m) = constant

Acceleration due to gravity (g) = 9.8 m/s²

Velocity (v) = 2.5 m/s

Height (h) =?

PE = KE

Recall:

PE = mgh

KE = ½mv²

Thus,

PE = KE

mgh = ½mv²

Cancel m from both side

gh = ½v²

9.8 × h = ½ × 2.5²

9.8 × h = ½ × 6.25

9.8 × h = 3.125

Divide both side by 9.8

h = 3.125 / 9.8

h = 0.32 m

Thus, the height of the ball when it has a speed of 2.5 m/s is 0.32 m.

A balloon pops, making a loud noise that startles you. What kind of energy best describes this experience?

A. Thermal Energy
B. Sound Energy
C. Gravitational Energy
D. Radiant Energy

Answers

The correct answer is b
Other Questions
What is the use of Name Box in MS-Excel? did juror 8 act as an objective force in the decision making process Amoebas make exact copies of themselves. Therefore, they reproduceA. asexually buy the process of MEIOSISB. sexually by the process of MITOSISC. sexually by the process of MEIOSISD. asexually by the process of MITOSIS A spinning satellite begins to unfold two solar panels as shown. As thepanels extend from the satellite, what is the result? How can you solve for X in the proportion of7/8 equals X/24 Is segment ST tangent to circle P1 Select the correct answer.Which is the best inference about Lincolns assessment of his presidency? Select the correct locations on the image.In which of these images would pattern become an evaluating factor? Find the missing angle 7. What inspired the Occupy Wall Street movement?skepticism about the validity of the 2008 presidential electionoutrage about the role of the American financial industry in crashing the global economyanger about the government's continued lack of action in reducing unemploymentfrustration regarding the wars in the Middle East An aquarium store recommends that the minimum size for a goldfish tank is 5.8 gallons plus an additional 0.6 gallon for eachfish that is added to the tank. Which expression represents the minimum number of gallons needed in a tank for x fish? Who is not a round character in The Tragedy of Julius Caesar?O LepidusMark AntonyCaesarO Brutus AYUDA XFAVOR, NO LE ENTIENDO MUY BIEN:( What is extinction ? What was one of China's major achievements during the postclassical era?A. Developing gunpowder weaponsB. Founding the religion of Zen Buddhism C. Creating the first metal coinsD. Setting up the first Chinese dynasty Time value of money calculations can be solved using a mathematical equation, a financial calculator, or a spreadsheet. Which of the following equations can be used to solve for the future value of an ordinary annuity?1) PMT x {1 [1/(1 + r)nn]}/r2) PMT x {[(1 + r)nn 1]/r}3) FV/(1 + r)nn4) PMT x {[(1 + r)nn 1]/r} x (1 + r) How were the Middle Colonies different from New England and the South?A. They had few major cities.B. They were more dependent on agriculture.C. Their communities showed more religious tolerance.D. Their communities displayed a weaker work ethic. g e-Dynamix Technologies, another electronics manufacturing firm, in important factors such as manufacturing capability and adaptability to market conditions. Which of the following terms best describes Futura-Core's abilities in comparison to Core-Dynamix? A. absolute advantage B. collective bargaining C. comparative advantage D. competitive advantage Help, need index form Industry value chains Multiple choice question. generally have little effect on the company's cost competitiveness and customer value proposition. include both suppliers and forward channel partners. do not take into consideration the buyer or end-user value chain. tend to be highly similar across industries.